Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 695
Filtrar
1.
Trends Neurosci ; 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39358065

RESUMO

Recent work by Wu and colleagues unveiled a previously enigmatic population of spleen-innervating nociceptors from left T8-T13 dorsal root ganglia (DRGs) in mice. They found a specific DRG-spleen sensorineural connection that promotes humoral immunity via a CGRP-CALCRL/RAMP1 axis, providing a valuable target for immune regulation in local microenvironments.

2.
Int J Gen Med ; 17: 4805-4814, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39440102

RESUMO

Background: Numerous lines of evidence suggest that neuropeptide Y (NPY) is critically involved in the modulation of neuropathic pain. Postherpetic neuralgia (PHN) is characterized by prolonged duration, severe pain, and significant treatment resistance, substantially impairing patients' quality of life. This study aims to evaluate the potential of plasma NPY levels in patients with PHN as a predictive biomarker for the development of this condition. Methods: Between February 2022 and December 2023, 182 patients with herpes zoster (HZ) were recruited. Thirty-eight volunteers with no history of HZ were also recruited as controls. Clinical factors, NPY, brain-derived neurotrophic factor (BDNF), and nerve growth factor (NGF) were assessed within 3 days of healing. Logistic regression analysis was used to predict the development of PHN. Results: NPY levels were lower and BDNF and NGF were higher in HZ patients than those in controls. Only NPY levels were lower in patients with PHN (n = 59) compared with those without PHN (n = 123). Age, acute pain severity, and rash area were independent predictors of PHN, as were NPY levels. The area under the curve (AUC) to predict the development of PHN based on the combination of NPY levels and clinical factors was 0.873 (95% CI: 0.805 to 0.940), and the AUC was 0.804 based on only clinical factors (AUC: 0.804, 95% CI: 0.728 to 0.881). Conclusion: Low plasma NPY levels are a predictor of developing PHN in patients with HZ. Combining clinical predictors with NPY levels may improve predictive accuracy.

3.
Artigo em Inglês | MEDLINE | ID: mdl-39405479

RESUMO

The lung is densely innervated by sensory nerves, the majority of which are derived from the vagal sensory neurons. Vagal ganglia consist of two different ganglia, termed nodose and jugular ganglia, with distinct embryonic origins, innervation patterns, and physiological functions in the periphery. Since nodose neurons constitute the majority of the vagal ganglia, our understanding of the function of jugular nerves in the lung is very limited. This study aims to investigate the role of MrgprC11+ jugular sensory neurons in a mouse allergic asthma model. Our previous study has shown that MrgprC11+ jugular neurons mediate cholinergic bronchoconstriction. In this study, we found that in addition to MrgprC11, several other Mrgpr family members including MrgprA3, MrgprB4, and MrgprD are also specifically expressed in the jugular sensory neurons. MrgprC11+ jugular neurons exhibit dense innervation in the respiratory tract including the larynx, trachea, proximal, and distal bronchus. We also found that receptors for IL-4 and oncostatin M, two critical cytokines promoting allergic airway inflammation, are mainly expressed in jugular sensory neurons. Both IL-4 and oncostatin M can sensitize the neuronal responses of MrgprC11+ jugular neurons. Moreover, ablation of MrgprC11+ neurons significantly inhibited airway hyperresponsiveness in the asthmatic lung, demonstrating the critical role of MrgprC11+ neurons in controlling airway constriction. Our results emphasize the critical role of jugular sensory neurons in respiratory diseases.

4.
Dev Cell ; 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-39413782

RESUMO

Vagal nerve stimulation has emerged as a promising modality for treating a wide range of chronic conditions, including metabolic disorders. However, the cellular and molecular pathways driving these clinical benefits remain largely obscure. Here, we demonstrate that fibroblast growth factor 3 (Fgf3) mRNA is upregulated in the mouse vagal ganglia under acute metabolic stress. Systemic and vagal sensory overexpression of Fgf3 enhanced glucose-stimulated insulin secretion (GSIS), improved glucose excursion, and increased energy expenditure and physical activity. Fgf3-elicited insulinotropic and glucose-lowering responses were recapitulated when overexpression of Fgf3 was restricted to the pancreas-projecting vagal sensory neurons. Genetic ablation of Fgf3 in pancreatic vagal afferents exacerbated high-fat diet-induced glucose intolerance and blunted GSIS. Finally, electrostimulation of the vagal afferents enhanced GSIS and glucose clearance independently of efferent outputs. Collectively, we demonstrate a direct role for the vagal afferent signaling in GSIS and identify Fgf3 as a vagal sensory-derived metabolic factor that controls pancreatic ß-cell activity.

5.
Cell ; 187(21): 5981-5997.e14, 2024 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-39243765

RESUMO

Sneezing and coughing are primary symptoms of many respiratory viral infections and allergies. It is generally assumed that sneezing and coughing involve common sensory receptors and molecular neurotransmission mechanisms. Here, we show that the nasal mucosa is innervated by several discrete populations of sensory neurons, but only one population (MrgprC11+MrgprA3-) mediates sneezing responses to a multitude of nasal irritants, allergens, and viruses. Although this population also innervates the trachea, it does not mediate coughing, as revealed by our newly established cough model. Instead, a distinct sensory population (somatostatin [SST+]) mediates coughing but not sneezing, unraveling an unforeseen sensory difference between sneezing and coughing. At the circuit level, sneeze and cough signals are transmitted and modulated by divergent neuropathways. Together, our study reveals the difference in sensory receptors and neurotransmission/modulation mechanisms between sneezing and coughing, offering neuronal drug targets for symptom management in respiratory viral infections and allergies.


Assuntos
Tosse , Espirro , Animais , Camundongos , Células Receptoras Sensoriais/metabolismo , Células Receptoras Sensoriais/fisiologia , Células Receptoras Sensoriais/virologia , Masculino , Mucosa Nasal/virologia , Mucosa Nasal/metabolismo , Feminino , Traqueia/virologia , Camundongos Endogâmicos C57BL , Humanos , Receptores Acoplados a Proteínas G/metabolismo
6.
Bone ; 189: 117260, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-39299629

RESUMO

There is emerging evidence that Brain Derived Neurotrophic Factor (BDNF), and one of its receptors TrkB, play important roles in the pathogenesis of osteoarthritis (OA) pain. Whilst these studies clearly highlight the potential for targeting BDNF/TrkB signaling to treat OA pain, the mechanism for how BDNF/TrkB signaling contributes to OA pain remains unclear. In this study, we used an animal model of mono-iodoacetate (MIA)-induced OA, in combination with electrophysiology, behavioral testing, Western blot analysis, and retrograde tracing and immunohistochemistry, to identify roles for BDNF/TrkB signaling in the pathogenesis of OA pain. We found that: 1) TrkB is expressed in myelinated medium diameter neurons that innervate the knee joint and bone in naïve animals; 2) peripheral application of BDNF increases the sensitivity of Aδ, but not C knee joint and bone afferent neurons, in response to mechanical stimulation, in naïve animals; 3) BDNF expression increases in synovial tissue in early MIA-induced OA, when pathology is confined to the joint, and in the subchondral bone in late MIA-induced OA, when there is additional damage to the surrounding bone; and 4) TrkB inhibition reverses MIA-induced changes in the sensitivity of Aδ but not C knee joint afferent neurons early in MIA-induced OA, and Aδ but not C bone afferent neurons late in MIA-induced OA. Our findings suggest that BDNF/TrkB signaling may have a role to play in the pathogenesis of OA pain, through effects on knee joint afferent neurons early in disease when there is inflammation confined to the joint, and bone afferent neurons late in disease when there is involvement of damage to subchondral bone. Targeted manipulation of BDNF/TrkB signaling may provide therapeutic benefit for the management of OA pain.


Assuntos
Osso e Ossos , Fator Neurotrófico Derivado do Encéfalo , Neurônios Aferentes , Osteoartrite , Receptor trkB , Animais , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Receptor trkB/metabolismo , Osteoartrite/patologia , Osteoartrite/metabolismo , Osso e Ossos/patologia , Osso e Ossos/metabolismo , Masculino , Neurônios Aferentes/metabolismo , Neurônios Aferentes/patologia , Neurônios Aferentes/efeitos dos fármacos , Ácido Iodoacético , Ratos Sprague-Dawley , Ratos , Articulações/patologia , Articulações/inervação , Articulações/metabolismo , Transdução de Sinais/efeitos dos fármacos , Articulação do Joelho/patologia , Articulação do Joelho/inervação , Articulação do Joelho/metabolismo
7.
J Photochem Photobiol B ; 259: 113019, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39217730

RESUMO

Photobiomodulation therapy (PBMT) is a form of treatment commonly used for routine clinical applications, such as wound healing of the skin and reduction of inflammation. Additionally, PBMT has been explored for its potential in pain relief. In this work, we investigated the effect of PBMT on ion content within the 50B11 sensory neurons cell line in vitro using X-Ray fluorescence (XRF) and atomic force microscope (AFM) analysis. Two irradiation protocols were selected utilizing near-infrared laser lights at 800 and 970 nm, with cell fixation immediately following irradiation. Results showed a decrease in Calcium content after irradiation with both protocols, and with lidocaine, used as an analgesic control. Furthermore, a reduction in Potassium content was observed, particularly evident when normalized to cellular volume. These findings provide valuable insights into the molecular impact of PBMT within 50B11 sensory neurons under normal conditions. Such understanding may contribute to the wider adoption of PBMT as a therapeutic approach.


Assuntos
Cálcio , Raios Infravermelhos , Terapia com Luz de Baixa Intensidade , Células Receptoras Sensoriais , Animais , Células Receptoras Sensoriais/efeitos da radiação , Células Receptoras Sensoriais/metabolismo , Cálcio/metabolismo , Camundongos , Linhagem Celular , Espectrometria por Raios X , Microscopia de Força Atômica , Potássio/metabolismo , Potássio/química , Lidocaína/farmacologia
8.
J Neurogenet ; : 1-15, 2024 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-39250036

RESUMO

Egg-laying is one of the key aspects of female reproductive behavior in insects. Egg-laying has been studied since the dawn of Drosophila melanogaster as a model organism. The female's internal state, hormones, and external factors, such as nutrition, light, and social environment, affect egg-laying output. However, only recently, neurobiological features of egg-laying behavior have been studied in detail. fruitless and doublesex, two key players in the sex determination pathway, have become focal points in identifying neurons of reproductive significance in both central and peripheral nervous systems. The reproductive tract and external terminalia house sensory neurons that carry the sensory information of egg maturation, mating and egg-laying. These sensory signals include the presence of male accessory gland products and mechanical stimuli. The abdominal neuromere houses neurons that receive information from the reproductive tract, including sex peptide abdominal ganglion neurons (SAGs), and send their information to the brain. In the brain, neuronal groups like aDNs and pC1 clusters modulate egg-laying decision-making, and other neurons like oviINs and oviDNs are necessary for egg-laying itself. Lastly, motor neurons involved in egg-laying, which are mostly octopaminergic, reside in the abdominal neuromere and orchestrate the muscle movements required for laying the egg. Egg-laying neuronal control is important in various evolutionary processes like cryptic female choice, and using different Drosophila species can provide intriguing avenues for the future of the field.

9.
J Neurosci Methods ; 411: 110268, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39191304

RESUMO

BACKGROUND: Delivering optogenetic genes to the peripheral sensory nervous system provides an efficient approach to study and treat neurological disorders and offers the potential to reintroduce sensory feedback to prostheses users and those who have incurred other neuropathies. Adeno-associated viral (AAV) vectors are a common method of gene delivery due to efficiency of gene transfer and minimal toxicity. AAVs are capable of being designed to target specific tissues, with transduction efficacy determined through the combination of serotype and genetic promoter selection, as well as location of vector administration. The dorsal root ganglia (DRGs) are collections of cell bodies of sensory neurons which project from the periphery to the central nervous system (CNS). The anatomical make-up of DRGs make them an ideal injection location to target the somatosensory neurons in the peripheral nervous system (PNS). COMPARISON TO EXISTING METHODS: Previous studies have detailed methods of direct DRG injection in rats and dorsal horn injection in mice, however, due to the size and anatomical differences between rats and strains of mice, there is only one other published method for AAV injection into murine DRGs for transduction of peripheral sensory neurons using a different methodology. NEW METHOD/RESULTS: Here, we detail the necessary materials and methods required to inject AAVs into the L3 and L4 DRGs of mice, as well as how to harvest the sciatic nerve and L3/L4 DRGs for analysis. This methodology results in optogenetic expression in both the L3/L4 DRGs and sciatic nerve and can be adapted to inject any DRG.


Assuntos
Dependovirus , Gânglios Espinais , Técnicas de Transferência de Genes , Células Receptoras Sensoriais , Animais , Gânglios Espinais/citologia , Gânglios Espinais/metabolismo , Dependovirus/genética , Camundongos , Células Receptoras Sensoriais/fisiologia , Vetores Genéticos/administração & dosagem , Vetores Genéticos/genética , Optogenética/métodos , Masculino , Camundongos Endogâmicos C57BL
10.
Ann Anat ; 256: 152323, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39209048

RESUMO

Fibroblast growth factors (FGFs) are required for the specification and formation of the epibranchial placodes, which give rise to the distal part of the cranial sensory ganglia. However, it remains unclear whether FGFs play a role in regulating the neurite outgrowth of the epibranchial placode-derived ganglia during further development. Previous studies have shown that Fibroblast growth factor 8 (FGF8) promotes neurite outgrowth from the statoacoustic ganglion in vitro. However, these studies did not distinguish between the neural crest- and placode-derived components of the sensory ganglia. In this study, we focused on the petrosal and nodose ganglia as representatives of the epibranchial ganglia and investigated their axonal outgrowth under the influence of FGF8 signaling protein in vitro. To precisely isolate the placode-derived ganglion part, we labeled the placode and its derivatives with enhanced green fluorescent protein (EGFP) through electroporation. The isolated ganglia were then collected for qRT-PCR assay and cultured in a collagen gel with and without FGF8 protein. Our findings revealed that both placode-derived petrosal and nodose ganglia expressed FGFR1 and FGFR2. In culture, FGF8 exerted a neural trophic effect on the axon outgrowth of both ganglia. While the expression levels of FGFR1/2 were similar between the two ganglia, the petrosal ganglion exhibited greater sensitivity to FGF8 compared to the nodose ganglion. This indicates that the placode-derived ganglia have differential responsiveness to FGF8 signaling during axonal extension. Thus, FGF8 is not only required for the early development of the epibranchial placode, as shown in previous studies, but also promotes neurite outgrowth of placode-derived ganglia.


Assuntos
Fator 8 de Crescimento de Fibroblasto , Crescimento Neuronal , Animais , Fator 8 de Crescimento de Fibroblasto/metabolismo , Crescimento Neuronal/fisiologia , Gânglio Nodoso/citologia , Gânglio Nodoso/metabolismo , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/metabolismo , Camundongos , Neuritos/fisiologia
11.
Eur J Pharmacol ; 982: 176909, 2024 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-39154826

RESUMO

Interstitial cystitis/bladder pain syndrome (IC/BPS) is a chronic bladder inflammation characterized by the main symptoms of urinary frequency, urgency, and pelvic pain. The hypersensitivity of bladder afferent neurons is considered a significant pathophysiologic mechanism in IC/PBS. Serotonin (5-HT, 5-hydroxytryptamine) receptors are known to be involved in the regulation of the micturition reflex and hyperalgesia, but the effect of 5-HT receptors on cystitis remains unknown. In this study, a rat model of interstitial cystitis induced by intraperitoneal injection of cyclophosphamide (CYP) was used to investigate the role of 5-HT receptors on cystitis. The histology and urodynamics exhibited chronic cystitis and overactive bladder in CYP-treated rats. Notably, among 5-HT1A, 5-HT2A and 5-HT7 receptors, the expression of 5-HT2A receptor was significantly increased in bladder afferent neurons in CYP-treated rats. Intrathecal administration of the 5-HT2A receptor antagonist M100907 could alleviate bladder overactivity and hyperalgesia in CYP-induced cystitis rats. Neuronal calcium imaging of bladder afferent neurons revealed increased calcium influx induced by the 5-HT2A receptor agonist or capsaicin in cystitis rats, which could be inhibited by M100907. Moreover, RNA sequencing indicated that differentially expressed genes were enriched in inflammation-related pathways and cellular calcium homeostasis. These findings suggest that the 5-HT2A receptor is involved in the hypersensitivity of bladder afferent neurons in CYP-induced cystitis, and M100907 could alleviate bladder overactivity and hyperalgesia in CYP-induced cystitis by inhibiting neuronal hypersensitivity in the afferent pathways. The 5-HT2A receptor may be a potential therapeutic target for the treatment of IC/BPS.


Assuntos
Ciclofosfamida , Cistite , Neurônios Aferentes , Ratos Sprague-Dawley , Receptor 5-HT2A de Serotonina , Bexiga Urinária , Animais , Bexiga Urinária/efeitos dos fármacos , Bexiga Urinária/inervação , Bexiga Urinária/patologia , Bexiga Urinária/metabolismo , Neurônios Aferentes/metabolismo , Neurônios Aferentes/efeitos dos fármacos , Receptor 5-HT2A de Serotonina/metabolismo , Ratos , Cistite/induzido quimicamente , Cistite/metabolismo , Cistite/patologia , Feminino , Hiperalgesia/induzido quimicamente , Hiperalgesia/metabolismo , Cistite Intersticial/induzido quimicamente , Cistite Intersticial/metabolismo , Cistite Intersticial/tratamento farmacológico , Cistite Intersticial/patologia , Antagonistas do Receptor 5-HT2 de Serotonina/farmacologia , Bexiga Urinária Hiperativa/induzido quimicamente , Bexiga Urinária Hiperativa/metabolismo , Bexiga Urinária Hiperativa/fisiopatologia , Bexiga Urinária Hiperativa/tratamento farmacológico , Modelos Animais de Doenças
12.
Biomedicines ; 12(8)2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39200320

RESUMO

Sensory neurons densely innervate the myocardium. The role of their sensing and response to acute and prolonged ischemia is largely unclear. In a cellular model of ischemia-reperfusion injury, the presence of sensory neurons increases cardiomyocyte survival. Here, after the exclusion of classical neurotransmitter release, and measurement of cytokine release, we modified the experiment from a direct co-culture of primary murine cardiomyocytes and sensory neurons to a transfer of the supernatant. Sensory neurons were exposed to ischemia and the resulting conditioned supernatant was transferred onto cardiomyocytes. This approach largely increased the tolerance of cardiomyocytes to ischemia and reperfusion. Towards the identification of the mechanism, it was demonstrated that after ten-fold dilution, the conditioned solution lost its protective effect. The effect remained after removal of extracellular vesicles by ultracentrifugation, and was not affected by exposure to protease activity, and fractionation pointed towards a hydrophilic agent. Solutions conditioned by HEK293t cells or 3T3 fibroblasts also increase cardiomyocyte survival, but to a lower degree. A metabolomic search identified 64 at least two-fold changed metabolites and lipids. Many of these could be identified and are involved in essential cellular functions. In the presented model for ischemia-reperfusion, sensory neurons secrete one or more cardioprotective substances that can improve cardiomyocyte survival.

14.
J Med Virol ; 96(8): e29821, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39175267

RESUMO

Herpes zoster (HZ), resulting from the reactivation of the varicella-zoster virus, is a significant disease. This study aimed to explore the factors influencing sensory neuron involvement in HZ at different locations and its association with postherpetic neuralgia (PHN). A total of 3143 cases were retrieved from an electronic medical record system, including 2676 cases of HZ and 467 cases of PHN. Gender, age, site of onset, past surgical history, and comorbidities were analyzed using a multifactorial logistic regression model. The results revealed correlations between age, gender, comorbidities (diabetes, coronary heart disease, percutaneous coronary intervention [PCI]), and sensory neuron involvement in HZ. Specifically, older age, female gender, and comorbid conditions such as diabetes/coronary heart disease were associated with sacral dorsal root ganglion (DRG) involvement, while PCI history was associated with lumbar DRG involvement. Additionally, sensory neuron involvement at different locations by HZ was linked to PHN. Furthermore, independent risk factors for PHN included thoracic DRG involvement, older age, and comorbidities (diabetes, surgical history, malignancy). It is crucial to prevent damage to the DRG, especially in individuals with comorbidities, through activities avoidance and active treatment, to minimize the occurrence of PHN.


Assuntos
Herpes Zoster , Neuralgia Pós-Herpética , Humanos , Herpes Zoster/epidemiologia , Herpes Zoster/complicações , Masculino , Feminino , Idoso , Pessoa de Meia-Idade , Estudos Retrospectivos , Neuralgia Pós-Herpética/epidemiologia , Fatores de Risco , Idoso de 80 Anos ou mais , Adulto , Comorbidade , Gânglios Sensitivos/virologia , Herpesvirus Humano 3 , Fatores Etários , Gânglios Espinais/virologia , Adulto Jovem , Fatores Sexuais
15.
Immunol Rev ; 326(1): 83-101, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39092839

RESUMO

Food allergy is classically characterized by an inappropriate type-2 immune response to allergenic food antigens. However, how allergens are detected and how that detection leads to the initiation of allergic immunity is poorly understood. In addition to the gastrointestinal tract, the barrier epithelium of the skin may also act as a site of food allergen sensitization. These barrier epithelia are densely innervated by sensory neurons, which respond to diverse physical environmental stimuli. Recent findings suggest that sensory neurons can directly detect a broad array of immunogens, including allergens, triggering sensory responses and the release of neuropeptides that influence immune cell function. Reciprocally, immune mediators modulate the activation or responsiveness of sensory neurons, forming neuroimmune feedback loops that may impact allergic immune responses. By utilizing cutaneous allergen exposure as a model, this review explores the pivotal role of sensory neurons in allergen detection and their dynamic bidirectional communication with the immune system, which ultimately orchestrates the type-2 immune response. Furthermore, it sheds light on how peripheral signals are integrated within the central nervous system to coordinate hallmark features of allergic reactions. Drawing from this emerging evidence, we propose that atopy arises from a dysregulated neuroimmune circuit.


Assuntos
Alérgenos , Hipersensibilidade Alimentar , Neuroimunomodulação , Células Receptoras Sensoriais , Humanos , Hipersensibilidade Alimentar/imunologia , Animais , Células Receptoras Sensoriais/imunologia , Células Receptoras Sensoriais/metabolismo , Alérgenos/imunologia , Pele/imunologia
16.
Cell Rep ; 43(9): 114671, 2024 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-39215999

RESUMO

Recent discoveries have revealed remarkable complexity within olfactory sensory neurons (OSNs), including the existence of two OSN populations based on the expression of Cd36. However, the regulatory mechanisms governing this cellular diversity in the same cell type remain elusive. Here, we show the preferential expression of 79 olfactory receptors in Cd36+ OSNs and the anterior projection characteristics of Cd36+ OSNs, indicating the non-randomness of Cd36 expression. The integrated analysis of single-cell RNA sequencing (scRNA-seq) and scATAC-seq reveals that the differences in Cd36+/- OSNs occur at the immature OSN stage, with Mef2a and Hdac9 being important regulators of developmental divergence. We hypothesize that the absence of Hdac9 may affect the activation of Mef2a, leading to the up-regulation of Mef2a target genes, including teashirt zinc finger family member 1 (Tshz1), in the Cd36+ OSN lineage. We validate that Tshz1 directly promotes Cd36 expression through enhancer bindings. Our study unravels the intricate regulatory landscape and principles governing cellular diversity in the olfactory system.


Assuntos
Antígenos CD36 , Neurônios Receptores Olfatórios , Análise de Célula Única , Animais , Neurônios Receptores Olfatórios/metabolismo , Antígenos CD36/metabolismo , Antígenos CD36/genética , Camundongos , Análise de Célula Única/métodos , Fatores de Transcrição MEF2/metabolismo , Fatores de Transcrição MEF2/genética , Histona Desacetilases/metabolismo , Análise de Sequência de RNA/métodos , Camundongos Endogâmicos C57BL , Proteínas Repressoras/metabolismo , Proteínas Repressoras/genética , RNA-Seq/métodos , Análise da Expressão Gênica de Célula Única
18.
J Allergy Clin Immunol ; 154(4): 1033-1043, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38971540

RESUMO

BACKGROUND: Mas-related G protein-coupled receptor X2 (MRGPRX2) is a promiscuous receptor on mast cells that mediates IgE-independent degranulation and has been implicated in multiple mast cell-mediated disorders, including chronic urticaria, atopic dermatitis, and pain disorders. Although it is a promising therapeutic target, few potent, selective, small molecule antagonists have been identified, and functional effects of human MRGPRX2 inhibition have not been evaluated in vivo. OBJECTIVE: We sought to identify and characterize novel, potent, and selective orally active small molecule MRGPRX2 antagonists for potential treatment of mast cell-mediated disease. METHODS: Antagonists were identified using multiple functional assays in cell lines overexpressing human MRGPRX2, LAD2 mast cells, human peripheral stem cell-derived mast cells, and isolated skin mast cells. Skin mast cell degranulation was evaluated in Mrgprb2em(-/-) knockout and Mrgprb2em(MRGPRX2) transgenic human MRGPRX2 knock-in mice by assessment of agonist-induced skin vascular permeability. Ex vivo skin mast cell degranulation and associated histamine release was evaluated by microdialysis of human skin tissue samples. RESULTS: MRGPRX2 antagonists potently inhibited agonist-induced MRGPRX2 activation and mast cell degranulation in all mast cell types tested in an IgE-independent manner. Orally administered MRGPRX2 antagonists also inhibited agonist-induced degranulation and resulting vascular permeability in MRGPRX2 knock-in mice. In addition, antagonist treatment dose dependently inhibited agonist-induced degranulation in ex vivo human skin. CONCLUSIONS: MRGPRX2 small molecule antagonists potently inhibited agonist-induced mast cell degranulation in vitro and in vivo as well as ex vivo in human skin, supporting potential therapeutic utility as a novel treatment for multiple human diseases involving clinically relevant mast cell activation.


Assuntos
Degranulação Celular , Mastócitos , Proteínas do Tecido Nervoso , Receptores Acoplados a Proteínas G , Receptores de Neuropeptídeos , Mastócitos/efeitos dos fármacos , Mastócitos/imunologia , Animais , Receptores Acoplados a Proteínas G/antagonistas & inibidores , Receptores Acoplados a Proteínas G/genética , Degranulação Celular/efeitos dos fármacos , Humanos , Receptores de Neuropeptídeos/antagonistas & inibidores , Receptores de Neuropeptídeos/genética , Camundongos , Proteínas do Tecido Nervoso/genética , Camundongos Knockout , Pele/imunologia , Pele/efeitos dos fármacos , Linhagem Celular , Camundongos Endogâmicos C57BL
19.
Biofabrication ; 16(4)2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39084624

RESUMO

Three-dimensional (3D) tissue models have gained recognition for their improved ability to mimic the native cell microenvironment compared to traditional two-dimensional models. This progress has been driven by advances in tissue-engineering technologies such as 3D bioprinting, a promising method for fabricating biomimetic living tissues. While bioprinting has succeeded in generating various tissues to date, creating neural tissue models remains challenging. In this context, we present an accelerated approach to fabricate 3D sensory neuron (SN) structures using a transgenic human pluripotent stem cell (hPSC)-line that contains an inducible Neurogenin-2 (NGN2) expression cassette. The NGN2 hPSC line was first differentiated to neural crest cell (NCC) progenitors, then incorporated into a cytocompatible gelatin methacryloyl-based bioink for 3D bioprinting. Upregulated NGN2 expression in the bioprinted NCCs resulted in induced SN (iSN) populations that exhibited specific cell markers, with 3D analysis revealing widespread neurite outgrowth through the scaffold volume. Calcium imaging demonstrated functional activity of iSNs, including membrane excitability properties and voltage-gated sodium channel (NaV) activity. This efficient approach to generate 3D bioprinted iSN structures streamlines the development of neural tissue models, useful for the study of neurodevelopment and disease states and offering translational potential.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos , Bioimpressão , Proteínas do Tecido Nervoso , Impressão Tridimensional , Células Receptoras Sensoriais , Alicerces Teciduais , Humanos , Bioimpressão/métodos , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Células Receptoras Sensoriais/metabolismo , Células Receptoras Sensoriais/citologia , Proteínas do Tecido Nervoso/metabolismo , Alicerces Teciduais/química , Linhagem Celular , Células-Tronco Pluripotentes/citologia , Células-Tronco Pluripotentes/metabolismo , Diferenciação Celular , Engenharia Tecidual/métodos , Gelatina/química , Crista Neural/citologia , Crista Neural/metabolismo
20.
Res Sq ; 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-39011106

RESUMO

Stereotactic Body Radiation Therapy for lung tumors near the chest wall often causes significant chest wall pain (CWP), negatively impacting patients' quality of life. The mechanisms behind SBRT-induced CWP remain unclear and may involve multiple factors. We investigated the potential crosstalk between radiation-activated osteoclasts and sensory neurons, focusing on osteoclast-derived factors in CWP. Using the murine pre-osteoclast cell line Raw264.7, we induced differentiation with RANKL, followed by 10Gy gamma-irradiation. Conditioned media from these irradiated osteoclasts was used to treat sensory neuronal cultures from mouse dorsal root ganglia. Neuronal cultures were also directly exposed to 10Gy radiation, with and without osteoclast co-culture. Analysis of osteoclast markers and pain-associated neuropeptides was conducted using RT-qPCR and histochemical staining. Osteoclast differentiation and activity were inhibited using Osteoprotegerin and risedronate. Results showed that high-dose radiation significantly increased osteoclast size, resorption pit size, and activity biomarkers. Neurons treated with CM from irradiated osteoclasts showed increased expression of pain-associated neuropeptides CGRP and Substance P, which was mitigated by osteoprotegerin and risedronate. This study suggests that high-dose radiation enhances osteoclast activity, upregulating pain-associated neuropeptides in sensory neurons, and that inhibitors like osteoprotegerin and risedronate may offer therapeutic strategies for managing radiation-induced pain.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA