Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 322
Filtrar
1.
Vestn Oftalmol ; 140(3): 34-42, 2024.
Artigo em Russo | MEDLINE | ID: mdl-38962977

RESUMO

Standard bacteriological examinations, which involve culturing microorganisms at 37 °C, are commonly used in clinical practice for diagnosing infectious diseases. However, the growth temperature of microorganisms on the ocular surface (OS) during infectious keratitis (IK) may not coincide with the laboratory standard, which is due to the characteristic features of heat exchange in the eye. PURPOSE: This exploratory study examines the distribution and properties of OS microorganisms isolated under different temperature cultivation conditions in patients with IK and healthy volunteers without ophthalmic pathology. MATERIAL AND METHODS: Fifteen participants were divided into two groups. Group 1 (n=10) consisted of patients with signs of unilateral infectious keratitis, while group 2 (n=5) served as the control group. A novel microbiological method was employed to isolate pure cultures of microorganisms. This method involved cultivating microorganisms at two temperature regimes (37 °C and 24 °C) and subsequently identifying them using biochemical, immunological, and physicochemical techniques, including mass spectrometry. Scanning electron microscopy (SEM) with lanthanide staining used as the reference method. The temperature status of the ocular surface was assessed using non-contact infrared thermography. RESULTS: The study demonstrated the presence of psychrotolerant microorganisms on the ocular surface, which exhibited growth at a relatively low temperature of 24 °C. These psychrotolerant microorganisms were found to be isolated from the ocular surface displaying signs of temperature dysregulation. Among such microorganisms are Acinetobacter lwoffii, Achromobacter xylosoxidans, Bacillus licheniformis, Enterococcus faecalis, Klebsiella oxytoca, Klebsiella pneumoniae, Micrococcus luteus, Pseudomonas luteola, Streptococcus spp. CONCLUSION: When identifying the causative agent of infectious keratitis, it is crucial to consider the divergence of growth temperature of ocular surface microorganisms. The presence of psychrotolerant microorganisms on the ocular surface, which can effectively grow at room temperature, should be taken into account, especially in cases of temperature dysregulation.


Assuntos
Infecções Oculares Bacterianas , Ceratite , Humanos , Ceratite/microbiologia , Ceratite/diagnóstico , Masculino , Feminino , Infecções Oculares Bacterianas/microbiologia , Infecções Oculares Bacterianas/diagnóstico , Adulto , Pessoa de Meia-Idade , Temperatura , Córnea/microbiologia , Termografia/métodos
2.
J Hazard Mater ; 476: 135054, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38991647

RESUMO

Microplastics (MPs) is an emerging pollutant potentially harmful to health. Medical practices using plastic devices, such as percutaneous coronary interventions (PCI), may result in MPs entering into the blood. The purpose of this study was to quantify the effect of PCI on microplastic levels in patients' blood. Laser direct infrared (LDIR) was used to detect MPs in the blood of 23 patients before and after PCI. MPs in the water in which devices used in PCI were washed were also examined. The concentration of MPs in the blood was significantly elevated (93.57 ± 35.95 vs. 4.96 ± 3.40 particles/10 mL of blood, P < 0.001) after PCI compared to before, and the increased MPs were polyamide (PA), polyethylene (PE), polyurethane (PU), and polyethylene terephthalate (PET), which was consistent with the types of MPs detected in the device washing water. The maximum diameter of MPs in blood before PCI was 50 µm, whereas after PCI it was 213 µm, and even 336 µm in device washing water. These findings indicated that PCI will cause MPs to enter the blood, and devices used during PCI were a major source, a range of medical practices that use plastic devices may be a new route for MPs to enter the human body.

3.
J Funct Biomater ; 15(6)2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38921542

RESUMO

Nanoparticle (NP)-based solutions for oncotherapy promise an improved efficiency of the anticancer response, as well as higher comfort for the patient. The current advancements in cancer treatment based on nanotechnology exploit the ability of these systems to pass biological barriers to target the tumor cell, as well as tumor cell organelles. In particular, iron oxide NPs are being clinically employed in oncological management due to this ability. When designing an efficient anti-cancer therapy based on NPs, it is important to know and to modulate the phenomena which take place during the interaction of the NPs with the tumor cells, as well as the normal tissues. In this regard, our review is focused on highlighting different approaches to studying the internalization patterns of iron oxide NPs in simple and complex 2D and 3D in vitro cell models, as well as in living tissues, in order to investigate the functionality of an NP-based treatment.

4.
Bioengineering (Basel) ; 11(6)2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38927857

RESUMO

Magnesium-based multicomponent alloys with different compositions, namely Mg60Al20Zn5Cu10Mn5 (Mg60 alloy), Mg70Al15Zn5Cu5Mn5 (Mg70 alloy), and Mg80Al5Cu5Mn5Zn5 (Mg 80) alloys, were prepared using the disintegrated melt deposition technique. The DMD technique is a distinctive method that merges the benefits from gravity die casting and spray forming. This approach facilitates high solidification rates, process yields, and reduced metal wastage, resulting in materials with a fine microstructure and minimal porosity. Their potential as biodegradable materials was assessed through corrosion in different simulated body fluids (SBFs), microstructure, and cytotoxicity tests. It was observed that the Mg60 alloy exhibited low corrosion rates (~× 10-5 mm/year) in all SBF solutions, with a minor amount of corrosive products, and cracks were observed. This can be attributed to the formation of the Mg32(AlZn)49 phase and to its stability due to Mg(OH)2 film, leading to excellent corrosion resistance when compared to the Mg70 and M80 alloys. Conversely, the Mg80 alloy exhibited high corrosion rates, along with more surface degradation and cracks, due to active intermetallic phases, such as Al6Mn, Al2CuMg, and Al2Cu phases. The order of corrosion resistance for the Mg alloy was found to be ASS > HBSS > ABP > PBS. Further, in vitro cytotoxicity studies were carried out using MDA-MB-231 tumor cells. By comparing all three alloys, in terms of proliferation and vitality, the Mg80 alloy emerged as a promising material for implants, with potential antitumor activity.

5.
Beilstein J Nanotechnol ; 15: 490-499, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38711580

RESUMO

Aeromaterials represent a class of increasingly attractive materials for various applications. Among them, aero-ZnS has been produced by hydride vapor phase epitaxy on sacrificial ZnO templates consisting of networks of microtetrapods and has been proposed for microfluidic applications. In this paper, a cost-effective technological approach is proposed for the fabrication of aero-ZnS by using physical vapor transport with Sn2S3 crystals and networks of ZnO microtetrapods as precursors. The morphology of the produced material is investigated by scanning electron microscopy (SEM), while its crystalline and optical qualities are assessed by X-ray diffraction (XRD) analysis and photoluminescence (PL) spectroscopy, respectively. We demonstrate possibilities for controlling the composition and the crystallographic phase content of the prepared aerogels by the duration of the technological procedure. A scheme of deep energy levels and electronic transitions in the ZnS skeleton of the aeromaterial was deduced from the PL analysis, suggesting that the produced aerogel is a potential candidate for photocatalytic and sensor applications.

6.
Materials (Basel) ; 17(9)2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38730747

RESUMO

Cementitious materials are used to construct an engineered barrier in repositories for radioactive waste. The cement matrix may contain a variety of organic compounds, some of which are polymeric admixtures used as plasticizers. Superplasticizers (SPs) are highly effective organic cement additives for reducing water amount, increasing workability, homogeneity, plasticity and the non-segregation of mortars and grouts, improving mechanical properties and resistance to destructive environments. SPs in cement could have an impact on the long-term safety of the disposals of radioactive waste. These organic agents can leach from the cementitious matrix into groundwater and may affect the migration behaviour of radionuclides. The detailed chemical composition and other characteristics of the cement (CEM I 42.5 R, Sweden) used for the leaching experiments were evaluated. It contained mainly CaO (52.51 ± 1.37, %), and the surface area of the cement particles was 13.2 ± 1.3 m2/g. An insignificant increase in pH (from 12.6 ± 0.1 to 12.8 ± 0.1) was observed for the leachates over 10 days. A commercially available cement superplasticizer based on polymelamine sulphonate (PMS) Peramin SMF10 (Peramin AB, Sweden) was chosen for the research. The product's chemical composition was analysed using wavelength-dispersive X-ray fluorescence (WD-XRF) spectroscopy, while other physico-chemical properties of the PMS superplasticizer were assessed by Raman spectroscopy and thermo-gravimetric analysis. In aqueous solutions and powders of PMS, the same most intensive features were observed at 774 cm-1 (ring out-of-plane deformation), 977 cm-1 (C-N-C bending, SO stretching) and 1055 cm-1 (C-N=C bending) in the Raman spectra. At up to 270 °C, the polymer was thermally stable. Raman and UV/Vis spectroscopies were used to assess the rate of the alkaline degradation of PMS superplasticizer in different aqueous solutions. No changes were observed in the hydrolytic solutions with any of the above analytical methods over a period of 3 years. The results obtained revealed a good thermal and chemical stability (in highly alkaline media, pH = 9.9-12.9) of the PMS polymer.

7.
Cureus ; 16(3): e55718, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38586653

RESUMO

BACKGROUND: Dentin hypersensitivity (DH) involves sensitive symptoms, because of exposure of the dentinal tubules. Various materials have been utilized to occlude dentinal tubules for the treatment of DH. Here is a comparative evaluation of nano-carbonate apatite (n-CAP), diode laser, and their combination over the occlusion of dentinal tubules. MATERIALS AND METHOD: Ten intact first premolars were used in this study, out of which 40 dentin disk specimens were obtained by hard tissue microtomy. Four study groups were formulated out of which one was the control group and the remaining three were test groups. Scanning electron microscopy (SEM) was done to evaluate the diameter of the dentinal tubules in each group. RESULTS: On examining data, it was observed that the mean diameter of dentinal tubules in four study groups of control, laser, n-CAP, and n-CAP + laser was found to be 3.40, 2.00, 0.46, and 0.02 respectively. This shows the significant reduction in the diameter of dentinal tubules in the test groups when compared with the control group. CONCLUSION: Among all the measures used to see for a reduction in the diameter of dentinal tubules, the combination group was found to be most occluding, though each of the groups also had a significant reduction in the diameter of dentinal tubules. The present study showed that combination therapy offers a promising means of treating DH in a clinical setting when compared with the treatment of DH n-CAP containing dentifrice or laser irradiation alone.

8.
Microsc Microanal ; 30(2): 208-225, 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38578956

RESUMO

In this article, porous GaN distributed Bragg reflectors (DBRs) were fabricated by epitaxy of undoped/doped multilayers followed by electrochemical etching. We present backscattered electron scanning electron microscopy (BSE-SEM) for sub-surface plan-view imaging, enabling efficient, non-destructive pore morphology characterization. In mesoporous GaN DBRs, BSE-SEM images the same branching pores and Voronoi-like domains as scanning transmission electron microscopy. In microporous GaN DBRs, micrographs were dominated by first porous layer features (45 nm to 108 nm sub-surface) with diffuse second layer (153 nm to 216 nm sub-surface) contributions. The optimum primary electron landing energy (LE) for image contrast and spatial resolution in a Zeiss GeminiSEM 300 was approximately 20 keV. BSE-SEM detects porosity ca. 295 nm sub-surface in an overgrown porous GaN DBR, yielding low contrast that is still first porous layer dominated. Imaging through a ca. 190 nm GaN cap improves contrast. We derived image contrast, spatial resolution, and information depth expectations from semi-empirical expressions. These theoretical studies echo our experiments as image contrast and spatial resolution can improve with higher LE, plateauing towards 30 keV. BSE-SEM is predicted to be dominated by the uppermost porous layer's uppermost region, congruent with experimental analysis. Most pertinently, information depth increases with LE, as observed.

9.
Heliyon ; 10(5): e26463, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38455584

RESUMO

(1-x)(Na0.5Bi0.5)TiO3-xCaTiO3 Lead-free piezoelectric systems, positioned near the morphotropic phase boundary, were synthesized for varying compositions (x = 0.0, 0.05, 0.10, 0.15, and 0.20) using the solid-state reaction route. This study delves into the comprehensive investigation of the compositional effects on phase, structure, and electrical characteristics. Specifically, a morphotropic phase boundary (MPB) involving rhombohedral (R3c) and orthorhombic (Pnma) structures was seen in a (1-x)NBT-xCT crystal structure close to the composition of x = 0.10. Information on the pure phase formation and grain size of the intended composite system has been obtained using Rietveld refinement of the X-ray diffraction (XRD) diagram as well as scanning electron microscopy (SEM). The impact of the CT phase on the NBT lattice was investigated through an analysis of the charge density distribution. Using Williamson-Hall plots from XRD data, the average particle diameter was estimated to be between 131.87 nm and 136.54 nm. The relative permittivity increases with the addition of Ca2+, according to dielectric measurements. All ceramics exhibit a diffuse phase transition near (Tm) with a diffusivity range of 1.5-1.8, and a downward shift in depolarization temperature (Td). At the morphotropic phase boundary (MPB), excellent dielectric properties were observed at x = 0.10, which are attributed to the presence of both rhombohedral and orthorhombic structures as well as an appropriate particle size. The conduction process at different temperatures is thermally activated, as determined by the frequency-dependent ac conductivity.

10.
Heliyon ; 10(6): e27553, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38524595

RESUMO

The early to middle Permian Dohol Formation is characterized by a significant presence of shale deposits. While these shales exhibit a low potential to generate hydrocarbons, there is a need to ascertain the possible reasons for the low hydrocarbon generation potential. Also, there are several unidentified properties and attributes associated with these shales in terms of their inorganic geochemical characteristics and their mineralogy. This study is focused on using XRF, ICPMS, and SEM with EDX to determine the mineralogical and geochemical characteristics of these shales and use these data to discuss their provenance history and tectonic setting and interpret the paleoclimatic and paleoweathering conditions. The inorganic geochemical analysis shows that the shales from the Dohol Formation are from a felsic igneous source. The shales were also identified to be from a passive margin based on the bivariate plot of SiO2 vs log (K2O/Na2O) and several multidimensional diagram plots. The CIA and CIW data, as well as the A-CN-K plot, all point to a significant degree of chemical weathering, ranging from mild to intense. The Sr/Cu ratio and C-value, combined with various other geochemical proxies, indicate that the shales were formed in warm-humid climatic conditions. The SEM analysis shows that the samples are mainly composed of kaolinite and illite, and this result was supported by the EDX elemental composition. The high terrigenous influx of sediments, the oxic to sub-oxic conditions in which the sediments were deposited, and finally low marine productivity were found to be the reasons for the low TOC in the shales from the Dohol Formation.

11.
Insects ; 15(3)2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38535341

RESUMO

Human lice are the only hematophagous ectoparasites specific to human hosts. They transmit epidemic typhus, trench fever and relapsing fever, diseases which have already caused millions of deaths worldwide. In order to further investigate lice vectorial capacities, laboratory-controlled live lice colonies are essential. Previously developed lice-rearing methods significantly advanced research on louse-borne diseases and louse biology. In this study, we aimed to develop a rearing technique for the Orlando (Or) strain of body lice on an artificial membrane. We tested two systems, namely the Hemotek feeding system and a Petri dish with the lice being fed through a Parafilm membrane. Lice longevity and development were drastically affected by the blood anticoagulant. Additionally, heparinised human blood on a Petri dish was the best candidate when compared to the control group (reared on a rabbit). Therefore, this strategy was applied to 500 lice. Development into adulthood was recorded after 21 days (17 days for the rabbits), and 52 eggs were deposited (240 for the rabbits). In this study, we were able to maintain one generation of body lice on an artificial membrane with comparable feeding and longevity rates to those fed on live rabbits. However, lice fecundity decreased on the artificial membrane. In vitro lice-rearing experiments will enable pathogen infection assays and pesticide bioassays to be carried out in accordance with animal welfare requirements.

12.
Environ Sci Pollut Res Int ; 31(17): 25991-26005, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38492138

RESUMO

The use of geopolymers (GP) in cementitious composites provides a solution to reduce the significant carbon emissions associated with conventional cement production, thereby advancing environmentally friendly concrete construction practices. The promise of hybrid fiber-reinforced fly ash (FA)-based GP (HFGP) composites that combine microfibers and nanoparticles has not yet been fully comprehended. This research aims to enhance the mechanical and microstructural properties of HFGP blends by varying the proportion of nano calcium carbonate ( n - C a C O 3 ). The production of HFGP involved the use of two types of fibers: 1% carbon fibers and 0.5% basalt fibers. To achieve HFGP blends with a consistent fiber ratio, we incorporated four different levels of n - C a C O 3 , comprising 1%, 2%, 3%, and 4% of the mixture. The analysis of fractured samples encompassed microstructural and mineralogical characterization, which was conducted using scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), and X-ray diffraction (XRD) analysis. The results unveiled that the HFGP blend containing 3% n - C a C O 3 exhibited the highest levels of hardness, compressive strength, toughness modulus, and flexural strength while the use of 2% n - C a C O 3 produced the highest results for fracture toughness and impact strength. SEM analysis illustrated that n - C a C O 3 had a significant positive impact on the microstructure of GP. A considerable rise in hump intensity between 20 and 40 °C ( 2 θ ) was also seen in the XRD examination, indicating that calcium silicate hydrate (CSH) had formed after the primary binder, such as sodium aluminosilicate hydrate (NASH), had been present. The stretching of O-H bonds in water molecules was also seen in the HFGP spectra at 3399, 3436, 3436, and 3438 cm-1. Due to the higher water content in the HFGP network, which may influence the material's strength, these bands were more apparent and larger in specimens with additions of nanoparticles and hybrid fibers.


Assuntos
Nanocompostos , Teste de Materiais , Dureza , Força Compressiva , Nanocompostos/química , Água
13.
mBio ; 15(3): e0310223, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38323857

RESUMO

To verify whether members of the phylum Candidatus Patescibacteria parasitize archaea, we applied cultivation, microscopy, metatranscriptomic, and protein structure prediction analyses on the Patescibacteria-enriched cultures derived from a methanogenic bioreactor. Amendment of cultures with exogenous methanogenic archaea, acetate, amino acids, and nucleoside monophosphates increased the relative abundance of Ca. Patescibacteria. The predominant Ca. Patescibacteria were families Ca. Yanofskyibacteriaceae and Ca. Minisyncoccaceae, and the former showed positive linear relationships (r2 ≥ 0.70) Methanothrix in their relative abundances, suggesting related growth patterns. Methanothrix and Methanospirillum cells with attached Ca. Yanofskyibacteriaceae and Ca. Minisyncoccaceae, respectively, had significantly lower cellular activity than those of the methanogens without Ca. Patescibacteria, as extrapolated from fluorescence in situ hybridization-based fluorescence. We also observed that parasitized methanogens often had cell surface deformations. Some Methanothrix-like filamentous cells were dented where the submicron cells were attached. Ca. Yanofskyibacteriaceae and Ca. Minisyncoccaceae highly expressed extracellular enzymes, and based on structural predictions, some contained peptidoglycan-binding domains with potential involvement in host cell attachment. Collectively, we propose that the interactions of Ca. Yanofskyibacteriaceae and Ca. Minisyncoccaceae with methanogenic archaea are parasitisms.IMPORTANCECulture-independent DNA sequencing approaches have explored diverse yet-to-be-cultured microorganisms and have significantly expanded the tree of life in recent years. One major lineage of the domain Bacteria, Ca. Patescibacteria (also known as candidate phyla radiation), is widely distributed in natural and engineered ecosystems and has been thought to be dependent on host bacteria due to the lack of several biosynthetic pathways and small cell/genome size. Although bacteria-parasitizing or bacteria-preying Ca. Patescibacteria have been described, our recent studies revealed that some lineages can specifically interact with archaea. In this study, we provide strong evidence that the relationship is parasitic, shedding light on overlooked roles of Ca. Patescibacteria in anaerobic habitats.


Assuntos
Archaea , Euryarchaeota , Humanos , Archaea/genética , Anaerobiose , Ecossistema , Hibridização in Situ Fluorescente , Filogenia , Bactérias/genética , Euryarchaeota/genética
14.
Pharmaceutics ; 16(2)2024 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-38399248

RESUMO

Hybrid nanoparticles (HNPs) were designed by combining a PLGA core with a lipid shell that incorporated PEG-Lipid conjugates with various functionalities (-RGD, -cRGD, -NH2, and -COOH) to create targeted drug delivery systems. Loaded with a neutral lipid orange dye, the HNPs were extensively characterized using various techniques and investigated for their uptake in human monocyte-derived macrophages (MDMs) using FC and CLSM. Moreover, the best-performing HNPs (i.e., HNP-COOH and HNP-RGD as well as HNP-RGD/COOH mixed) were loaded with the anti-inflammatory drug BRP-201 and prepared in two size ranges (dH ~140 nm and dH ~250 nm). The HNPs were examined further for their stability, degradation, MDM uptake, and drug delivery efficiency by studying the inhibition of 5-lipoxygenase (5-LOX) product formation, whereby HNP-COOH and HNP-RGD both exhibited superior uptake, and the HNP-COOH/RGD (2:1) displayed the highest inhibition.

15.
Toxicol Res (Camb) ; 13(1): tfad118, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38179002

RESUMO

The unregulated expulsion of untreated or partially treated industrial effluents poses serious threat to the aquatic ecosystem. Therefore, in the present study fish Channa punctata were exposed to untreated and microbially treated equalization tank effluent of textile industry and toxicity studies were carried out for 45 days. The study was planned to analyze the toxicity proffered by textile effluents through haematological, biochemical, histopathological and ultrastructural analysis in blood, liver and gill tissues of fish. While comparing untreated and microbially treated effluent exposed groups haematological parameters were significantly (P ≤ 0.05) less in the untreated effluent exposed group whereas White blood cell count was highly escalated. However, in the microbially treated groups, the alterations were less severe. Increased malondialdehyde content indicating oxidative stress, reduced Catalase (CAT) and Superoxide dismutase (SOD) activity showing a weakened antioxidant defence system and increased glutathione activity was also perceived in untreated effluent exposed groups in comparison to microbially treated groups. Histopathological alterations in gill (telangiectasia, lamellae fusion, breakage, vacuolization and bending of lamellae) and liver (sinusoid dilations, fusion, necrosis and congestion) were more pronounced and severe in the untreated effluent exposed group as compared to microbially treated group. The results observed in histopathology were further reaffirmed by scanning electron microscopy. The study clearly highlights less alterations and deformities in microbially treated effluent groups in comparison to untreated effluent groups. These findings, therefore, necessitate the search for more effective microbial inocula for the better treatment of effluents in order to protect the aquatic life as well as human beings. Highlights: Channa punctata exposed for 15, 30 and 45 days to untreated and microbially treated equalization tank effluent of textile industry.Untreated and microbially treated effluent exposed fish elicited alterations in blood, liver and gill tissuesHaematology, biochemical, histopathology and ultrastructural analysis resulted in massive pathologies in groups subjected to untreated effluent inducing maximum damage after 45 days of exposure.Less pronounced toxicity in fish C. punctata was observed in fish exposed to microbially treated effluent indicating its efficacy in toxicity reduction.

16.
J Dent Res ; 103(3): 243-252, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38185942

RESUMO

Preventing the development and recurrence of periodontal diseases often includes antimicrobial mouthrinses to control the growth of the periodontal pathogens. Most antimicrobials are nonselective, targeting the symbiotic oral species as well as the dysbiosis-inducing ones. This affects the overall microbial composition and metabolic activity and consequently the host-microbe interactions, which can be detrimental (associated with inflammation) or beneficial (health-associated). Consequently, guiding the antimicrobial effect for modulating the microbial composition to a health-associated one should be considered. For such an approach, this study investigated electrolyzed saline as a novel rinse. Electrolyzed saline was prepared from sterile saline using a portable electrolysis device. Multispecies oral homeostatic and dysbiotic biofilms were grown on hydroxyapatite discs and rinsed daily with electrolyzed saline (EOS). Corresponding positive (NaOCl) and negative (phosphate-buffered saline) controls were included. After 3 rinses, biofilms were analyzed with viability quantitative polymerase chain reaction and scanning electron microscopy. Supernatants of rinsed biofilms were used for metabolic activity analysis (high-performance liquid chromatography) through measuring organic acid content. In addition, human oral keratinocytes (HOKs) were exposed to EOS to test biocompatibility (cytotoxicity and inflammation induction) and also to rinsed biofilms to assess their immunogenicity after rinsing. Rinsing the dysbiotic biofilms with EOS could reduce the counts of the pathobionts (>3 log10 Geq/mm2 reduction) and avert biofilm dysbiosis (≤1% pathobiont abundance), leading to the dominance of commensal species (≥99%), which altered both biofilm metabolism and interleukin 8 (IL-8) induction in HOKs. EOS had no harmful effects on homeostatic biofilms. The scanning electron micrographs confirmed the same. In addition, tested concentrations of EOS did not have any cytotoxic effects and did not induce IL-8 production in HOKs. EOS showed promising results for diverting dysbiosis in in vitro rinsed biofilms and controlling key periopathogens, with no toxic effects on commensal species or human cells. This novel rinsing should be considered for clinical applications.


Assuntos
Anti-Infecciosos , Interleucina-8 , Humanos , Disbiose , Biofilmes , Inflamação
17.
J Appl Biomater Funct Mater ; 22: 22808000231222704, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38217423

RESUMO

OBJECTIVES: Silk fiber is difficult to degrade in vivo, which limits its application in tissue engineering materials such as artificial nerves. Therefore, in this study aim to promote its degradation in vivo by chemical treating silk fibers in vitro. MATERIALS AND METHODS: Sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), scanning electron microscopy (SEM) observations, mechanical test, Fourier transform infrared spectroscopy (FT-IR) measurements were used to investigate the degradation effect of chemicals (hydrochloric acid, phosphoric acid, acetic acid, sodium hydroxide, calcium hydroxide, sodium bicarbonate, and calcium chloride) on silk fiber in vitro. Immunofluorescence staining and transcriptome analysis were used to investigate the effect of inflammatory factors on the degradation of chemically treated silk fiber in rats. RESULTS: (1) Silks were separated into finer fibers in each group. (2) FT-IR absorption peaks of amides I, II, and III overlap in each group. (3) Silk degradation degree in each group was higher than that in an untreated group. The calcium chloride-treated group was completely degraded. (4) Fibronectin, collagen I, collagen III, integrin α and CD68 were immunofluorescence positive in all vegetation section. (5) There were no significant differences in the expressions of collagen I, collagen III, and fibronectin in the vegetations formed on the 14th day of subcutaneous implantation, while integrin α, CD68, TNF-α, IL-1b, and IL-23 express at higher levels with IL-10 at lower levels. CONCLUSIONS: All chemicals could completely degrade silk; however, their degradation products were not the same. The chemicals change the mechanical properties of silk by separating it into finer fibers, which increase the contact surface area between the silk and tissue fluid, accelerating the degradation of monofilaments in vivo by promoting inflammation and macrophage activity through the increased and decreased expressions of pro- and anti-inflammatory factors, respectively.


Assuntos
Fibroínas , Seda , Ratos , Animais , Seda/química , Fibronectinas , Fibroínas/química , Espectroscopia de Infravermelho com Transformada de Fourier , Cloreto de Cálcio , Colágeno/química , Colágeno Tipo I , Integrinas
18.
J Microsc ; 293(3): 160-168, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38234217

RESUMO

We calculate a universal shift in work function of 59.4 meV per decade of dopant concentration change that applies to all doped semiconductors and from this use Monte Carlo simulations to simulate the resulting change in secondary electron yield for doped GaAs. We then compare experimental images of doped GaAs layers from scanning electron microscopy and conductive atomic force microscopy. Kelvin probe force microscopy allows to directly measure and map local work function changes, but values measured are often smaller, typically only around half, of what theory predicts for perfectly clean surfaces.

19.
Microsc Res Tech ; 87(4): 747-752, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38037815

RESUMO

Scanning electron microscopy (SEM) is a precious tool in materials science and morphology sciences, enabling detailed examination of materials at the nanoscale. However, precise and accurate sample repositioning during different observation sessions remains a significant challenge, impacting the quality and repeatability of SEM analyses. This study aimed to develop and evaluate a LEGO®-based sample positioning system for SEM analysis. The system was designed to consistently identify and align features across multiple repositioning cycles, maintain accurate positioning along the z-axis, minimize distortion, and provide repeatable and reliable results. The results indicated a high degree of precision and accuracy in the repositioning process, as evidenced by the minimal displacements, deviations in scaling and shearing, and the highly significant results (p < 0.001) obtained from the analysis of absolute translations and rotations. Moreover, the analyses were consistently replicated across six repetitions, underscoring the reliability of the observed results. While the findings suggest that the LEGO-based sample positioning system is promising for enhancing SEM analyses' quality and repeatability, further studies are needed to optimize the system's design and evaluate its performance in different SEM applications. Ultimately, this study contributes to the ongoing efforts to develop cost-effective, customizable, and accurate solutions for sample positioning in SEM, contributing to the advancement of materials science research and all SEM analysis requiring overtime observations of the same sample. RESEARCH HIGHLIGHTS: This study focused on the development and evaluation of a novel LEGO-based sample positioning system specifically designed for SEM analysis. One of the standout features of this system is its ability to consistently identify and align features across multiple repositioning cycles, showcasing its precision and reliability. To further understand the mechanical aspects of the SEM stage, we employed the Rambold Kontroll comparator, which provided a baseline understanding of its mechanical tolerance. The registration process results were particularly noteworthy, as they revealed high accuracy with minimal displacements. Furthermore, the consistent outcomes observed across multiple repetitions emphasize the reliability and robustness of the methods we employed in this research.

20.
Anat Histol Embryol ; 53(1): e12964, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37658633

RESUMO

The study aimed to investigate the morphologic aspects of common carp's gill arch and gill rakers (Cyprinus carpio, Linnaeus, 1758), an omnivore and highest-produced aquaculture species. The study used 10 common carp (395.35 ± 45.06 g) grown entirely under aquaculture conditions. The fish tissues were fixed with Glutaraldehyde (2.5%) for scanning electron microscopy and with formalin (10%) for stereomicroscopic examination. In the SEM examination, two types of taste papillae (Type II and Type III) were observed in the pharyngeal mucosa. Microridge-like structures in the epithelial layer were found to have two forms. The study findings indicate a significant decrease in gill arch lengths from cranial to caudal and a significant increase in rakers per unit area, as determined through digital calliper measurements and stereomicroscopic examinations (p < 0.05). However, there was no significant difference in measurements of gill arches and raker numbers between the bilateral symmetry of the gill arches (p > 0.05). In conclusion, it was observed that the epithelial structure on the common carp gill arch contained two types of microridge-like structures: the gill arch length decreased from cranial to caudal, and the rake density on these arches increased caudally.


Assuntos
Carpas , Animais , Brânquias/ultraestrutura , Microscopia Eletrônica de Varredura/veterinária , Faringe , Mucosa , Aquicultura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA