Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Plants (Basel) ; 12(13)2023 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-37447074

RESUMO

Mexico harbors over 50% of maize's genetic diversity in the Americas. Native maize varieties are actively managed by small-scale producers within a diverse array of cultivation systems. Seed lot use, exchange and admixture has consequences for the in situ conservation of such varieties. Here we analyze native maize seed management dynamics from 906 small-scale producers surveyed in three Mexican states: Mexico City, Oaxaca and Chiapas. Furthermore, we analyze how their management practices can relate to transgene presence, which was experimentally documented for maize samples associated with the applied surveys. Through a data mining approach, we investigated which practices might be related with a higher probability of transgene presence. The variables found to have a strong spatial association with transgene presence were: for Mexico City, maize producers with larger parcels; for Oaxaca, producer's age (43-46 years) and the sale of seed; for Chiapas, the use of agricultural machinery and younger producers (37-43 years). Additionally, transgene presence and frequency within the socioeconomic regions of Oaxaca and Chiapas was analyzed. In Oaxaca, higher transgene frequencies occurred in regions where transgene presence had been previously reported. In Chiapas, the border regions with Guatemala as well as a region where reproduction of improved seed takes place, the highest proportion of positive samples were found. A detailed mapping of regional seed markets and seed exchange sites together with deployment of national and local biosecurity measures, could help prevent the further spread of transgenes into native maize varieties, as well as improve conservation efforts.

2.
Breed Sci ; 72(5): 362-371, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36776441

RESUMO

Spontaneous mutations are stochastic phenomena that occur in every population. However, deleterious mutated allele present in seeds distributed to farmers must be detected and removed. Here, we eliminated undesirable mutations from the parent population in one generation through a strategy based on next-generation sequencing (NGS). This study dealt with a spontaneous albino mutant in the 'Hinohikari' rice variety grown at the Miyazaki Comprehensive Agricultural Experiment Station, Japan. The incidence of albinism in the population was 1.36%. NGS analysis revealed the genomic basis for differences between green and albino phenotypes. Every albino plant had a C insertion in the Snow-White Leaf1 (SWL1) gene on chromosome 4 causing a frameshift mutation. Selfing plants heterozygous for the mutant allele, swl1-R332P, resulted in a 3:1 green/albino ratio, confirming that a single recessive gene controls albinism. Ultrastructural leaf features in the swl1-R332P mutants displayed deformed chlorophyll-associated organelles in albino plants that were similar to those of previously described swl1 mutants. Detection of the causative gene and its confirmation using heterozygous progenies were completed within a year. The NGS technique outlined here facilitates rapid identification of spontaneous mutations that can occur in breeder seeds.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA