Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 524
Filtrar
1.
Front Oncol ; 14: 1398175, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39165688

RESUMO

Introduction: In colorectal cancer, men exhibit a higher incidence than women, and there is a disturbance in the levels of sex steroids in serum in patients with this disease. Consistently, in animals, males have greater tumor growth than females in diverse models. Nevertheless, the role of sex steroids is not well established. For that, we analyzed the effect of the principal gonadal sex steroids in both sexes. We determined sex as a statistically risk factor for colorectal cancer with data obtained from GLOBOCAN database. Methods: To induce colorectal tumors, we used the gold standard chemical method of azoxymethane and dextran sulphate of sodium. To evaluate the role of sex steroids, we gonadectomized independent males and female animals, reconstituting and substituting them with 17ß estradiol and dihydrotestosterone. Finally, we determined, in vitro, the proliferation of a human cell line exposed to 17ß estradiol, testosterone, or dihydrotestosterone. Sex, as a risk factor for colorectal cancer, showed a statistically significant susceptibility of men over 50 years old. Results: In vivo, males develop a greater number of tumors and with a larger size than females. In males, orchiectomy prevents tumor growth, whereas in females, ovariectomy promotes the development of neoplasms. DHT acts as a protumoral agent in both sexes. 17ß estradiol reduces tumor growth in females but enhances it in males, showing a dimorphic effect. In vitro studies reveal that estradiol decreases the proliferation of the HCT-116 colon cancer cell line, while testosterone boosts proliferation in these cells. Interestingly, dihydrotestosterone does not influence proliferation.

2.
J Neuroimmunol ; 394: 578419, 2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-39088908

RESUMO

Oxytocin can regulate immunological activity directly or indirectly; however, immunological functions and mechanisms of oxytocin actions under chronic stress like cesarean delivery (CD) are poorly understood. Our study found that abnormal oxytocin production and secretion in CD rats caused atrophy of thymic tissues. Neurotoxin kainic acid microinjected into the dorsolateral supraoptic nucleus in male rats selectively reduced hypothalamic oxytocin levels, increased corticotrophin-releasing hormone and plasma interleukin-1ß while reducing plasma oxytocin, thyroxine and testosterone levels and causing atrophy of immune tissues. Thus, plasma oxytocin is essential for immunological homeostasis, which involves oxytocin facilitation of thyroid hormone and sex steroid secretion.

3.
Artigo em Inglês | MEDLINE | ID: mdl-38986008

RESUMO

CONTEXT: The decrease in serum estrogens after menopause is associated with a shift from a gynoid to an android adipose tissue (AT) distribution. Menopausal hormone therapy (HT) mitigates this change and accompanying metabolic dysfunction, but its effects on AT sex steroid metabolism have not been characterized. OBJECTIVE: We studied effects of HT on subcutaneous and visceral AT estrogen and androgen concentrations and metabolism in postmenopausal women. DESIGN, SETTING, PATIENTS, AND INTERVENTIONS: Serum and subcutaneous and visceral AT from 63 postmenopausal women with (n=50) and without (n=13) per oral HT were analyzed for estrone, estradiol, progesterone, testosterone, androstenedione, dehydroepiandrosterone, and serum estrone sulfate using liquid chromatography-tandem mass spectrometry. Steroid sulfatase activity was measured using radiolabeled precursors. mRNA expression of genes encoding sex steroid-metabolizing enzymes and receptors was performed using real-time reverse transcription quantitative polymerase chain reaction. RESULTS: HT users had 4- to 7-fold higher concentrations of estrone and estradiol in subcutaneous and visceral AT, and 30% lower testosterone in visceral AT compared to non-users. Estrogen-to-androgen ratios were 4- to 12-fold higher in AT of users compared to non-users of HT. In visceral AT, estrogen-to-androgen ratios increased with HT estradiol dose. AT to serum ratios of estrone and estradiol remained high in HT users. CONCLUSIONS: Higher local estrogen to androgen ratios and high AT to serum ratios of estrogen concentrations in HT users suggest that HT may significantly influence intracrine sex steroid metabolism in AT, and these local changes could be involved in the preventive effect of HT on menopause-associated abdominal adiposity.

4.
Anim Reprod Sci ; 268: 107546, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38964214

RESUMO

The red spotted grouper Epinephelus akaara is a marine species of economic importance and also at risk of extinction. This study investigated the effects of high water temperature on the growth and maturation of juvenile E. akaara females. From 160-420 days post-hatching (dph), the fish were maintained under natural water temperature (NT) and a constant high-water temperature (HT). From 240 dph, both the total length and body weight in the HT group were greater than in NT group. After 360 dph, the gonadosomatic index was also increased in the HT group compared to NT group. Mature oocytes were only observed in the HT group at 330, 360, and 390 dph. Both kiss1 and kiss2 levels increased at 240 and 270 dph in both groups; however, they were greater in the HT group at 240 dph. Similarly, gpr54 levels after 360 dph were greater in the HT group, suggesting that kisspeptin is related to maturation via its receptor gpr54. Levels of fshß and lhß were greater in the HT group after 360 dph. Estradiol-17ß (E2) levels after 160 dph (except 300 dph) were greater in the HT group than in the NT group, suggesting that the higher E2 levels trigger maturation, and is related to increased fshß and lhß. This study provides evidence that high water temperature is effective in accelerating growth and triggering early maturation of juvenile E. akaara, via regulating gpr54, fshß, lhß, and E2 levels.


Assuntos
Maturidade Sexual , Animais , Maturidade Sexual/fisiologia , Feminino , Temperatura Alta , Bass/fisiologia , Bass/crescimento & desenvolvimento , Encéfalo/metabolismo , Hipófise/metabolismo , Hipófise/fisiologia , Perciformes/fisiologia , Perciformes/crescimento & desenvolvimento , Reprodução/fisiologia , Estradiol/sangue , Estradiol/metabolismo , Gônadas/fisiologia
5.
Front Endocrinol (Lausanne) ; 15: 1408677, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38978624

RESUMO

Infertility is becoming a major public health problem, with increasing frequency due to medical, environmental and societal causes. The increasingly late age of childbearing, growing exposure to endocrine disruptors and other reprotoxic products, and increasing number of medical reproductive dysfunctions (endometriosis, polycystic ovary syndrome, etc.) are among the most common causes. Fertility relies on fine-tuned control of both neuroendocrine function and reproductive behaviors, those are critically regulated by sex steroid hormones. Testosterone and estradiol exert organizational and activational effects throughout life to establish and activate the neural circuits underlying reproductive function. This regulation is mediated through estrogen receptors (ERs) and androgen receptor (AR). Estradiol acts mainly via nuclear estrogen receptors ERα and ERß. The aim of this review is to summarize the genetic studies that have been undertaken to comprehend the specific contribution of ERα and ERß in the neural circuits underlying the regulation of the hypothalamic-pituitary-gonadal axis and the expression of reproductive behaviors, including sexual and parental behavior. Particular emphasis will be placed on the neural role of these receptors and the underlying sex differences.


Assuntos
Receptor alfa de Estrogênio , Receptor beta de Estrogênio , Reprodução , Humanos , Receptor alfa de Estrogênio/metabolismo , Receptor beta de Estrogênio/metabolismo , Animais , Reprodução/fisiologia , Feminino , Comportamento Reprodutivo/fisiologia , Masculino
6.
BMJ Open ; 14(7): e077025, 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39025820

RESUMO

OBJECTIVES: Pregnancy outcomes of different ovarian stimulation protocols for in vitro fertilisation/intracytoplasmic sperm injection (IVF/ICSI) in patients with adenomyosis are not explicit. This meta-analysis aimed to systematically evaluate the effects of different IVF/ICSI protocols on pregnancy outcomes. DESIGN: Meta-analysis. DATA SOURCES: PubMed, Web of Science and Cochrane library were searched up to October 2023. ELIGIBILITY CRITERIA: Comparative studies on IVF/ICSI outcomes in the adenomyosis population were eligible. Studies on preimplantation genetic testing, reviews, case reports and animal experiments were excluded. DATA EXTRACTION AND SYNTHESIS: Valid information was extracted by two independent authors according to a standard data format. All analyses were conducted using Review Manager (RevMan, V.5.3). RESULTS: Compared with the non-adenomyosis population, adenomyosis was responsible for a 26% reduction in clinical pregnancy rate (CPR; 42.47% vs 55.89%, OR: 0.74, 95% CI: 0.66 to 0.82, p<0.00001), a 35% reduction in live birth rate (LBR; 30.72% vs 47.77%, OR: 0.65, 95% CI: 0.58 to 0.73, p<0.00001) and a 1.9-fold increase in miscarriage rate (MR; 27.82% vs 13.9%, OR: 1.90, 95% CI: 1.56 to 2.31, p<0.00001). Subgroup analysis suggested that, in fresh embryo transfer (ET) cycles, the CPR (34.4% vs 58.25%) in the long/short/antagonist protocol group was poorer than that in the ultralong protocol group. In frozen ET (FET) cycles, there were no statistical differences in CPR ((GnRHa+FET) AM(adenomyosis) vs non-AM: 51.32% vs 43.48%, p=0.31; (non-GnRHa+FET) AM vs non-AM: 50.25% vs 60.10%, p=0.82), MR ((GnRHa+FET) AM vs non-AM:12.82% vs 12.50%, p=0.97; (non-GnRHa+FET) AM vs non-AM: 30.5% vs 15.54%, p=0.15) and LBR ((GnRHa+FET) AM vs non-AM:44.74% vs 36.96%, p=0.31; (non-GnRHa+FET) AM vs non-AM: 34.42% vs 50.25%, p=0.28). The MR in the adenomyosis group was high in the fresh ET and FET cycles. CONCLUSIONS: FET might be a better choice for women with adenomyosis, especially those pretreated with GnRHa. In fresh ET cycles, pregnancy outcomes of the long/short/antagonist protocols were poorer than those of the ultralong protocol. TRIAL REGISTRATION NUMBER: CRD42022340743.


Assuntos
Adenomiose , Fertilização in vitro , Taxa de Gravidez , Injeções de Esperma Intracitoplásmicas , Humanos , Feminino , Adenomiose/terapia , Gravidez , Injeções de Esperma Intracitoplásmicas/métodos , Fertilização in vitro/métodos , Resultado da Gravidez , Indução da Ovulação/métodos , Infertilidade Feminina/terapia
7.
J Neuroendocrinol ; : e13433, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39041546

RESUMO

Kisspeptins are essential regulators of the reproductive axis, with capacity to potently activate gonadotropin-releasing hormone neurons, acting also as central conduits for the metabolic regulation of fertility. Recent evidence suggests that kisspeptins per se may also modulate several metabolic parameters, including body weight, food intake or energy expenditure, but their actual roles and site(s) of action remain unclear. We present herein a series of studies addressing the metabolic effects of central and peripheral administration of kisspeptin-10 (Kp-10; 1 nmol and 3 nmol daily, respectively) for 11 days in mice of both sexes. To assess direct metabolic actions of Kp-10 versus those derived indirectly from its capacity to modulate gonadal hormone secretion, kisspeptin effects were tested in adult male and female mice gonadectomized and supplemented with fixed, physiological doses of testosterone or 17ß-estradiol, respectively. Central administration of Kp-10 decreased food intake in male mice, especially during the dark phase (~50%), which was accompanied by a reduction in total and nocturnal energy expenditure (~16%) and locomotor activity (~70%). In contrast, opposite patterns were detected in female mice, with an increase in total and nocturnal locomotor activity (>65%), despite no changes in food intake or energy expenditure. These changes were independent of body weight, as no differences were detected in mice of both sexes at the end of Kp-10 treatments. Peripheral administration of Kp-10 failed to alter any of the metabolic parameters analyzed, except for a decrease in locomotor activity in male mice and a subtle increase in 24 h food intake in female mice, denoting a predominant central role of kisspeptins in the control of energy metabolism. Finally, glucose tolerance and insulin sensitivity were not significantly affected by central or peripheral treatment with Kp-10. In conclusion, our data reveal a potential role of kisspeptins in the control of key metabolic parameters, including food intake, energy expenditure and locomotor activity, with a preferential action at central level, which is sex steroid-independent but sexually dimorphic.

8.
Front Glob Womens Health ; 5: 1363470, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38933454

RESUMO

Epilepsy, is a serious neurological condition, characterized by recurring, unprovoked seizures and affects over 50 million people worldwide. Epilepsy has an equal prevalence in males and females, and occurs throughout the life span. Women with epilepsy (WWE) present with unique challenges due to the cyclical fluctuation of sex steroid hormone concentrations during their life course. These shifts in sex steroid hormones and their metabolites are intricately intertwined with seizure susceptibility and affect epilepsy during the life course of women in a complex manner. Here we present a review encompassing neurosteroids-steroids that act on the brain regardless of their site of synthesis in the body; the role of neurosteroids in women with epilepsy through their life-course; exogenous neurosteroid trials; and future research directions. The focus of this review is on progesterone and its derived neurosteroids, given the extensive basic research that supports their role in modulating neuronal excitability.

9.
Andrology ; 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38923406

RESUMO

BACKGROUND: Androgen insensitivity syndrome (AIS) is a common condition among individuals with differences of sexual development (DSD) and results from germline allelic variants in the androgen receptor (AR) gene. Understanding the phenotypic consequences of AR allelic variants that disrupt the activation function 2 (AF2) region is essential to grasping its clinical significance. OBJECTIVES: This study aims to provide insights into the phenotypic characteristics and clinical impact of AR mutations affecting the AF2 region in AIS patients. We achieve this by reviewing reported AR variants in the AF2 region among individuals with AIS, including identifying a new phenotype associated with the c.2138T>C variant (p.Leu713Pro) in the AR gene. MATERIALS AND METHODS: We comprehensively reviewed AR variants within the AF2 region reported in AIS and applied molecular dynamics simulations to assess the impact of the p.Leu713Pro variant on protein dynamics. RESULTS: Our review of reported AR variants in the AF2 region revealed a spectrum of phenotypic outcomes in AIS patients. Molecular dynamics simulations indicated that the p.Leu713Pro variant significantly alters the local dynamics of the AR protein and disrupts the correlation and covariance between variables. DISCUSSION: The diverse phenotypic presentations observed among individuals with AR variants in the AF2 region highlight the complexity of AIS. The altered protein dynamics resulting from the p.Leu713Pro variant further emphasize the importance of the AF2 region in AR function. CONCLUSION: Our study provides valuable insights into AR mutations' phenotypic characteristics and clinical impact on the AF2 region in AIS. Moreover, the disruption of protein dynamics underscores the significance of the AF2 region in AR function and its role in the pathogenesis of AIS.

10.
Biol Sex Differ ; 15(1): 48, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38867310

RESUMO

INTRODUCTION: Sexual dimorphism significantly influences cancer incidence and prognosis. Notably, females exhibit a lower risk and favorable prognosis for non-reproductive cancers compared to males, a pattern observable beyond the scope of risk behaviors such as alcohol consumption and smoking. Colorectal cancer, ranking third in global prevalence and second in mortality, disproportionately affects men. Sex steroid hormones, particularly estrogens and androgens, play crucial roles in cancer progression, considering epidemiological in vivo and in vitro, in general estrogens imparting a protective effect in females and androgens correlating with an increasing risk of colorectal cancer development. MAIN BODY: The hormonal impact on immune response is mediated by receptor interactions, resulting in heightened inflammation, modulation of NF-kB, and fostering an environment conducive to cancer progression and metastasis. These molecules also influence the enteric nervous system, that is a pivotal in neuromodulator release and intestinal neuron stimulation, also contributes to cancer development, as evidenced by nerve infiltration into tumors. Microbiota diversity further intersects with immune, hormonal, and neural mechanisms, influencing colorectal cancer dynamics. A comprehensive understanding of hormonal influences on colorectal cancer progression, coupled with the complex interplay between immune responses, microbiota diversity and neurotransmitter imbalances, underpins the development of more targeted and effective therapies. CONCLUSIONS: Estrogens mitigate colorectal cancer risk by modulating anti-tumor immune responses, enhancing microbial diversity, and curbing the pro-tumor actions of the sympathetic and enteric nervous systems. Conversely, androgens escalate tumor growth by dampening anti-tumor immune activity, reducing microbial diversity, and facilitating the release of tumor-promoting factors by the nervous system. These findings hold significant potential for the strategic purposing of drugs to fine-tune the extensive impacts of sex hormones within the tumor microenvironment, promising advancements in colorectal cancer therapies.


Assuntos
Neoplasias Colorretais , Caracteres Sexuais , Humanos , Neoplasias Colorretais/metabolismo , Animais , Feminino , Hormônios Esteroides Gonadais/metabolismo , Hormônios Esteroides Gonadais/fisiologia , Masculino
11.
Bone ; 186: 117143, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38866125

RESUMO

The effects of gender affirming hormone therapy (GAHT) on bone microarchitecture and fracture risk in adult transgender women is unclear. To investigate the concept that skeletal integrity and strength in trans women may be improved by treatment with a higher dose of GAHT than commonly prescribed, we treated adult male mice with a sustained, high dose of estradiol. Adult male mice at 16 weeks of age were administered ~1.3 mg estradiol by silastic implant, implanted intraperitoneally, for 12 weeks. Controls included vehicle treated intact females and males. High-dose estradiol treatment in males stimulated the endocortical deposition of bone at the femoral mid-diaphysis, increasing cortical thickness and bone area. This led to higher stiffness, maximum force, and the work required to fracture the bone compared to male controls, while post-yield displacement was unaffected. Assessment of the material properties of the bone showed an increase in both elastic modulus and ultimate stress in the estradiol treated males. Treatment of male mice with high dose estradiol was also anabolic for trabecular bone, markedly increasing trabecular bone volume, number and thickness in the distal metaphysis which was accompanied by an increase in the histomorphometric markers of bone remodelling, mineralizing surface/bone surface, bone formation rate and osteoclast number. In conclusion, a high dose of estradiol is anabolic for cortical and trabecular bone in a male to female transgender mouse model, increasing both stiffness and strength. These findings suggest that increasing the current dose of GAHT administered to trans women, while considering other potential adverse effects, may be beneficial to preserving their bone microstructure and strength.


Assuntos
Estradiol , Animais , Masculino , Estradiol/farmacologia , Estradiol/sangue , Feminino , Camundongos , Osso e Ossos/efeitos dos fármacos , Osso e Ossos/diagnóstico por imagem , Densidade Óssea/efeitos dos fármacos , Anabolizantes/farmacologia , Tamanho do Órgão/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Humanos , Modelos Animais , Microtomografia por Raio-X
12.
Animals (Basel) ; 14(12)2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38929347

RESUMO

MafB is a transcription factor that regulates macrophage differentiation. Macrophages are a traditional feature of the hamster Harderian gland (HG); however, studies pertaining to MafB expression in the HG are scant. Here, the full-length cDNA of the MafB gene in hamsters was cloned and sequenced. Molecular characterization revealed that MafB encodes a protein containing 323 amino acids with a DNA-binding domain, a transactivation domain, and a leucine zipper domain. qPCR assays indicated that MafB was expressed in different tissues of both sexes. The highest relative expression levels in endocrine tissues were identified in the pancreas. Gonadectomy in male hamsters was associated with significantly higher mRNA levels in the HG; replacement with dihydrotestosterone restored mRNA expression. The HG in male hamsters contained twofold more MafB mRNA than the HG of female hamsters. Adrenals revealed similar mRNA relative expression levels during the estrous cycle. The estrous phase was associated with higher mRNA levels in the ovary. A significantly up-regulated expression and sexual dimorphism of MafB was found in the pancreas. Therefore, MafB in the HG may play an active role in the macrophage differentiation required for phagocytosis activity and intraocular repair. Additionally, sex steroids appear to strongly influence the MafB expression in the HG and pancreas. These studies highlight the probable biological importance of MafB in immunological defense and pancreatic ß cell regulation.

13.
Curr Issues Mol Biol ; 46(6): 5337-5351, 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38920991

RESUMO

Sexual maturation of Atlantic salmon males is marked by dramatic endocrine changes and rapid growth of the testes, resulting in an increase in the gonad somatic index (GSI). We examined the association of gonadal growth with serum sex steroids, as well as pituitary and testicular gene expression levels, which were assessed with a DNA oligonucleotide microarray. The testes transcriptome was stable in males with a GSI < 0.08% despite the large difference between the smallest and the largest gonads. Fish with a GSI ≥ 0.23% had 7-17 times higher serum levels of five male steroids and a 2-fold increase in progesterone, without a change in cortisol and related steroids. The pituitary transcriptome showed an upregulation of the hormone-coding genes that control reproduction and behavior, and structural rearrangement was indicated by the genes involved in synaptic transmission and the differentiation of neurons. The observed changes in the abundance of testicular transcripts were caused by the regulation of transcription and/or disproportional growth, with a greater increase in the germinative compartment. As these factors could not be separated, the transcriptome results are presented as higher or lower specific activities (HSA and LSA). LSA was observed in 4268 genes, including many genes involved in various immune responses and developmental processes. LSA also included genes with roles in female reproduction, germinal cell maintenance and gonad development, responses to endocrine and neural regulation, and the biosynthesis of sex steroids. Two functional groups prevailed among HSA: structure and activity of the cilia (95 genes) and meiosis (34 genes). The puberty of A. salmon testis is marked by the predominance of spermatogenesis, which displaces other processes; masculinization; and the weakening of external regulation. Results confirmed the known roles of many genes involved in reproduction and pointed to uncharacterized genes that deserve attention as possible regulators of sexual maturation.

14.
BMJ Open ; 14(5): e078558, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38719280

RESUMO

INTRODUCTION: The use of androgenic anabolic steroids (AASs) among recreational athletes is steadily increasing. However, knowledge regarding the potentially harmful effects of AAS primarily originates from case reports and small observational studies. This large-scale study aims to investigate the impact of AAS use on vascular plaque formation, preclinical coronary disease, cardiac function, circulating cardiovascular risk markers, quality of life (QoL) and mental health in a broad population of illicit AAS users. METHODS AND ANALYSES: A nationwide cross-sectional cohort study including a diverse population of men and women aged ≥18 years, with current or previous illicit AAS use for at least 3 months. Conducted at Odense University Hospital, Denmark, the study comprises two parts. In part A (the pilot study), 120 recreational athletes with an AAS history will be compared with a sex-matched and age-matched control population of 60 recreational athletes with no previous AAS use. Cardiovascular outcomes include examination of non-calcified coronary plaque volume and calcium score using coronary CT angiography, myocardial structure and function via echocardiography, and assessing carotid and femoral artery plaques using ultrasonography. Retinal microvascular status is evaluated through fundus photography. Cardiovascular risk markers are measured in blood. Mental health outcomes include health-related QoL, interpersonal difficulties, body image concerns, aggression dimensions, anxiety symptoms, depressive severity and cognitive function assessed through validated questionnaires. The findings of our comprehensive study will be used to compose a less intensive investigatory cohort study of cardiovascular and mental health (part B) involving a larger group of recreational athletes with a history of illicit AAS use. ETHICS AND DISSEMINATION: The study received approval from the Regional Committee on Health Research Ethics for Southern Denmark (S-20210078) and the Danish Data Protection Agency (21/28259). All participants will provide signed informed consent. Research outcomes will be disseminated through peer-reviewed journals and scientific conferences. TRIAL REGISTRATION NUMBER: NCT05178537.


Assuntos
Atletas , Dopagem Esportivo , Saúde Mental , Qualidade de Vida , Adulto , Feminino , Humanos , Masculino , Anabolizantes/efeitos adversos , Esteróides Androgênicos Anabolizantes , Androgênios/efeitos adversos , Atletas/psicologia , Doenças Cardiovasculares/epidemiologia , Estudos de Coortes , Estudos Transversais , Dinamarca/epidemiologia , Fatores de Risco de Doenças Cardíacas , Projetos Piloto , Projetos de Pesquisa , Congêneres da Testosterona/efeitos adversos
15.
Stress ; 27(1): 2317856, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38563163

RESUMO

In humans, exposure to early life adversity has profound implications for susceptibility to developing neuropsychiatric disorders later in life. Studies in rodents have shown that stress experienced during early postnatal life can have lasting effects on brain development. Glucocorticoids and sex steroids are produced in endocrine glands and the brain from cholesterol; these molecules bind to nuclear and membrane-associated steroid receptors. Unlike other steroids that can also be made in the brain, neurosteroids bind specifically to neurotransmitter receptors, not steroid receptors. The relationships among steroids, neurosteroids, and stress are multifaceted and not yet fully understood. However, studies demonstrating altered levels of progestogens, androgens, estrogens, glucocorticoids, and their neuroactive metabolites in both developmental and adult stress paradigms strongly suggest that these molecules may be important players in stress effects on brain circuits and behavior. In this review, we discuss the influence of developmental and adult stress on various components of the brain, including neurons, glia, and perineuronal nets, with a focus on sex steroids and neurosteroids. Gaining an enhanced understanding of how early adversity impacts the intricate systems of brain steroid and neurosteroid regulation could prove instrumental in identifying novel therapeutic targets for stress-related conditions.


Assuntos
Neuroesteroides , Humanos , Estresse Psicológico/metabolismo , Esteroides/fisiologia , Hormônios Esteroides Gonadais , Encéfalo/fisiologia
16.
Endocr Pract ; 30(7): 687-694, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38631489

RESUMO

BACKGROUND: Skeletal modeling in childhood and adolescence and continuous remodeling throughout the lifespan are designed to adapt to a changing environment and resist external forces and fractures. The flux of sex steroids in men and women, beginning from fetal development and evolving through infancy, childhood, puberty, young adulthood, peri/menopause transition, and postmenopause, is critical for bone size, peak bone mass, and fracture resistance. OBJECTIVE: This review will highlight how changes in sex steroids throughout the lifespan affect bone cells and the consequence of these changes on bone architecture and strength. METHODS: Literature review and discussion. RESULTS: The contributions of estrogen and testosterone on skeletal development have been difficult to study due to the reciprocal and intertwining contributions of one on the other. Although orchiectomy in men renders circulating testosterone absent, circulating estrogen also declines due to testosterone being the substrate for estradiol. The discovery of men with absent estradiol or resistance to estrogen and the study of mouse models led to the understanding that estrogen has a larger direct role in skeletal development and maintenance in men and women. The mechanistic reason for larger bone size in men is incompletely understood but related to indirect effects of testosterone on the skeleton, such as higher muscle mass leading to larger mechanical loading. Declines in sex steroids during menopause in women and androgen deprivation therapies in men have profound and negative effects on the skeleton. Therapies to prevent such bone loss are available, but how such therapies can be tailored based on bone size and architecture remains an area of investigation. CONCLUSION: In this review, the elegant interplay and contribution of sex steroids on bone architecture in men and women throughout the lifespan is described.


Assuntos
Fraturas Ósseas , Humanos , Masculino , Feminino , Animais , Fraturas Ósseas/prevenção & controle , Osso e Ossos/metabolismo , Desenvolvimento Ósseo/fisiologia , Desenvolvimento Ósseo/efeitos dos fármacos , Testosterona/sangue , Hormônios Esteroides Gonadais/fisiologia , Estrogênios , Densidade Óssea/fisiologia , Densidade Óssea/efeitos dos fármacos
17.
Endocr Pract ; 30(7): 679-686, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38679385

RESUMO

Short stature in children is a common reason for referral to a pediatric endocrinologist. Many genetic, nutritional, psychological, illness-related, and hormonal causes must be excluded before labeling as idiopathic. Idiopathic short stature is not a diagnosis, but rather describes a large, heterogeneous group of children, who are short and often slowly growing. As new testing paradigms become available, the pool of patients labeled as idiopathic will shrink, although most will have a polygenic cause. Given that many of the new diagnoses are involved in growth plate biology, physical examination should assess for subtle dysmorphology or disproportion of the skeleton that may indicate a heterozygous mutation that in its homozygous state would be apparent. When laboratory evaluations are negative, one may consider genetic testing, such as targeted gene or gene panel, comparative genomic hybridization, or whole exome or whole genome sequencing (respectively). With a known genetic diagnosis, targeted therapy may be possible rather than recombinant human growth hormone, where response is generally poorer than that for children with growth hormone deficiency, because the variety of diagnoses may have varying growth hormone sensitivity. A firm diagnosis has heuristic value: to truncate further diagnostic evaluation, alert the clinician to other possible comorbidities, inform the family for genetic counseling, and direct appropriate targeted therapy, if available.


Assuntos
Testes Genéticos , Transtornos do Crescimento , Humanos , Criança , Testes Genéticos/métodos , Transtornos do Crescimento/genética , Transtornos do Crescimento/diagnóstico , Estatura/genética , Hormônio do Crescimento Humano , Nanismo/genética , Nanismo/diagnóstico
18.
mBio ; 15(4): e0032624, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38441028

RESUMO

Adult females of reproductive age develop greater antibody responses to inactivated influenza vaccines (IIV) than males. How sex, age, and sex steroid concentrations impact B cells and durability of IIV-induced immunity and protection over 4 months post-vaccination (mpv) was analyzed. Vaccinated adult females had greater germinal center B cell and plasmablast frequencies in lymphoid tissues, higher neutralizing antibody responses 1-4 mpv, and better protection against live H1N1 challenge than adult males. Aged mice, regardless of sex, had reduced B cell frequencies, less durable antibody responses, and inferior protection after challenge than adult mice, which correlated with diminished estradiol among aged females. To confirm that greater IIV-induced immunity was caused by sex hormones, four core genotype (FCG) mice were used, in which the testes-determining gene, Sry, was deleted from chromosome Y (ChrY) and transferred to Chr3 to separate gonadal sex (i.e., ovaries or testes) from sex chromosome complement (i.e., XX or XY complement). Vaccinated, gonadal female FCG mice (XXF and XYF) had greater numbers of B cells, higher antiviral antibody titers, and reduced pulmonary virus titers following live H1N1 challenge than gonadal FCG males (XYM and XXM). To establish that lower estradiol concentrations cause diminished immunity, adult and aged females received either a placebo or estradiol replacement therapy prior to IIV. Estradiol replacement significantly increased IIV-induced antibody responses and reduced morbidity after the H1N1 challenge among aged females. These data highlight that estradiol is a targetable mechanism mediating greater humoral immunity following vaccination among adult females.IMPORTANCEFemales of reproductive ages develop greater antibody responses to influenza vaccines than males. We hypothesized that female-biased immunity and protection against influenza were mediated by estradiol signaling in B cells. Using diverse mouse models ranging from advanced-age mice to transgenic mice that separate sex steroids from sex chromosome complement, those mice with greater concentrations of estradiol consistently had greater numbers of antibody-producing B cells in lymphoid tissue, higher antiviral antibody titers, and greater protection against live influenza virus challenge. Treatment of aged female mice with estradiol enhanced vaccine-induced immunity and protection against disease, suggesting that estradiol signaling in B cells is critical for improved vaccine outcomes in females.


Assuntos
Vírus da Influenza A Subtipo H1N1 , Vacinas contra Influenza , Influenza Humana , Masculino , Animais , Camundongos , Feminino , Humanos , Estradiol , Anticorpos Antivirais , Centro Germinativo , Vacinação , Camundongos Transgênicos , Vacinas de Produtos Inativados , Antivirais
19.
Brain Behav Immun ; 118: 236-251, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38431238

RESUMO

Dopamine dysregulation contributes to psychosis and cognitive deficits in schizophrenia that can be modelled in rodents by inducing maternal immune activation (MIA). The selective estrogen receptor (ER) modulator, raloxifene, can improve psychosis and cognition in men and women with schizophrenia. However, few studies have examined how raloxifene may exert its therapeutic effects in mammalian brain in both sexes during young adulthood (age relevant to most prevalent age at diagnosis). Here, we tested the extent to which raloxifene alters dopamine-related behaviours and brain transcripts in young adult rats, both control and MIA-exposed females and males. We found that raloxifene increased amphetamine (AMPH)-induced locomotor activity in female controls, and in contrast, raloxifene reduced AMPH-induced locomotor activity in male MIA offspring. We did not detect overt prepulse inhibition (PPI) deficits in female or male MIA offspring, yet raloxifene enhanced PPI in male MIA offspring. Whereas, raloxifene ameliorated increased startle responsivity in female MIA offspring. In the substantia nigra (SN), we found reduced Drd2s mRNA in raloxifene-treated female offspring with or without MIA, and increased Comt mRNA in placebo-treated male MIA offspring relative to placebo-treated controls. These data demonstrate an underlying dopamine dysregulation in MIA animals that can become more apparent with raloxifene treatment, and may involve selective alterations in dopamine receptor levels and dopamine breakdown processes in the SN. Our findings support sex-specific, differential behavioural responses to ER modulation in MIA compared to control offspring, with beneficial effects of raloxifene treatment on dopamine-related behaviours relevant to schizophrenia found in male MIA offspring only.


Assuntos
Efeitos Tardios da Exposição Pré-Natal , Cloridrato de Raloxifeno , Humanos , Adulto Jovem , Ratos , Feminino , Masculino , Animais , Adulto , Cloridrato de Raloxifeno/farmacologia , Dopamina/metabolismo , Receptores de Estrogênio , Moduladores Seletivos de Receptor Estrogênico/farmacologia , Anfetamina/farmacologia , RNA Mensageiro , Comportamento Animal/fisiologia , Poli I-C/farmacologia , Modelos Animais de Doenças , Mamíferos/metabolismo
20.
Int J Mol Sci ; 25(5)2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38473747

RESUMO

Insulin-like growth factors (IGFs) are hormones that primarily stimulate and regulate animal physiological processes. In this study, we cloned and identified the open reading frame (ORF) cDNA sequences of IGF family genes: the insulin-like growth factor 1 (IGF1), insulin-like growth factor 2 (IGF2), and insulin-like growth factor 3 (IGF3). We found that IGF1, IGF2, and IGF3 have a total length of 558, 648, and 585 base pairs (bp), which encoded a predicted protein with 185, 215, and 194 amino acids (aa), respectively. Multiple sequences and phylogenetic tree analysis showed that the mature golden pompano IGFs had been conserved and showed high similarities with other teleosts. The tissue distribution experiment showed that IGF1 and IGF2 mRNA levels were highly expressed in the liver of female and male fish. In contrast, IGF3 was highly expressed in the gonads and livers of male and female fish, suggesting a high influence on fish reproduction. The effect of fasting showed that IGF1 and mRNA expression had no significant difference in the liver but significantly decreased after long-term (7 days) fasting in the muscles and started to recover after refeeding. IGF2 mRNA expression showed no significant difference in the liver but had a significant difference in muscles for short-term (2 days) and long-term fasting, which started to recover after refeeding, suggesting muscles are more susceptible to both short-term and long-term fasting. In vitro incubation of 17ß-estradiol (E2) was observed to decrease the IGF1 and IGF3 mRNA expression level in a dose- (0.1, 1, and 10 µM) and time- (3, 6, and 12 h) dependent manner. In addition, E2 had no effect on IGF2 mRNA expression levels in a time- and dose-dependent manner. The effect of 17α-methyltestosterone (MT) in vitro incubation was observed to significantly increase the IGF3 mRNA expression level in a time- and dose-dependent manner. MT had no effect on IGF2 mRNA but was observed to decrease the IGF1 mRNA expression in the liver. Taken together, these data indicate that E2 and MT may either increase or decrease IGF expression in fish; this study provides basic knowledge and understanding of the expression and regulation of IGF family genes in relation to the nutritional status, somatic growth, and reproductive endocrinology of golden pompano for aquaculture development.


Assuntos
Peixes , Peptídeos Semelhantes à Insulina , Animais , Filogenia , Sequência de Aminoácidos , Peixes/genética , RNA Mensageiro/genética , Expressão Gênica , Clonagem Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA