Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 673
Filtrar
1.
Heliyon ; 10(12): e32685, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38975190

RESUMO

Multiple sclerosis (MS) is a complex, neurodegenerative chronic disorder. Circulating diagnostic biomarkers for MS have remained elusive, and those proposed so far have limited sensitivity and specificity to MS. Plasma-circulating microRNAs (miRNAs) have advantageous biochemical and physiological attributes that can be utilized in clinical testing and disease monitoring. MS miRNA expression microarray datasets analysis resulted in four candidate miRNAs that were assessed for their expression in a separate MS case-control study. Only miR-24-3p was downregulated in all MS patients compared to healthy controls. MiR-484 was significantly upregulated in relapsing-remitting MS (RRMS) patients compared to healthy controls. Mir-146-5p and miR-484 were significantly downregulated in secondary-progressive MS (SPMS) compared to RRMS. MiR-484 downregulation was associated with worsening disability and increased lipocalin-2 levels. Mir-342-3p and miR-24-3p downregulation were associated with increased semaphorin-3A levels in MS and RRMS patients. In conclusion, mir-24-3p downregulation is diagnostic of MS, and mir-484 upregulation and downregulation are potential biomarkers for RRMS and SPMS conversion, respectively. The differential expression of miR-146a-3p in MS subtypes suggests its potential as an SPMS transition biomarker. The association of downregulated mir-24-3p and mir-484 with increased neurodegeneration biomarkers suggests they play a role in MS pathogenesis and neurodegeneration.

2.
J Cell Sci ; 137(14)2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38963001

RESUMO

Semaphorin6A (Sema6A) is a repulsive guidance molecule that plays many roles in central nervous system, heart and bone development, as well as immune system responses and cell signaling in cancer. Loss of Sema6A or its receptor PlexinA2 in zebrafish leads to smaller eyes and improper retinal patterning. Here, we investigate a potential role for the Sema6A intracellular domain in zebrafish eye development and dissect which phenotypes rely on forward signaling and which rely on reverse signaling. We performed rescue experiments on zebrafish Sema6A morphants with either full-length Sema6A (Sema6A-FL) or Sema6A lacking its intracellular domain (Sema6A-ΔC). We identified that the intracellular domain is not required for eye size and retinal patterning, however it is required for retinal integrity, the number and end feet strength of Müller glia and protecting against retinal cell death. This novel function for the intracellular domain suggests a role for Sema6A reverse signaling in zebrafish eye development.


Assuntos
Domínios Proteicos , Retina , Semaforinas , Proteínas de Peixe-Zebra , Peixe-Zebra , Animais , Peixe-Zebra/metabolismo , Peixe-Zebra/embriologia , Semaforinas/metabolismo , Semaforinas/genética , Retina/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/genética , Transdução de Sinais , Células Ependimogliais/metabolismo , Células Ependimogliais/citologia
3.
Proc Natl Acad Sci U S A ; 121(31): e2402755121, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39042673

RESUMO

The precise assembly of a functional nervous system relies on axon guidance cues. Beyond engaging their cognate receptors and initiating signaling cascades that modulate cytoskeletal dynamics, guidance cues also bind components of the extracellular matrix, notably proteoglycans, yet the role and mechanisms of these interactions remain poorly understood. We found that Drosophila secreted semaphorins bind specifically to glycosaminoglycan (GAG) chains of proteoglycans, showing a preference based on the degree of sulfation. Structural analysis of Sema2b unveiled multiple GAG-binding sites positioned outside canonical plexin-binding site, with the highest affinity binding site located at the C-terminal tail, characterized by a lysine-rich helical arrangement that appears to be conserved across secreted semaphorins. In vivo studies revealed a crucial role of the Sema2b C-terminal tail in specifying the trajectory of olfactory receptor neurons. We propose that secreted semaphorins tether to the cell surface through interactions with GAG chains of proteoglycans, facilitating their presentation to cognate receptors on passing axons.


Assuntos
Orientação de Axônios , Proteínas de Drosophila , Proteoglicanas , Semaforinas , Transdução de Sinais , Animais , Semaforinas/metabolismo , Semaforinas/genética , Proteoglicanas/metabolismo , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Axônios/metabolismo , Drosophila melanogaster/metabolismo , Glicosaminoglicanos/metabolismo , Sítios de Ligação , Ligação Proteica , Neurônios Receptores Olfatórios/metabolismo
4.
Curr Rheumatol Rev ; 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39034724

RESUMO

BACKGROUND: Juvenile-onset systemic lupus erythematosus (jSLE) is an uncommon yet severe autoimmune/inflammatory condition affecting multiple bodily systems, typically manifest-ing before the age of 18. This disease exhibits significant complexity, displaying considerable variation among patients. Its effects can range in severity from minor to fatal, characterized by a pattern of recurring flare-ups and periods of remission, making its natural progression difficult to predict. AIM OF THE WORK: The aim of this work is to investigate the correlation between semaphorin 3A and systemic lupus erythematosus patients who follow up at Pediatric Rheumatology Unit Chil-dren's Hospital at Cairo University. PATIENTS & METHODS: This cross-sectional research was performed at the Pediatric Rheumatology Unit Cairo University Children's Hospital and included cases with jSLE under treatment and fol-low-up from the period of August 2021 to August 2022. RESULTS: Regarding demographic data of the studied subjects, highly significant variances were noted among the patient group & control group regarding age (years) & sex. However, there were non-significant variances among the patient group and control group concerning weight. In the current research, median (IQR) onset of disease was 2 (1 3) years, mean ± SD age at dis-ease diagnosis was 8.98 ± 2.13 years, median (IQR) disease duration 2 (1 3) years, family history was negative in 36 (90.0%) patients and consanguinity was negative in 28 (70.0%). The distribution of the manifestations within the patients group was as follow 7 (17.5%) with mu-cocutaneous, 7 (17.5%) with vasculitis, 4 (10.0%) with serositis, 11 (27.5%) with cardiac, 17 (42.5%) with renal, 11 (27.5%) with GIT, 5 (12.5%) with hematological, and 4 (10.0%) with neu-rological manifestations. In addition, there were 2 (5.0%) with arthritis, 31 (77.5%) with arthral-gia, and 2 (5.0%) with fever mean ± SD systolic BP was 115.95 ± 8.38 & mean ± SD diastolic BP was 75.60 ± 6.11. Regarding treatments in the patients' group, the median steroid dose was 15mg (5-25) with medi-an duration of 2 (1 3), 38 (95.0%) patients received hydroxychloroquine with mean ± SD hy-droxychloroquine dose of 205.26 mg ± 51.71. 23 (57.5%) patients received cyclophosphamide with mean ± SD number of cyclophosphamide doses 7.17 mg ± 2.42. Mycophenolate was re-ceived in 27 (67.5%) with mean ± SD dose of 614.07 mg ± 225.85. There were highly statistically significant differences between control group and patients' group concerning TLC, creatinine, & ESR. Highly statistically significant variance was noted among the control group and patients group concerning CRP. Regarding the patients' group, the mean ± SD serum C3 was 99.89 mg/dl ± 28.45, median (IQR) serum C4 was 14.5 mg/dl (8.8 25.5), and median (IQR) albumin creatinine ratio was 27 IU/ML (16 186). There was positive ANA with titre and pattern in 34 patients (85.0%), positive antids-DNA in 25 patients (62.5%), and positive anticardiolipin IgM and IgG in 5 patients (12.5%). Renal biopsy was found to be normal in 23 (57.5 percent), lupus nephritis class II, III in 3 (7.5 percent), lupus nephritis class III in 10 (25.0%), and lupus nephritis class IV in 4 (10.0%). Urine analysis results showed the following: normal in 28 (70.0%), albumin in 2 (5.0%), casts in 2 (5.0%), pus cell in 4 (10.0%), albumin + casts in 2 (5.0%) and albumin + pus cell in 2 (5.0%). Regarding semaphorin 3A level, a highly statistically significant variance was noted among the control & patients group concerning semaphorin 3A level found to be lower in cases than control with a p-value below 0.001. In patients' group, a negative correlation for semaphorin 3A with SBP, DBP, AST and ESR and also a positive correlation with steroid duration in the studied pa-tients. In addition, highly significant association between semaphorin 3A & positive CRP. How-ever, no significant relationship between semaphorin 3A & SLE manifestations except arthritis was found related to semaphorin 3A level. ROC curve shows that the semaphorin 3A cut-off point to predict SLE ≤ 3 with sensitivity = 47.50, specificity=92.50, PPV=86.4, and NPV=63.8. CONCLUSION: Reduced plasma Semaphorin 3A levels were found in this study; furthermore, their clinical relationship in SLE proposes their significant job in this illness. Furthermore, the ROC results demonstrated that Semaphorin 3A could be a new symptomatic biomarker in SLE with very high sensitivity for the determination of SLE, demonstrating that they might be helpful bi-omarkers for the evaluation of SLE. However, extra studies that focus on the potential role of Semaphorin 3A in SLE are needed.

5.
Neuron ; 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-39002542

RESUMO

Regulated neural-metabolic-inflammatory responses are essential for maintaining physiological homeostasis. However, the molecular machinery that coordinates neural, metabolic, and inflammatory responses is largely unknown. Here, we show that semaphorin 6D (SEMA6D) coordinates anxiogenic, metabolic, and inflammatory outputs from the amygdala by maintaining synaptic homeostasis. Using genome-wide approaches, we identify SEMA6D as a pleiotropic gene for both psychiatric and metabolic traits in human. Sema6d deficiency increases anxiety in mice. When fed a high-fat diet, Sema6d-/- mice display attenuated obesity and enhanced myelopoiesis compared with control mice due to higher sympathetic activity via the ß3-adrenergic receptor. Genetic manipulation and spatial and single-nucleus transcriptomics reveal that SEMA6D in amygdalar interneurons is responsible for regulating anxiogenic and autonomic responses. Mechanistically, SEMA6D is required for synaptic maturation and γ-aminobutyric acid transmission. These results demonstrate that SEMA6D is important for the normal functioning of the neural circuits in the amygdala, coupling emotional, metabolic, and inflammatory responses.

6.
Biomedicines ; 12(7)2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-39061999

RESUMO

The incidence of bladder cancer worldwide in the last three decades has been increasing in both men and women. So far, there is no established non-invasive bladder cancer biomarker in daily clinical practice. Semaphorin 6D (sema6D) is a transmembrane protein that belongs to the class VI semaphorins. The aim of this study was to evaluate for the first time the potential role of sema6D in bladder cancer. The study group consisted of 40 patients with non-muscle-invasive bladder cancer (NMIBC) and the control group of 20 patients without malignancies. There was a statistically significantly higher urinary sema6D concentration in patients than controls (p < 0.05) but no significant difference in plasma 6D. There were no statistically significant differences in urinary or plasma concentration of sema6D between low- or high-grade cancer and according to the tumor stage in TNM classification. There was a statistically significant negative correlation between plasma sema6D and age of patients (R = -0.6; p = 0.019). Plasma sema6D does not seem to be useful in the clinical practice at this point. However, the urinary sema6D concentration could potentially serve as a marker of NMIBC used for diagnostic purposes, monitoring, and early relapse detection or the assessment of the treatment efficacy. Urinary sema6D is probably not associated with the grading or staging of NMIBC, so it cannot be used for the prediction of disease prognosis.

7.
Biomolecules ; 14(7)2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-39062540

RESUMO

The migration, proliferation, and apoptosis of trophoblastic cells play a crucial role in ensuring the effective preservation of pregnancy at the maternal-fetal interface. Any deviations in the structure and function of these cells might potentially result in the development of numerous pregnancy-related disorders, including missed abortion (MA). This study involved the examination of semaphorin 4A (SEMA4A) expression in missed abortion (n = 18) and normal early pregnancy (n = 18) villus. The findings of this study indicate a statistically significant decrease in the expression of SEMA4A in the villi of individuals diagnosed with missed abortion, as compared to the control group. The results of our vitro study showed that SEMA4A promoted the migration and proliferation of trophoblast cells and inhibited their apoptosis. Subsequent studies have shown that SEMA4A may be involved in regulating p-STAT3/STAT3, MMP9, bcl-2, and BAX levels. In summary, the findings of this study indicate a correlation between the decreased level of SEMA4A in chorionic villi and missed abortion. These results offer novel theoretical insights into the proper implantation and development of SEMA4A embryos at the maternal-fetal interface.


Assuntos
Apoptose , Proliferação de Células , Fator de Transcrição STAT3 , Semaforinas , Transdução de Sinais , Trofoblastos , Humanos , Feminino , Trofoblastos/metabolismo , Gravidez , Semaforinas/metabolismo , Semaforinas/genética , Fator de Transcrição STAT3/metabolismo , Adulto , Movimento Celular , Vilosidades Coriônicas/metabolismo , Aborto Retido/metabolismo , Metaloproteinase 9 da Matriz/metabolismo
8.
Int Immunopharmacol ; 138: 112559, 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-38955028

RESUMO

BACKGROUND: Semaphorin 3A (Sema3A) is a member of neural guidance factor family well-known for inducing the collapse of nerve cell growth cone and regulating nerve redistribution. It also has been characterized as an immunoregulatory and tumor promoting factor. Our previous study showed that Sema3A was involved in the regulation of sympathetic innervation and neuropathic pain of endometriosis. Nevertheless, the role of Sema3A in the development of endometriosis and its potential upstreaming factor are still not clear. METHODS: Histology experiments were carried to detect the expression of Sema3A, hypoxia -inducible factor 1α (HIF-1α) and the distribution of macrophages. Cell experiments were used to explore the effect of Sema3A on the proliferation and migration of endometrial stromal cells (ESCs) and to confirm the regulatory action of HIF-1α on Sema3A. In vivo experiments were carried out to explore the role of Sema3A on the development of endometriosis. RESULTS: Sema3A was highly expressed in endometriotic lesions and could enhanced the proliferation and migration abilities of ESCs. Aberrant macrophage distribution was found in endometriotic lesions. Sema3A also promoted the differentiation of monocytes into anti-inflammatory macrophages, so indirectly mediating the proliferation and migration of ESCs. Hypoxic microenvironment induced Sema3A mRNA and protein expression in ESCs via HIF-1α. Administration of Sema3A promoted the development of endometriosis in a mouse model. CONCLUSIONS: Sema3A, which is regulated by HIF-1α, is a promoting factor for the development of endometriosis. Targeting Sema3A may be a potential treatment strategy to control endometriotic lesions.


Assuntos
Proliferação de Células , Endometriose , Subunidade alfa do Fator 1 Induzível por Hipóxia , Macrófagos , Semaforina-3A , Endometriose/patologia , Endometriose/imunologia , Endometriose/metabolismo , Semaforina-3A/metabolismo , Semaforina-3A/genética , Feminino , Animais , Humanos , Macrófagos/imunologia , Macrófagos/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Camundongos , Movimento Celular , Endométrio/patologia , Endométrio/metabolismo , Células Estromais/metabolismo , Células Cultivadas , Hipóxia/metabolismo , Adulto , Modelos Animais de Doenças , Diferenciação Celular
9.
Adv Exp Med Biol ; 1441: 125-143, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38884708

RESUMO

This chapter discusses the role of cardiac neural crest cells in the formation of the septum that divides the cardiac arterial pole into separate systemic and pulmonary arteries. Further, cardiac neural crest cells directly support the normal development and patterning of derivatives of the caudal pharyngeal arches, including the great arteries, thymus, thyroid, and parathyroids. Recently, cardiac neural crest cells have also been shown to indirectly influence the development of the secondary heart field, another derivative of the caudal pharynx, by modulating signaling in the pharynx. The contribution and function of the cardiac neural crest cells has been learned in avian models; most of the genes associated with cardiac neural crest function have been identified using mouse models. Together these studies show that the neural crest cells may not only critical for normal cardiovascular development but also may be involved secondarily because they represent a major component in the complex tissue interactions in the caudal pharynx and outflow tract. Cardiac neural crest cells span from the caudal pharynx into the outflow tract, and therefore may be susceptible to any perturbation in or by other cells in these regions. Thus, understanding congenital cardiac outflow malformations in human sequences of malformations resulting from genetic and/or environmental insults necessarily requires better understanding the role of cardiac neural crest cells in cardiac development.


Assuntos
Crista Neural , Crista Neural/embriologia , Crista Neural/citologia , Crista Neural/metabolismo , Animais , Humanos , Coração/embriologia , Camundongos
10.
Adv Exp Med Biol ; 1441: 481-493, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38884727

RESUMO

The relative simplicity of the clinical presentation and management of an atrial septal defect belies the complexity of the developmental pathogenesis. Here, we describe the anatomic development of the atrial septum and the venous return to the atrial chambers. Experimental models suggest how mutations and naturally occurring genetic variation could affect developmental steps to cause a defect within the oval fossa, the so-called secundum defect, or other interatrial communications, such as the sinus venosus defect or ostium primum defect.


Assuntos
Modelos Animais de Doenças , Comunicação Interatrial , Comunicação Interatrial/genética , Comunicação Interatrial/patologia , Comunicação Interatrial/fisiopatologia , Animais , Humanos , Mutação , Septo Interatrial/patologia , Transdução de Sinais/genética
11.
Dev Cell ; 2024 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-38843837

RESUMO

The anterior visceral endoderm (AVE) differs from the surrounding visceral endoderm (VE) in its migratory behavior and ability to restrict primitive streak formation to the opposite side of the mouse embryo. To characterize the molecular bases for the unique properties of the AVE, we combined single-cell RNA sequencing of the VE prior to and during AVE migration with phosphoproteomics, high-resolution live-imaging, and short-term lineage labeling and intervention. This identified the transient nature of the AVE with attenuation of "anteriorizing" gene expression as cells migrate and the emergence of heterogeneities in transcriptional states relative to the AVE's position. Using cell communication analysis, we identified the requirement of semaphorin signaling for normal AVE migration. Lattice light-sheet microscopy showed that Sema6D mutants have abnormalities in basal projections and migration speed. These findings point to a tight coupling between transcriptional state and position of the AVE and identify molecular controllers of AVE migration.

12.
bioRxiv ; 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38854152

RESUMO

Precise control of morphogen signaling levels is essential for proper development. An outstanding question is: what mechanisms ensure proper morphogen activity and correct cellular responses? Previous work has identified Semaphorin (SEMA) receptors, Neuropilins (NRPs) and Plexins (PLXNs), as positive regulators of the Hedgehog (HH) signaling pathway. Here, we provide evidence that NRPs and PLXNs antagonize Wnt signaling in both fibroblasts and epithelial cells. Further, Nrp1/2 deletion in fibroblasts results in elevated baseline Wnt pathway activity and increased maximal responses to Wnt stimulation. Notably, and in contrast to HH signaling, SEMA receptor-mediated Wnt antagonism is independent of primary cilia. Mechanistically, PLXNs and NRPs act downstream of Dishevelled (DVL) to destabilize ß-catenin (CTNNB1) in a proteosome-dependent manner. Further, NRPs, but not PLXNs, act in a GSK3ß/CK1-dependent fashion to antagonize Wnt signaling, suggesting distinct repressive mechanisms for these SEMA receptors. Overall, this study identifies SEMA receptors as novel Wnt pathway antagonists that may also play larger roles integrating signals from multiple inputs.

13.
Antioxidants (Basel) ; 13(6)2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38929171

RESUMO

Semaphorin 3A (SEMA3A), a nerve-repellent factor produced by keratinocytes, has an inhibitory effect on nerve extension to the epidermis. Epidermal innervation is involved in pruritus in inflammatory skin diseases such as atopic dermatitis (AD) and dry skin. We previously reported that tapinarof, a stilbene molecule, upregulates SEMA3A in human keratinocytes. We also showed that this mechanism is mediated via the aryl hydrocarbon receptor (AHR), a ligand-activated transcription factor, and the nuclear factor erythroid 2-related factor 2 (NRF2) axis. Since some stilbenes activate AHR and NRF2, we attempted to identify other stilbenes that upregulate SEMA3A. We analyzed normal human epidermal keratinocytes (NHEKs) treated with 11 types of stilbenes and examined SEMA3A expression. We found that resveratrol and pinostilbene, antioxidant polyphenols, upregulated SEMA3A and increased nuclear AHR and NRF2 expression. In addition, AHR knockdown by small interfering RNA (siRNA) transfection abolished the NRF2 nuclear expression. Furthermore, AHR and NRF2 knockdown by siRNA transfection abrogated resveratrol- and pinostilbene-induced SEMA3A upregulation. Finally, we confirmed that resveratrol and pinostilbene increased SEMA3A promoter activity through NRF2 binding using ChIP-qPCR analysis. These results suggest that resveratrol and pinostilbene upregulate SEMA3A via the AHR-NRF2 axis in human keratinocytes.

14.
Development ; 151(10)2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38738602

RESUMO

Visual circuit development is characterized by subdivision of neuropils into layers that house distinct sets of synaptic connections. We find that, in the Drosophila medulla, this layered organization depends on the axon guidance regulator Plexin A. In Plexin A null mutants, synaptic layers of the medulla neuropil and arborizations of individual neurons are wider and less distinct than in controls. Analysis of semaphorin function indicates that Semaphorin 1a, acting in a subset of medulla neurons, is the primary partner for Plexin A in medulla lamination. Removal of the cytoplasmic domain of endogenous Plexin A has little effect on the formation of medulla layers; however, both null and cytoplasmic domain deletion mutations of Plexin A result in an altered overall shape of the medulla neuropil. These data suggest that Plexin A acts as a receptor to mediate morphogenesis of the medulla neuropil, and as a ligand for Semaphorin 1a to subdivide it into layers. Its two independent functions illustrate how a few guidance molecules can organize complex brain structures by each playing multiple roles.


Assuntos
Proteínas de Drosophila , Morfogênese , Proteínas do Tecido Nervoso , Neurópilo , Lobo Óptico de Animais não Mamíferos , Receptores de Superfície Celular , Semaforinas , Animais , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Semaforinas/metabolismo , Semaforinas/genética , Proteínas do Tecido Nervoso/metabolismo , Proteínas do Tecido Nervoso/genética , Morfogênese/genética , Neurópilo/metabolismo , Lobo Óptico de Animais não Mamíferos/metabolismo , Lobo Óptico de Animais não Mamíferos/embriologia , Receptores de Superfície Celular/metabolismo , Receptores de Superfície Celular/genética , Drosophila melanogaster/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/embriologia , Neurônios/metabolismo , Drosophila/metabolismo , Drosophila/embriologia , Mutação/genética
15.
Cell Rep Med ; 5(5): 101554, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38729157

RESUMO

The axons of retinal ganglion cells (RGCs) form the optic nerve, transmitting visual information from the eye to the brain. Damage or loss of RGCs and their axons is the leading cause of visual functional defects in traumatic injury and degenerative diseases such as glaucoma. However, there are no effective clinical treatments for nerve damage in these neurodegenerative diseases. Here, we report that LIM homeodomain transcription factor Lhx2 promotes RGC survival and axon regeneration in multiple animal models mimicking glaucoma disease. Furthermore, following N-methyl-D-aspartate (NMDA)-induced excitotoxicity damage of RGCs, Lhx2 mitigates the loss of visual signal transduction. Mechanistic analysis revealed that overexpression of Lhx2 supports axon regeneration by systematically regulating the transcription of regeneration-related genes and inhibiting transcription of Semaphorin 3C (Sema3C). Collectively, our studies identify a critical role of Lhx2 in promoting RGC survival and axon regeneration, providing a promising neural repair strategy for glaucomatous neurodegeneration.


Assuntos
Axônios , Modelos Animais de Doenças , Glaucoma , Proteínas com Homeodomínio LIM , Regeneração Nervosa , Células Ganglionares da Retina , Fatores de Transcrição , Animais , Células Ganglionares da Retina/metabolismo , Células Ganglionares da Retina/patologia , Proteínas com Homeodomínio LIM/metabolismo , Proteínas com Homeodomínio LIM/genética , Glaucoma/genética , Glaucoma/patologia , Glaucoma/metabolismo , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Axônios/metabolismo , Axônios/patologia , Camundongos , Regeneração Nervosa/genética , Regeneração Nervosa/fisiologia , Camundongos Endogâmicos C57BL , Sobrevivência Celular/genética , Semaforinas/metabolismo , Semaforinas/genética , N-Metilaspartato/metabolismo
16.
Vascul Pharmacol ; 155: 107381, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38795838

RESUMO

AIMS: Bone morphogenetic protein-9 (BMP9) is critical for bone morphogenetic protein receptor type-2 (BMPR2) signalling in pulmonary vascular endothelial cells. Furthermore, human genetics studies support the central role of disrupted BMPR2 mediated BMP9 signalling in vascular endothelial cells in the initiation of pulmonary arterial hypertension (PAH). In addition, loss-of-function mutations in BMP9 have been identified in PAH patients. BMP9 is considered to play an important role in vascular homeostasis and quiescence. METHODS AND RESULTS: We identified a novel BMP9 target as the class-3 semaphorin, SEMA3G. Although originally identified as playing a role in neuronal development, class-3 semaphorins may have important roles in endothelial function. Here we show that BMP9 transcriptional regulation of SEMA3G occurs via ALK1 and the canonical Smad pathway, requiring both Smad1 and Smad5. Knockdown studies demonstrated redundancy between type-2 receptors in that BMPR2 and ACTR2A were compensatory. Increased SEMA3G expression by BMP9 was found to be regulated by the transcription factor, SOX17. Moreover, we observed that SEMA3G regulates VEGF signalling by inhibiting VEGFR2 phosphorylation and that VEGF, in contrast to BMP9, negatively regulated SEMA3G transcription. Functional endothelial cell assays of VEGF-mediated migration and network formation revealed that BMP9 inhibition of VEGF was abrogated by SEMA3G knockdown. Conversely, treatment with recombinant SEMA3G partially mimicked the inhibitory action of BMP9 in these assays. CONCLUSIONS: This study provides further evidence for the anti-angiogenic role of BMP9 in microvascular endothelial cells and these functions are mediated at least in part via SOX17 and SEMA3G induction.


Assuntos
Movimento Celular , Células Endoteliais , Fator 2 de Diferenciação de Crescimento , Semaforinas , Transdução de Sinais , Fator A de Crescimento do Endotélio Vascular , Humanos , Movimento Celular/efeitos dos fármacos , Semaforinas/metabolismo , Semaforinas/genética , Fator 2 de Diferenciação de Crescimento/genética , Fator 2 de Diferenciação de Crescimento/metabolismo , Células Endoteliais/metabolismo , Células Endoteliais/efeitos dos fármacos , Fator A de Crescimento do Endotélio Vascular/metabolismo , Fator A de Crescimento do Endotélio Vascular/genética , Proteína Smad5/metabolismo , Proteína Smad5/genética , Receptores de Ativinas Tipo I/metabolismo , Receptores de Ativinas Tipo I/genética , Receptores de Proteínas Morfogenéticas Ósseas Tipo II/metabolismo , Receptores de Proteínas Morfogenéticas Ósseas Tipo II/genética , Proteína Smad1/metabolismo , Proteína Smad1/genética , Pulmão/metabolismo , Pulmão/irrigação sanguínea , Neovascularização Fisiológica/efeitos dos fármacos , Células Cultivadas
17.
In Vitro Cell Dev Biol Anim ; 60(6): 609-615, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38727898

RESUMO

Osteoblast-derived semaphorin3A (Sema3A) has been reported to be involved in bone protection, and Sema3A knockout mice have been reported to exhibit chondrodysplasia. From these reports, Sema3A is considered to be involved in chondrogenic differentiation and skeletal formation, but there are many unclear points about its function and mechanism in chondrogenic differentiation. This study investigated the pharmacological effects of Sema3A in chondrogenic differentiation. The amount of Sema3A secreted into the culture supernatant was measured using an enzyme-linked immunosorbent assay. The expression of chondrogenic differentiation-related factors, such as Type II collagen (COL2A1), Aggrecan (ACAN), hyaluronan synthase 2 (HAS2), SRY-box transcription factor 9 (Sox9), Runt-related transcription factor 2 (Runx2), and Type X collagen (COL10A1) in ATDC5 cells treated with Sema3A (1,10 and 100 ng/mL) was examined using real-time reverse transcription polymerase chain reaction. Further, to assess the deposition of total glycosaminoglycans during chondrogenic differentiation, ATDC5 cells were stained with Alcian Blue. Moreover, the amount of hyaluronan in the culture supernatant was measured by enzyme-linked immunosorbent assay. The addition of Sema3A to cultured ATDC5 cells increased the expression of Sox9, Runx2, COL2A1, ACAN, HAS2, and COL10A1 during chondrogenic differentiation. Moreover, it enhanced total proteoglycan and hyaluronan synthesis. Further, Sema3A was upregulated in the early stages of chondrogenic differentiation, and its secretion decreased later. Sema3A increases extracellular matrix production and promotes chondrogenic differentiation. To the best of our knowledge, this is the first study to demonstrate the role of Sema3A on chondrogenic differentiation.


Assuntos
Diferenciação Celular , Condrogênese , Semaforina-3A , Animais , Diferenciação Celular/efeitos dos fármacos , Semaforina-3A/metabolismo , Condrogênese/efeitos dos fármacos , Camundongos , Condrócitos/metabolismo , Condrócitos/citologia , Ácido Hialurônico/metabolismo , Ácido Hialurônico/farmacologia , Linhagem Celular , Fatores de Transcrição SOX9/metabolismo , Fatores de Transcrição SOX9/genética , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Colágeno Tipo II/metabolismo , Colágeno Tipo II/genética , Agrecanas/metabolismo , Agrecanas/genética , Hialuronan Sintases/metabolismo , Hialuronan Sintases/genética , Glicosaminoglicanos/metabolismo , Colágeno Tipo X/metabolismo , Colágeno Tipo X/genética
18.
Dev Growth Differ ; 66(5): 308-319, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38761018

RESUMO

One of the major functions of the semaphorin signaling system is the regulation of cell shape. In the nematode Caenorhabditis elegans, membrane-bound semaphorins SMP-1/2 (SMPs) regulate the morphology of epidermal cells via their receptor plexin, PLX-1. In the larval male tail of the SMP-PLX-1 signaling mutants, the border between two epidermal cells, R1.p and R2.p, is displaced anteriorly, resulting in the anterior displacement of the anterior-most ray, ray 1, in the adult male. To elucidate how the intercellular signaling mediated by SMPs regulates the position of the intercellular border, we performed mosaic gene expression analyses by using infrared laser-evoked gene operator (IR-LEGO). We show that PLX-1 expressed in R1.p and SMP-1 expressed in R2.p are required for the proper positioning of ray 1. The result suggests that SMP signaling promotes extension, rather than retraction, of R1.p. This is in contrast to a previous finding that SMPs mediate inhibition of cell extension of vulval precursor cells, another group of epidermal cells of C. elegans, indicating the context dependence of cell shape control via the semaphorin signaling system.


Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Epiderme , Semaforinas , Animais , Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/genética , Semaforinas/metabolismo , Semaforinas/genética , Epiderme/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Transdução de Sinais , Comunicação Celular , Células Epidérmicas/metabolismo , Células Epidérmicas/citologia , Masculino
19.
Mol Cell Biochem ; 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38819599

RESUMO

The initiation and progression of atherosclerotic plaque caused by abnormal lipid metabolism is one of the main causes of atherosclerosis (AS). Lipid droplet accumulation has become a novel research pointcut for AS treatment in recent years. In AS patients, miR-135b level was up-regulated relative to the normal cases, which showed negative correlations with the levels of Semaphorin 3A (SEMA3A) and circZNF609, separately. The U937-derived macrophages were cultured with ox-LDL to establish AS models in vitro. After that, the lipid accumulation, inflammation, mitochondrial dysfunction and cell death were evaluated by ORO, ELISA, RT-qPCR, western blot, JC-1 and FCM assays respectively. Transfection of the circZNF609 expression vector notably declined lipid accumulation, attenuated inflammation, reduced mitochondrial dysfunction and inhibited cell death in ox-LDL-stimulated cells. The direct binding of miR-135b to circZNF609 in vitro was confirmed using RIP assay, and SEMA3A expression was up-regulated by circZNF609 overexpression. After manipulating the endogenous expressions of circZNF609, miR-135b and SEMA3A, the above damages in ox-LDL-stimulated cells were rescued by inhibition of miR-135b expression and overexpression of circZNF609 or SEMA3A. Besides, the AS mice model was built to demonstrate the excessive lipid accumulation, increasing inflammation and cell death in AS pathogenesis according to the results of HE staining, ELISA and IHC assays, while these damages were reversed after overexpression of circZNF609 or SEMA3A. In AS models, overexpressed circZNF609 prevents the AS progression through depleting miR-135b expression and subsequent up-regulation of SEMA3A expression to overwhelm lipid accumulation, mitochondrial dysfunction and cell death.

20.
Cell Biochem Funct ; 42(3): e4012, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38584583

RESUMO

Osteoarthritis (OA) is characterised by the deterioration of cartilage in the joints and pain. We hypothesise that semaphorin-3A (sema-3A), a chemorepellent for sensory nerves, plays a role in joint degradation and pain. We used the mechanical joint loading (MJL) model of OA to investigate sema-3A expression in the joint and examine its association with the development of OA and pain. We also analyse its effect on chondrocyte differentiation using the ATDC5 cell line. We demonstrate that sema-3A is present in most tissues in the healthy joint and its expression increases in highly innervated tissues, such as cruciate ligaments, synovial lining and subchondral bone, in loaded compared to nonloaded control joints. In contrast, sema-3A expression in cartilage was decreased in the severe OA induced by the application of high loads. There was a significant increase in circulating sema-3A, 6 weeks after MJL compared to the nonloaded mice. mRNA for sema-3A and its receptor Plexin A1 were upregulated in the dorsal root ganglia of mice submitted to MJL. These increases were supressed by zoledronate, an inhibitor of bone pain. Sema-3A was expressed at all stages of Chondrocyte maturation and, when added exogenously, stimulated expression of markers of chondrocyte differentiation. This indicates that sema-3A could affect joint tissues distinctively during the development of OA. In highly innervated joint tissues, sema-3A could control innervation and/or induce pain-associated neuronal changes. In cartilage, sema-3A could favour its degeneration by modifying chondrocyte differentiation.


Assuntos
Osso e Ossos , Semaforina-3A , Animais , Camundongos , Osso e Ossos/metabolismo , Diferenciação Celular , Linhagem Celular , Dor , Semaforina-3A/genética , Semaforina-3A/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA