Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
2.
bioRxiv ; 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38260358

RESUMO

Polycystin-1 (PC1) is the membrane protein product of the PKD1 gene whose mutation is responsible for 85% of the cases of autosomal dominant polycystic kidney disease (ADPKD). ADPKD is primarily characterized by the formation of renal cysts and potential kidney failure. PC1 is an atypical G protein-coupled receptor (GPCR) consisting of 11 transmembrane helices and an autocatalytic GAIN domain that cleaves PC1 into extracellular N-terminal (NTF) and membrane-embedded C-terminal (CTF) fragments. Recently, signaling activation of the PC1 CTF was shown to be regulated by a stalk tethered agonist (TA), a distinct mechanism observed in the adhesion GPCR family. A novel allosteric activation pathway was elucidated for the PC1 CTF through a combination of Gaussian accelerated molecular dynamics (GaMD), mutagenesis and cellular signaling experiments. Here, we show that synthetic, soluble peptides with 7 to 21 residues derived from the stalk TA, in particular, peptides including the first 9 residues (p9), 17 residues (p17) and 21 residues (p21) exhibited the ability to re-activate signaling by a stalkless PC1 CTF mutant in cellular assays. To reveal molecular mechanisms of stalk peptide-mediated signaling activation, we have applied a novel Peptide GaMD (Pep-GaMD) algorithm to elucidate binding conformations of selected stalk peptide agonists p9, p17 and p21 to the stalkless PC1 CTF. The simulations revealed multiple specific binding regions of the stalk peptide agonists to the PC1 protein including an "intermediate" bound yet inactive state. Our Pep-GaMD simulation findings were consistent with the cellular assay experimental data. Binding of peptide agonists to the TOP domain of PC1 induced close TOP-putative pore loop interactions, a characteristic feature of the PC1 CTF signaling activation mechanism. Using sequence covariation analysis of PC1 homologs, we further showed that the peptide binding regions were consistent with covarying residue pairs identified between the TOP domain and the stalk TA. Therefore, structural dynamic insights into the mechanisms of PC1 activation by stalk-derived peptide agonists have enabled an in-depth understanding of PC1 signaling. They will form a foundation for development of PC1 as a therapeutic target for the treatment of ADPKD.

3.
Methods Mol Biol ; 2627: 321-328, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36959455

RESUMO

ß-barrel membrane proteins (ßMPs), found in the outer membrane of gram-negative bacteria, mitochondria, and chloroplasts, play important roles in membrane anchoring, pore formation, and enzyme activities. However, it is often difficult to determine their structures experimentally, and the knowledge of their structures is currently limited. We have developed a method to predict the 3D architectures of ßMPs. We can accurately construct transmembrane domains of ßMPs by predicting their strand registers, from which full 3D atomic structures are derived. Using 3D Beta-barrel Membrane Protein Predictor (3D-BMPP), we can further accurately model the extended beta barrels and loops in non-TM regions with overall greater structure prediction coverage. 3DBMPP is a general technique that can be applied to protein families with limited sequences as well as proteins with novel folds. Applications of 3DBMPP can be broadly applied to genome-wide ßMPs structure prediction.


Assuntos
Proteínas da Membrana Bacteriana Externa , Proteínas de Membrana , Proteínas de Membrana/genética , Proteínas de Membrana/química , Domínios Proteicos , Proteínas da Membrana Bacteriana Externa/genética , Proteínas da Membrana Bacteriana Externa/química
4.
J Mol Biol ; 433(20): 167059, 2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34023402

RESUMO

Protein aggregation is a widespread phenomenon with important implications in many scientific areas. Although amyloid formation is typically considered as detrimental, functional amyloids that perform physiological roles have been identified in all kingdoms of life. Despite their functional and pathological relevance, the structural details of the majority of molecular species involved in the amyloidogenic process remains elusive. Here, we explore the application of AlphaFold, a highly accurate protein structure predictor, in the field of protein aggregation. While we envision a straightforward application of AlphaFold in assisting the design of globular proteins with improved solubility for biomedical and industrial purposes, the use of this algorithm for predicting the structure of aggregated species seems far from trivial. First, in amyloid diseases, the presence of multiple amyloid polymorphs and the heterogeneity of aggregation intermediates challenges the "one sequence, one structure" paradigm, inherent to sequence-based predictions. Second, aberrant aggregation is not the subject of positive selective pressure, precluding the use of evolutionary-based approaches, which are the core of the AlphaFold pipeline. Instead, amyloid polymorphism seems to be constrained by the need for a defined structure-activity relationship in functional amyloids. They may thus provide a starting point for the application of AlphaFold in the amyloid landscape.


Assuntos
Amiloide/química , Agregados Proteicos , Dobramento de Proteína , Amiloide/metabolismo , Amiloidose/metabolismo , Animais , Humanos , Modelos Moleculares , Agregação Patológica de Proteínas/metabolismo , Conformação Proteica , Software
5.
Proc Natl Acad Sci U S A ; 116(36): 17825-17830, 2019 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-31431536

RESUMO

Clustered protocadherins, a large family of paralogous proteins that play important roles in neuronal development, provide an important case study of interaction specificity in a large eukaryotic protein family. A mammalian genome has more than 50 clustered protocadherin isoforms, which have remarkable homophilic specificity for interactions between cellular surfaces. A large antiparallel dimer interface formed by the first 4 extracellular cadherin (EC) domains controls this interaction. To understand how specificity is achieved between the numerous paralogs, we used a combination of structural and computational approaches. Molecular dynamics simulations revealed that individual EC interactions are weak and undergo binding and unbinding events, but together they form a stable complex through polyvalency. Strongly evolutionarily coupled residue pairs interacted more frequently in our simulations, suggesting that sequence coevolution can inform the frequency of interaction and biochemical nature of a residue interaction. With these simulations and sequence coevolution, we generated a statistical model of interaction energy for the clustered protocadherin family that measures the contributions of all amino acid pairs at the interface. Our interaction energy model assesses specificity for all possible pairs of isoforms, recapitulating known pairings and predicting the effects of experimental changes in isoform specificity that are consistent with literature results. Our results show that sequence coevolution can be used to understand specificity determinants in a protein family and prioritize interface amino acid substitutions to reprogram specific protein-protein interactions.


Assuntos
Caderinas/química , Caderinas/metabolismo , Caderinas/genética , Evolução Molecular , Variação Genética , Humanos , Modelos Moleculares , Ligação Proteica , Conformação Proteica , Mapeamento de Interação de Proteínas , Relação Estrutura-Atividade
6.
RNA Biol ; 15(2): 158-164, 2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29219696

RESUMO

The 7SK RNA is a small nuclear RNA that is involved in the regulation of Pol-II transcription. It is very well conserved in vertebrates, but shows extensive variations in both sequence and structure across invertebrates. A systematic homology search extended the collection of 7SK genes in both Arthropods and Lophotrochozoa making use of the large number of recently published invertebrate genomes. The extended data set made it possible to infer complete consensus structures for invertebrate 7SK RNAs. These show that not only the well-conserved 5'- and 3'- domains but all the interior Stem A domain is universally conserved. In contrast, Stem B region exhibits substantial structural variation and does not adhere to a common structural model beyond phylum level.


Assuntos
Invertebrados/genética , RNA Citoplasmático Pequeno/química , RNA Citoplasmático Pequeno/genética , Partícula de Reconhecimento de Sinal/química , Partícula de Reconhecimento de Sinal/genética , Animais , Sequência Conservada , Evolução Molecular , Invertebrados/química , Modelos Moleculares , Conformação de Ácido Nucleico , Filogenia , Homologia de Sequência do Ácido Nucleico
7.
Proteins ; 85(11): 2127-2142, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28799172

RESUMO

Protein sequences have evolved to fold into functional structures, resulting in families of diverse protein sequences that all share the same overall fold. One can harness protein family sequence data to infer likely contacts between pairs of residues. In the current study, we combine this kind of inference from coevolutionary information with a coarse-grained protein force field ordinarily used with single sequence input, the Associative memory, Water mediated, Structure and Energy Model (AWSEM), to achieve improved structure prediction. The resulting Associative memory, Water mediated, Structure and Energy Model with Evolutionary Restraints (AWSEM-ER) yields a significant improvement in the quality of protein structure prediction over the single sequence prediction from AWSEM when a sufficiently large number of homologous sequences are available. Free energy landscape analysis shows that the addition of the evolutionary term shifts the free energy minimum to more native-like structures, which explains the improvement in the quality of structures when performing predictions using simulated annealing. Simulations using AWSEM without coevolutionary information have proved useful in elucidating not only protein folding behavior, but also mechanisms of protein function. The success of AWSEM-ER in de novo structure prediction suggests that the enhanced model opens the door to functional studies of proteins even when no experimentally solved structures are available.


Assuntos
Modelos Estatísticos , Simulação de Dinâmica Molecular , Conformação Proteica , Proteínas/química , Evolução Molecular
8.
Proteins ; 82(9): 2141-56, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24677372

RESUMO

Covariation between positions in a multiple sequence alignment may reflect structural, functional, and/or phylogenetic constraints and can be analyzed by a wide variety of methods. We explored several of these methods for their ability to identify covarying positions related to the divergence of a protein family at different hierarchical levels. Specifically, we compared seven methods on a model system composed of three nested sets of G-protein-coupled receptors (GPCRs) in which a divergence event occurred. The covariation methods analyzed were based on: χ2 test, mutual information, substitution matrices, and perturbation methods. We first analyzed the dependence of the covariation scores on residue conservation (measured by sequence entropy), and then we analyzed the networking structure of the top pairs. Two methods out of seven--OMES (Observed minus Expected Squared) and ELSC (Explicit Likelihood of Subset Covariation)--favored pairs with intermediate entropy and a networking structure with a central residue involved in several high-scoring pairs. This networking structure was observed for the three sequence sets. In each case, the central residue corresponded to a residue known to be crucial for the evolution of the GPCR family and the subfamily specificity. These central residues can be viewed as evolutionary hubs, in relation with an epistasis-based mechanism of functional divergence within a protein family.


Assuntos
Evolução Molecular , Receptores Acoplados a Proteínas G/genética , Alinhamento de Sequência , Algoritmos , Sequência de Aminoácidos , Biologia Computacional , Humanos , Modelos Moleculares , Filogenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA