Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Environ Manage ; 353: 120164, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38295642

RESUMO

Evaluating the linkage between soil erosion and sediment connectivity for export assessment in different landscape patterns at catchment scale is valuable for optimization of soil and water conservation (SWC) practices. Present research attempts to identify the soil erosion susceptible (SES) sites in Kangsabati River Basin (KRB) using machine learning algorithm (decision trees, decision trees cross validation, CV, Extreme Gradient Boosting, XGB CV and bagging CV) taken thirty five variables, for investigating the linkage between erosion rates and sediment connectivity to assess the sediment export at sub-basin level employing connectivity index (IC) and Integrated Valuation of Ecosystem Services and Tradeoffs (InVEST) sediment delivery ratio (SDR) model. Based on AUC of receiving operating curve in validation test, excellent capacity of extreme Gradient Boosting, XGB CV and bagging CV (0.95, 0.90) than decision tree and decision tree CV (0.78, 0.82), exhibits about 18.58 % of basin areas facing susceptible to very high erosion. Conversely, considering universal soil loss equation (RUSLE) parameters, InVEST-SDR model estimated about 64.24 % of soil loss rate occurred from high SES in where sediment export rate become very high (136.995 t/ha-1/y-1). The IC result show that high sediment connectivity (<-4.4) measured in high SES of laterite and bare land in upper catchment, and double crop agricultural areas in lower catchment, while least connectivity (>-7.1) observed in low SES of dense forest, vegetation cover and settlement built-up areas. Pearson correlation matrix revealed that four landscape indices category i.e. edge metrics (p < 0.01), aggregation metrics (p < 0.001), shape metrics (p < 0.01-0.001) and diversity metrics (p < 0.01) signified the influence of landscape patterns on IC and SES. Accordingly, RUSLE, SDR and landscape matrices reveals that maximum sediment export rate associated with high connective delivery outlet and high SES in laterite, double crop and bare land due to simple landscape and greater homogeneity, whilst minimum export rate related with low connectivity and low SES in dense forest, vegetation cover and settlement built up area causes of fragmented landscape and spatial heterogeneity. Finally, findings could immense useful for formulating the optimizing measures of SWC in the watershed.


Assuntos
Ecossistema , Erosão do Solo , Monitoramento Ambiental , Solo , Rios , Conservação dos Recursos Naturais
2.
Sci Total Environ ; 912: 169251, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38101637

RESUMO

Hydropower is commonly considered a renewable energy source. Nevertheless, this does not imply an absence of impacts on the riverine ecosystem, the extent of which is expected to increase in the coming years due to the energy transition from fossil fuels to renewable sources and for the climate change. A common consequence of hydroelectric power generation is hydropeaking, which causes rapid and frequent fluctuations in the water flow downstream of hydropower plants. The review incorporates 155 relevant studies published up until November 2023 and follows a systematic review method, Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA), which is a multi-stage systematic procedure for the identification and selection of research documents. The selected studies highlighted several prominent impacts of hydropeaking on aquatic environments. The primary effects include alterations in flow patterns, modification of water temperature, changes in sediment dynamics and fluctuations in dissolved gas levels. These alterations have been found to affect various aspects of aquatic ecosystems, including fish growth, behavior, reproductive success, habitat, and migration patterns, and benthic macroinvertebrate communities. Furthermore, hydropeaking can also lead to habitat fragmentation, erosion, and loss of riparian vegetation, thereby impacting terrestrial ecosystems that depend on the aquatic environment. Despite the body of literature reviewed, several knowledge gaps were identified, underscoring the need for further research. There is limited understanding of the long-term ecological consequences of hydropeaking and its cumulative effects on aquatic ecosystems. Additionally, there is lack of consensus regarding the quantification of ecosystem services, economic impact, soil moisture content, and weighted usable area due to flow fluctuation and global evolution of energy production from renewable energy sources. Addressing the identified research gaps is crucial for achieving a balance between energy production and the conservation of freshwater ecosystems in the context of a rapidly changing global climate.


Assuntos
Ecossistema , Centrais Elétricas , Animais , Energia Renovável , Peixes , Água
3.
Sci Total Environ ; 891: 164545, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37263439

RESUMO

To explore the processes of soil erosion at the plot scale, Digital surface model of Differences (DoD) maps (Unmanned Aerial Vehicle - Structure from Motion (UAV-SfM) method) and data from Radio Frequency Identification (RFID) tags were analysed. The comparison of differences in accuracy of UAV-SfM and 3D terrestrial laser scanner (TLS) measurements, and the integration of the UAV-SfM method and soil particle tracing with RFID tag locations were conducted to assess sediment transport in a plot in Fukushima prefecture, Japan. The Universal Soil Loss Equation (USLE) plot was installed and kept with no vegetation and no cultivation. Water and sediment discharges were measured at the outlet of the plot, and the topographic index of runoff and sediment connectivity (IC) -focused on surface roughness- was also estimated. Based on field surveys, four periods were defined. Locations of RFID tags were firstly determined by using orthoimages derived from the UAV-SfM method and then compared with those locations measured with a laser total station. The mean and standard deviation of difference amounts of UAV-SfM were of 1 and 3.3 mm, respectively. On average, the RFID tags were located with an accuracy of 3.1 cm (RMSE). Although data of tags tracing showed short transport distances with rill erosion, the results of the UAV-SfM surveys showed an increase of sediment connectivity (SC) over the study period that may explain the largest sediment discharge, especially of fine soil particles. The concurrence of higher values of SC as well as the development of new and longer rills demonstrated the important activity of net soil loss in our study site. The combination of distinct methods and techniques, all providing accurate measurements, shed light on the sediment transport process at short distances, which affects the net water and sediment discharge at larger scales.

4.
Ying Yong Sheng Tai Xue Bao ; 34(3): 726-732, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37087656

RESUMO

Understanding the spatial distribution characteristics of soil erosion and sediment connectivity is important for formulating integrated watershed management measures. Based on the InVEST sediment delivery ratio model, we used the connectivity index and soil loss model to measure the spatial distribution characteristics of sediment connectivity and soil erosion in Erdaoling watershed of brown soil hilly region of low mountains in western Liaoning. By exploring slope, aspect and land use characteristics under different sediment connectivity levels and soil erosion levels, we analyzed the relationships among topography, land use, sediment connectivity, and soil erosion. The results showed that the average sediment connectivity in the watershed was -3.79, and that the average soil erosion was 614 t·km2·a-1. High connectivity was mainly found in sloping farmland, while low connectivity was mainly found in forest and grassland. The soil erosion intensity of 93.3% of the watershed area was below moderate, with only 1.1% of the area being above extremely strong. The higher the sediment connectivity level, the higher the proportion of the area <5° slope, while the area proportion of the rest slope was relatively stable. The proportion of cultivated land area increased, while the proportion of forest and grassland land area decreased. The area proportion on negative slope decreased, while that on positive slope increased. With increasing soil erosion intensity, the area proportion of slope <8° increased and the area proportion of the rest slope was relatively stable. The proportion of forest and grassland area decreased, while the proportion of other land use area increased. The proportion of slope area on positive slope increased, while that on negative slope decreased. Land use was a key factor influencing the spatial response relationship between soil erosion and sediment connectivity in this watershed.


Assuntos
Erosão do Solo , Solo , Florestas , China , Conservação dos Recursos Naturais/métodos
5.
Sci Total Environ ; 875: 162679, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-36889401

RESUMO

Frequent rainstorms caused by climate change are causing significant stresses and impacts on karst zones and even global hydrological systems. However, few reports have focused on rainstorm sediment events (RSE) based on long series, high-frequency signals in karst small watersheds. Present study assessed the process characteristics of RSE and analyzed the response of specific sediment yield (SSY) to environmental variables using random forest and correlation coefficients. Management strategies are then provided based on revised index of sediment connectivity (RIC) visualizations, sediment dynamics and landscape patterns, and modeling solutions for SSY are explored through the innovative use of multiple models. The results showed that the sediment process showed high variability (CV > 0.36), and the same index had obvious watershed differences. Landscape pattern and RIC show highly significant correlation with mean or maximum suspended sediment concentration (p<0.01, |r|>0.235). Early rainfall depth was the dominant factor affecting SSY (Contribution = 48.15 %). The hysteresis loop and RIC infer that the sediment of Mahuangtian and Maolike mainly comes from downstream farmland and riverbeds, while Yangjichong comes from remote hillsides. The watershed landscape is centralized and simplified. In the future, patches of shrubs or herbaceous plants should be added around the cultivated land and at the bottom of the sparse forest to increase the sediment collection capacity. The backpropagation neural network (BPNN) is optimal for modeling SSY, particularly for running the variables preferred by the generalized additive model (GAM). This study provides insight into understanding RSE in karst small watersheds. It will help the region to cope with future extreme climate change and develop sediment management models that are consistent with regional realities.

6.
Sci Total Environ ; 860: 160486, 2023 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-36436647

RESUMO

Rills are critical venues for the transport of eroded sediments along hillslopes. The sediment transport efficiency and connectivity within hillslopes are affected by the spatiotemporal evolution of rill erosion and morphology. However, the effect of upslope sediment-laden inflow on rill erosion and connectivity remains unclear. This study investigated the variation in rill erosion from the eroded morphology and sediment connectivity using flume scouring experiments. Upslope sediment-laden inflow was simulated considering the upslope terrace areas of 0.15, 0.30, and 0.45 m2 and an upslope inflow of 6 L min-1. The quantity and cross-sectional depth of rills gradually decreased with increasing upslope terrace area. The cross-sectional morphology of rills changed from being V-shaped to U-shaped in the rill erosion process. All of the mean values of the morphological parameters gradually decreased with increasing upslope terrace area, in contrast to the width-depth ratio (Rw/d) and rill density (ρ), which both initially increased and then decreased. The average length, width, and depth of rills were smaller under an upslope terrace area of 0.45 m2 than those under an upslope terrace area of 0.15 m2; they decreased by 2.78 %, 20.67 %, and 33.68 %, respectively. Soil and water loss induced by rill erosion decreased with increasing upslope terrace area. Rills, as major venues for sediment transport on hillslopes, exhibited a higher sediment connectivity (IC) than that observed in interrill areas under the different upslope terrace areas. Rill development resulted in higher erosion between the upslope and downslope parts within rill channels. The variations in Rw/d and ρ were significantly correlated with runoff and eroded sediment yield, which could be used to estimate the rill erosion process under different upslope terrace areas.


Assuntos
Sedimentos Geológicos , Solo , Estudos Transversais , Movimentos da Água , Água
7.
Environ Res ; 219: 115050, 2023 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-36521535

RESUMO

Increasingly, agricultural land managers are seeking new approaches for understanding the potential challenges posed by sediment connectivity across catchments from source to sink, and implications for delivery of ecosystem services determined by the condition of natural capital assets. Connectivity indices have been frequently applied in the calculation of risk in spatial and temporal assessment frameworks, and tools which facilitate rapid modelling and mapping of soil erosion risk using broad-scale environmental data are therefore of considerable interest. One such indicative tool is SCIMAP (Sensitive Catchment Integrated Mapping and Analysis Platform), which highlights where sediment runoff is likely to occur and be delivered to a watercourse by simulating the generation of saturation-excess overland flow. In this paper, we examine the utility of SCIMAP for exploring the changing nature of soil erosion risk as a function of land use change in the lower Rother catchment in West Sussex, southern England through the formulation of a suite of foresight scenarios informed by knowledge of historical land cover conditions and current management practice. The study area has previously been investigated at the field scale in terms of locating and quantifying sources of erosion and areas where in-stream sedimentation manifests. Output risk values from all simulations were quantified, mapped and compared to highlight areas of greatest/lowest risk. An area was identified immediately north of the main Rother channel that consistently exhibited greatest risk across each land cover scenario. We explore (i) the spatial and temporal variation in modelled risk and (ii) the utility value of SCIMAP for agricultural land-managers and policy-makers in generating robust risk estimates of soil erosion and in-stream sedimentation, and challenges with model verification in a foresight context.


Assuntos
Erosão do Solo , Solo , Ecossistema , Agricultura , Inglaterra , Monitoramento Ambiental
8.
J Environ Manage ; 316: 115212, 2022 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-35550959

RESUMO

Forest fires intensify sediment transport and aggravate local and off-site consequences of soil erosion. This study evaluates the influence of post-fire measures on structural and functional sediment connectivity (SC) in five fire-affected Mediterranean catchments, which include 929 sub-catchments, by using the "aggregated index of connectivity" (AIC) at two temporal scenarios: I) immediately after the fire and before implementing post-fire practices ('Pre-man'), and II) two years after the fire ('Post-man'). The latter includes all the emergency stabilization practices, that are hillslope barriers, check-dams and afforestation. The stream system was set as the target of the computation (STR), to be representative of intense rainfall-runoff events with effective sediment delivery outside the catchments. Output normalization (AICN) allows comparing the results of the five basins between them. The sedimentological analysis is based on specific sediment yield (SSY) -measured at the check-dams installed after the fire -, and this data is used for output evaluation. Stream density and slope variables were the most influential factors on AICN-STR results at the sub-catchment scale. Post-fire hillslope treatments (barriers when built in high densities and afforestation) significantly reduced AICN-STR in comparison with untreated areas in both structural and functional approaches. Despite the presence of hillslope treatments, the higher erosive rainfall conditions resulted in higher AICN-STR values in the Post-man scenario (functional approach). A positive and good correlation was found between the measured SSY and the AICN-STR changes due to the post-fire practices and vegetation recovery, showing the good correspondence of the computation results and the real sediment dynamics of the studied catchments. Overall, AICN demonstrated to be a useful and versatile tool for post-fire management, which needs further research to optimize its applicability.


Assuntos
Incêndios , Rios , Ecossistema , Florestas , Humanos , Solo
9.
Sci Total Environ ; 826: 154189, 2022 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-35240168

RESUMO

Road and river networks in mountainous watersheds play an important role in transporting eroded sediments. However, the underlying transport mechanisms remain poorly understood, particularly in terms of how alterations to flow paths caused by road and river networks influence sediment connectivity. Therefore, using data from the Dongshuanghe (DSH) watershed in the Dabie Mountain in Central China, this study investigated the spatial relationships between road and river networks, analyzed the effects of road and river networks on the spatial distribution of sediment connectivity, and determined the primary factors influencing sediment connectivity. The primary factors were identified using the index of connectivity (IC), buffer analysis, a random forest (RF) model, and a geographical detector model (GDM). The results indicated that road and river networks were spatially closely associated: closer to rivers, the density of high-grade roads increased, while farther from road-river crossings, the length and density of rivers and high-grade roads decreased. Both road and river networks affected the IC. In particular, for permanent drainage lines or local sinks, the average value of ICR (i.e., IC affected by road networks, -0.97) was higher than that of IC (-2.17). Thus, values of ICR decreased substantially with increasing distance to the closest roads (R2 = 0.73). However, beyond a threshold of 150 m, the effect of roads on ICR gradually diminished. In addition, the structural characteristics of road networks, particularly slope (Road_S), had greater explanatory power for spatial variation in the ICR. In conclusion, compared to the river networks, the effect of road networks on ICR was more important, which was not only reflected in the spatial distribution of ICR, but also in the factors influencing ICR.


Assuntos
Sedimentos Geológicos , Rios , China , Monitoramento Ambiental/métodos , Geografia , Rios/química
10.
J Environ Manage ; 278(Pt 1): 111510, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33120091

RESUMO

Forest fires and post-fire management practices (PFMP) cause changes in the hydrological response of a hillslope. This study evaluates the effect of log erosion barriers (LB) and Easy-Barriers® (EB) on the spatial patterns and values of structural sediment connectivity (SC) in a Mediterranean mountainous pine forest affected by an arson fire in August 2017. A drone flight was done in July 2019 (23 months after the fire and 11 months after the PFMP) to obtain a high-resolution orthomosaic and DEM (at 0.05 m). Two contrasted areas, with and without PFMP, were selected along the same hillslope and 26 small basins were identified: 16 in the treated area (mean area, slope and vegetation recovery of 916 m2, 60% and 25%; with 94 LB and 39 EB) and 10 in the untreated area (1952 m2, 75% and 20%). The aggregated index of sediment connectivity (AIC) was chosen to compute SC in three temporal scenarios: Before and just after the fire and when all PFMP were implemented including the incipient vegetation recovery. Output normalization allowed the comparison of the non-nested basins among them. After accounting the intrinsic differences among the basins and areas, and the temporal changes of SC between the three scenarios, the contribution of the barriers was estimated in 27% from the total decrease of SC in the treated area (-8.5%). The remaining 73% was explained by the vegetation recovery. The effectiveness of the LB (11.3% on average) and EB (13.4%) did not diminish with increasing slope gradients. These percentages become relevant considering the small area affected by the LB (2.8%) and EB (1.3%). Independent metrics (convergence index, flow width, flat areas and LS factor) also reported clear differences between the two areas -higher soil erosive intensity in the untreated area- and in accordance with the AIC results.


Assuntos
Incêndios , Solo , Florestas , Erosão do Solo
11.
Sci Total Environ ; 728: 139006, 2020 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-32361584

RESUMO

Chilean territory is recurrently affected by severe wildfires, which drastically reduce the forest cover and promote runoff, soil erosion and slope instabilities. To understand how the geomorphic system responds to wildfires in terms of sediment dynamics, the assessment of sediment connectivity, i.e. the property describing the relationships between compartments of a geomorphic system, is crucial. This study aims to quantify the spatial linkages between fire severity and sediment connectivity to identify common patterns and driving factors. The compound use of field data and open-source satellite imagery helped to apply the Relative differenced Normalized Burn Ratio (RdNBR) and the Index of Connectivity (IC) in the context of two consecutive wildfires, occurred in 2002 and 2015, in the Rio Toro catchment (Chile). The fire severity assessment showed that the 2002 event affected 90% of the catchment, with high severity areas representing around 70%. The 2015 wildfire instead, affected 76% of the catchment with moderate severity around 42%. Accordingly, as result of the sudden reduction in forest cover in severely affected areas, the IC changed after both wildfires with an overall increase of 1.07 and 0.54, respectively. However, only for the second disturbance, it was possible to observe a clear relationship between the RdNBR and the IC variations. The different degree of vegetation cover heterogeneity between the two pre-wildfire scenarios contributed to different fire severity and IC variability between the two disturbances. The use of open-source satellite data and the development of a weighting factor (W), to be used in IC and able to capture the land cover change driven by the wildfires, could make the application of this approach straightforward, promoting its reproducibility in other catchments for land management and risk mitigation purposes.

12.
Sci Total Environ ; 733: 139409, 2020 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-32446096

RESUMO

Straightforward sediment transport is not common in nature and material is storage during transport and reworked by the same processed that lead to initial mass erosion. Despite the development of quantitative assessment by application high accuracy topography measurement, lack of conceptualisation and combination with precise elevation model changes is still missing. This paper presents a field-based channel-bluff connectivity study based on a sediment cascade approach. A TLS (terrestrial laser scanning) time-series database was generated by systematic monitoring of cut-bluff slope surface of the braided-wandering Belá River. The database was used to estimate volume changes and allowed to develop the conceptualisation model of coupling of cut-bluff slope based on spatial and temporal analyses of channel hydrology, gravity conditioned transformation of matter and a detailed of sediment budget calculations. Historical analyses have shown that a flow direction perpendicular to the slope is crucial to activate cut-bluff slope material movement and initiate a sediment cascade, as significant contributors of sediment into the river. Sediment supply to the channels correlates with the magnitude of flood events (maximum discharge, cumulative discharge, cumulative discharge higher than RI1.5, and duration of discharges higher than RI1.5) and lateral migration as a main factor controlling the behaviour of the cut-bluff slope-channel system. During the survey from March 2016 to November 2018, were transported 10,103 m3 (25,964 t) of fine-grained sediment into the river channel.

13.
Sci Total Environ ; 732: 139206, 2020 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-32438184

RESUMO

Forest fires and post-fire practices influence the hydrological response of the soil in terms of runoff and sediment connectivity (SC). In this study, the ability of four indices (IC-Borselli, IC-Cavalli, IC-Persichillo and aggregated index of connectivity (AIC)) to assess SC was evaluated in three Mediterranean headwater sub-catchments (66, 143 and 194 ha) affected by an arson fire in 2012. Three temporal scenarios (before the fire, one year after the fire and two years after the fire including post-fire practices (salvage logging, skid trails and check dams)) and two computation targets (streams: hillslope-channel SC; and check-dams: hillslope-outlet SC) were considered, obtaining 66 maps of SC at fine spatial resolution (2 m of cell size). Burn severity classes were estimated using Landsat-7 imagery and the dNBR index. The indices' output analysis included geomorphic (landscape units), mathematic (significance, percentiles and frequency distribution), fire (burn severity classes and unburnt areas) and sedimentological (measured specific sediment yield - SSY) criteria. The IC-Borselli and AIC were the most responsive approaches to the effects of fire on SC at catchment scale, whereas the IC-Persichillo was the most sensitive index to the increasing burn severities. The overlay between the fire severities and the geomorphic features appeared as a key aspect to understand the hydrological response at both the stream-system and outlet targets. We found a good and positive agreement between the measured SSY in the three check-dams and the changes in the estimated SCOUTLET due to the fire, especially with the IC-Borselli and AIC. For a better implementation of post-fire programs, we recommend SCOUTLET maps -from AIC- to assess sediment transport in streams, which is dominated by the deposition process, and SCSTREAM maps -from IC-Borselli and AIC- to place sediment control measures at hillslopes for intense rainfall events when effective sediment transport happens.

14.
Sci Total Environ ; 713: 136703, 2020 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-32019038

RESUMO

Long-chain saturated fatty acid (LCSFA) isotopic composition in tandem with Bayesian isotope mixing models (BIMM) can provide insight into land use-based sediment sources in catchment systems. Apportioning sediment sources robustly, however, requires careful consideration of how additional factors including topography, surface cover and land use practices interact to influence contributions from individual sources. Prior knowledge can be used in BIMM; however, the full capacity of this functionality has not been thoroughly exploited yet in conjunction with sediment fingerprinting. In response, we propose an approach for applying a state-of-the-art BIMM incorporating a sediment connectivity index (SCI) as an informative prior for sediment source apportionment in a highly hydrodynamic catchment in Nepal. A library of LCSFA carbon isotopic composition was constructed for surface soils collected from mixed forest, upland and lowland terraces in the Kharka micro-catchment. δ13C values of LCSFA of time-integrated suspended bulk (<2 mm) sediment were depleted by 4‰ compared to the fine (<0.063 mm) sediment fraction. Conventional source apportionment for fine sediment samples without the SCI informative prior suggested that 66% of the sediment is derived from forest soils followed by lowland (19%) and upland (15%) terraces. Incorporation of the SCI as an informative prior in BIMM, however, modified the original source apportionment estimates to 90%, 9% and 1% respectively. The lower contributions from agricultural terraces are explained by landscape complexity comprising small levelled terraces that reduce hillslope-to-channel sediment connectivity. This study demonstrates the sensitivity of BIMM posterior distributions to incorporation of an informative prior based on a SCI. Inclusion of SCI linked to land use and management can provide a more physically-grounded approach to estimating sediment source contributions from biogeochemical tracers, and critically one which generates results better reflecting what makes good environmental sense in the context of land management and visual evidence of sediment mobilisation and delivery.

15.
Sci Total Environ ; 692: 1209-1222, 2019 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-31539952

RESUMO

River systems are continuously affected by multiple natural and anthropogenic phenomena. Among major natural disturbances, volcanic eruptions have the capability to overthrow the forms and to modify dramatically the morphological setting and sediment connectivity of the system. Moreover, the input of sediments in the channel network can lead to active channel widening, bed aggradation and river scouring, which in turn may affect downstream human settlements. In this context, the present research aims to investigate sediment connectivity by means of a geomorphometric index in a catchment affected by an explosive volcanic eruption in order to assess its variation before and after the disturbance. We developed a workflow exploiting the use of open source data (i.e., Global Digital Elevation Models, satellite imagery) to represent the impedance to the sediment fluxes and to apply the Index of Connectivity (IC) in this context characterized by the lack of high-resolution topographic data. The study area is the Blanco River basin, southern Chile, which was heavily affected by the eruption of Chaitén volcano (2008-2009) that caused the partial destruction of the forest and the profound alteration of Blanco River's morphology. The application of the IC on different land cover scenarios, derived by combining field observations and satellite image classification techniques, showed an increase in sediment connectivity after the volcanic eruption. In addition, the results highlighted different patterns of connectivity according to the expansion of the active channel induced by the massive input of pyroclastic material. The approach proposed in this study case offers a methodology to investigate sediment connectivity in a river catchment affected by natural disturbance where high-resolution data are not available. The results of the study help to improve knowledge on the effect of volcanic eruptions in the hydrologic catchment and to improve watershed management strategies in such kind of environment.

16.
Sci Total Environ ; 672: 763-775, 2019 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-30974366

RESUMO

In fluvial basin analysis, sediment connectivity is an important element for defining channel dynamics. Nevertheless, although several approaches to quantify this concept have been trialed, there is considerable discussion about ways to measure and assess sediment connectivity. The present study investigates sediment connectivity through the definition of a new index, aiming to integrate functional aspects within a structural component. Our objective is to produce a sediment flow connectivity index (SCI) map, directly applicable to monitoring and management activities. Our SCI is defined as the result of the gradient-based flow accumulation of a sediment mobility index, which is in turn a simple function of rainfall, geotechnical properties of soil and land use. This method is here applied to the Vernazza basin (eastern Liguria, Italy), producing a sediment connectivity map that shows good performance in predicting the positions and accumulation paths of mobilized deposits detected on the ground after the October 25th, 2011, flood event. A further evaluation of the proposed index is performed through a comparison of the maps derived using the SCI and connectivity index (IC) developed by Cavalli et al. (2013), which highlights comparable quantitative overall performances, together with a slightly better qualitative identification of subtle sediment flow paths by the SCI. In spite of current limitations due to, e.g., the local nature of the final index, the availability of input information through open global datasets promises the potential application of this method to larger-scale assessments, paying attention to properly addressing upscaling and standardization issues.

17.
Sci Total Environ ; 668: 389-399, 2019 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-30852215

RESUMO

The need for reducing erosion and sediment transport, and protecting human settlements has urged the construction of channel control works in mountain streams. Such works include different structures, the check dams being probably the most widespread and archetypical. The performance of channel control works in mountain streams has usually been evaluated based on their effectiveness in stabilizing the channels and the adjacent hillslopes, and in retaining sediment. The widespread presence of channel control works in mountain streams of various regions, however, has also a significant impact on hillslope-channel coupling and on sediment transfer across the channel system. Taking into account the impact of channel control works on sediment connectivity at the catchment scale has remarkable importance for planning new control structures and managing the existing ones and, more in general, for sediment management in mountain catchments. In this paper, we consider the channel control works within the conceptual framework of sediment connectivity and related terminology, and we analyze the spatial and temporal scales of the interactions between channel control works and sediment coupling-decoupling. Some examples from the Italian Alps outline the impact of check dams and other hydraulic structures on sediment connectivity and show the potential of geomorphometry in assessing such impacts. The overall effect of control works on sediment connectivity consists of an alteration of the sediment cascade with a decrease in the efficiency of sediment transfer. Sediment is partly retained behind grade-control dams within the catchment or in sediment traps equipped with retention check dams near the alluvial fan apex. These works contribute to decouple the alluvial fans from the upslope catchment. On the contrary, channel bed lining on alluvial fans favors sediment transfer to the receiving river, but this effect usually involves small amounts of sediment not retained by the check dams built upstream.

18.
Sci Total Environ ; 663: 980-991, 2019 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-30739866

RESUMO

Wetland classification has become a primary tool to characterize and inventory wetland landscapes, but wetlands are difficult to classify because they straddle the terrestrial and aquatic boundary and occur in a variety of hydroclimatic and topographic settings. Presently, many ecological wetland classification schemes are focused on the 'hydrogeomorphic' unit, which attempts to account for the physical setting of a wetland. In many cases topographic terms (e.g. flats, slopes) rather than geomorphological terms (e.g. oxbow, floodplain) are used to characterize landforms, and little attempt is made to characterize the process-landform relationships within wetland landscapes. The current misrepresentation of product geomorphology (i.e. topographic rather than landform description) and underrepresentation of process geomorphology (i.e. lacking process-landform relationships) means that many current wetland classification schemes represent an incomplete and static attempt to characterize geomorphologically dynamic wetland landscapes. Here, we use examples from wetlands in the drylands of Africa, Australia, and North America to identify the capacity for adjustment (i.e. form and timescale of adjustment) of wetland landforms and we relate this capacity to the geomorphological concepts of sediment connectivity and landform sensitivity. We highlight how geomorphological insights into process-landform relationships and timescales of landform adjustment can add value to wetland classification efforts, with important implications for wetland management and ecosystem service delivery. We submit that geomorphology has a much larger role to play in wetland characterization and can enhance existing wetland classification schemes. More participation by the geomorphology community in wetland science and more awareness by the ecology community in recognizing and characterizing wetlands as dynamic landscapes will facilitate more effective wetland research and management.

19.
Sci Total Environ ; 660: 899-912, 2019 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-30743975

RESUMO

Understanding the evolution of sediment connectivity associated with different land use and topographic changes is a prerequisite for a better understanding of sediment budgets and sediment transport processes. We used the Index of Sediment Connectivity (IC) developed by Cavalli et al. (2013) based on the original approach by Borselli et al. (2008) to study the effects of decadal-scale land use and topographic changes on sediment connectivity in mountain catchments. The input variables of the IC (i.e. land cover and topography) were derived from historical aerial photos using Structure from Motion-Multi View Stereo algorithms (SfM-MVS). The method was applied in different sub-catchments of the Upper River Cinca Catchment (Central Pyrenees), representative of three scenarios: (a) Land cover changes; (b) Topographic changes in agricultural fields (terracing); and (c) Topographic changes associated with infrastructure (road construction). In terms of land cover changes, results show that although connectivity is increased in some areas due to the establishment of new field crops, for most of the study area connectivity decreased due to afforestation caused by rural abandonment. Topographic changes due to the establishment of agricultural terraces affected connectivity to a larger degree than land cover changes. Terracing generally reduced connectivity due to the formation of flat areas in step-slopes, but in certain points, an increase in connectivity caused by the topographic convergence produced by terraces was observed. Finally, topographic changes associated with road construction greatly modified surface flow directions and the drainage network, resulting in changes in connectivity that may affect erosional processes nearby. The methodology used in this paper allows to study the effects of real decadal-scale land use and topographic changes on sediment connectivity and also evaluating and disentangling those changes. Furthermore, this approach can be a useful tool to identify potential risks associated with morphological and land use changes, involving road infrastructures.

20.
Ecol Evol ; 9(3): 1437-1451, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30805172

RESUMO

We used an information theoretic approach to assess the effects of an ecologically adjusted sediment management scheme on grayling (Thymallus thymallus L. 1758) populations. Additionally to reservoir operation, candidate models included a variety of parameters and processes that may influence grayling populations such as flow, temperature, density dependence, and bird predation. Population parameters analyzed included total densities, young of the year numbers, and larval densities. These analyses were supplemented by a characterization of sediments and sedimentation patterns in the reach. Investigations were carried out in six sites affected by flushing and in one control site. A total of thirteen flushing operations have been undertaken within the study period leading to considerable remobilization of fine sediments and gravel. Due to seasonal and hydrological restrictions, not every flood could be used for flushing. These limitations led to an interrupted management throughout the chain of reservoirs as well as to long time intervals between flushing events with possible effects on spawning habitat quality. None of the investigated population parameters was affected by flushing, and thus, the study generally supports the current reservoir management scheme. Our analyses revealed the magnitude and timing of high water events, temperature, and density-dependent effects, that is, population densities the year before, as the most influential variables for grayling population dynamics in the investigated stretch. The siltation of reservoirs is a significant problem for reservoir storage, flood protection, river deltas, and coastal zones. Its management-which is inevitable to safeguard river deltas and secure flood protection-poses also the challenge to safeguard riverine ecosystems below reservoirs. Based on our experience, we propose a periodic flushing regime in concordance with the hydrograph thereby mimicking the timing, magnitude, frequency, and duration of natural SSC pulses and gravel transport. This flushing regime minimizes adverse downstream environmental impacts and maximizes benefits.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA