Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 283
Filtrar
1.
Eur J Med Genet ; 71: 104965, 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39094681

RESUMO

Neurodevelopmental disorders have been linked to numerous genes, particularly pathogenic variants in genes encoding postsynaptic scaffolding proteins, like SHANK3. This study aims to provide insights into the cardiovascular profile of patients with pathogenic SHANK3 variants, expanding beyond the well-established associations with neurodevelopmental disorders and epilepsy. We conducted a prospective study involving patients affected by neurodevelopmental disorders with pathogenic SHANK3 variants. Comprehensive cardiovascular assessments were performed and molecular genetic testing included chromosomal microarray followed by clinical exome sequencing. We identified five patients with de novo SHANK3 variants, all of whom exhibited cardiac involvement, including myocardial dysfunction, congenital heart disease (patent ductus arteriosus), and a case of postictal atrial fibrillation. Our findings emphasize an elevated risk of cardiovascular abnormalities in patients with SHANK3 pathogenic variants compared to prior reports. Despite their young age, these patients displayed significant cardiac abnormalities. The study highlights the necessity of integrating cardiac evaluation and ongoing cardiovascular monitoring into multidisciplinary care, facilitating early detection of heart failure and assessment of the risk of sudden unexpected death in epilepsy (SUDEP). Further research is needed to elucidate the underlying mechanisms of cardiac manifestations in SHANK3 mutation carriers.

2.
Genes Cells ; 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38964745

RESUMO

An autism-associated gene Shank3 encodes multiple splicing isoforms, Shank3a-f. We have recently reported that Shank3a/b-knockout mice were more susceptible to kainic acid-induced seizures than wild-type mice at 4 weeks of age. Little is known, however, about how the N-terminal and ankyrin repeat domains (NT-Ank) of Shank3a/b regulate multiple molecular signals in the developing brain. To explore the functional roles of Shank3a/b, we performed a mass spectrometry-based proteomic search for proteins interacting with GFP-tagged NT-Ank. In this study, NT-Ank was predicted to form a variety of complexes with a total of 348 proteins, in which RNA-binding (n = 102), spliceosome (n = 22), and ribosome-associated molecules (n = 9) were significantly enriched. Among them, an X-linked intellectual disability-associated protein, Nono, was identified as a NT-Ank-binding protein. Coimmunoprecipitation assays validated the interaction of Shank3 with Nono in the mouse brain. In agreement with these data, the thalamus of Shank3a/b-knockout mice aberrantly expressed splicing isoforms of autism-associated genes, Nrxn1 and Eif4G1, before and after seizures with kainic acid treatment. These data indicate that Shank3 interacts with multiple RNA-binding proteins in the postnatal brain, thereby regulating the homeostatic expression of splicing isoforms for autism-associated genes after birth.

3.
Cell Rep ; 43(7): 114376, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-38900637

RESUMO

Precision of transcription is critical because transcriptional dysregulation is disease causing. Traditional methods of transcriptional profiling are inadequate to elucidate the full spectrum of the transcriptome, particularly for longer and less abundant mRNAs. SHANK3 is one of the most common autism causative genes. Twenty-four Shank3-mutant animal lines have been developed for autism modeling. However, their preclinical validity has been questioned due to incomplete Shank3 transcript structure. We apply an integrative approach combining cDNA-capture and long-read sequencing to profile the SHANK3 transcriptome in humans and mice. We unexpectedly discover an extremely complex SHANK3 transcriptome. Specific SHANK3 transcripts are altered in Shank3-mutant mice and postmortem brain tissues from individuals with autism spectrum disorder. The enhanced SHANK3 transcriptome significantly improves the detection rate for potential deleterious variants from genomics studies of neuropsychiatric disorders. Our findings suggest that both deterministic and stochastic transcription of the genome is associated with SHANK family genes.


Assuntos
Transtorno Autístico , Proteínas do Tecido Nervoso , Animais , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Humanos , Camundongos , Transtorno Autístico/genética , Transcrição Gênica , Proteínas dos Microfilamentos/genética , Proteínas dos Microfilamentos/metabolismo , Transcriptoma/genética , Transtorno do Espectro Autista/genética , Processos Estocásticos , Masculino
4.
Neurosci Bull ; 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38900384

RESUMO

Autism spectrum disorders (ASD) are characterized by social and repetitive abnormalities. Although the ASD mouse model with Shank3b mutations is widely used in ASD research, the behavioral phenotype of this model has not been fully elucidated. Here, a 3D-motion capture system and linear discriminant analysis were used to comprehensively record and analyze the behavioral patterns of male and female Shank3b mutant mice. It was found that both sexes replicated the core and accompanied symptoms of ASD, with significant sex differences. Further, Shank3b heterozygous knockout mice exhibited distinct autistic behaviors, that were significantly different from those those observed in the wild type and homozygous knockout groups. Our findings provide evidence for the inclusion of both sexes and experimental approaches to efficiently characterize heterozygous transgenic models, which are more clinically relevant in autistic studies.

5.
J Neurosci ; 44(28)2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38830758

RESUMO

Shank3 is a synaptic scaffolding protein that assists in tethering and organizing structural proteins and glutamatergic receptors in the postsynaptic density of excitatory synapses. The localization of Shank3 at excitatory synapses and the formation of stable Shank3 complexes is regulated by the binding of zinc to the C-terminal sterile-alpha-motif (SAM) domain of Shank3. Mutations in the SAM domain of Shank3 result in altered synaptic function and morphology, and disruption of zinc in synapses that express Shank3 leads to a reduction of postsynaptic proteins important for synaptic structure and function. This suggests that zinc supports the localization of postsynaptic proteins via Shank3. Many regions of the brain are highly enriched with free zinc inside glutamatergic vesicles at presynaptic terminals. At these synapses, zinc transporter 3 (ZnT3) moves zinc into vesicles where it is co-released with glutamate. Alterations in ZnT3 are implicated in multiple neurodevelopmental disorders, and ZnT3 knock-out (KO) mice-which lack synaptic zinc-show behavioral deficits associated with autism spectrum disorder and schizophrenia. Here we show that male and female ZnT3 KO mice have smaller dendritic spines and miniature excitatory postsynaptic current amplitudes than wildtype (WT) mice in the auditory cortex. Additionally, spine size deficits in ZnT3 KO mice are restricted to synapses that express Shank3. In WT mice, synapses that express both Shank3 and ZnT3 have larger spines compared to synapses that express Shank3 but not ZnT3. Together these findings suggest a mechanism whereby presynaptic ZnT3-dependent zinc supports postsynaptic structure and function via Shank3 in a synapse-specific manner.


Assuntos
Córtex Auditivo , Proteínas de Transporte de Cátions , Espinhas Dendríticas , Proteínas do Tecido Nervoso , Sinapses , Animais , Camundongos , Proteínas do Tecido Nervoso/metabolismo , Proteínas do Tecido Nervoso/genética , Sinapses/metabolismo , Espinhas Dendríticas/metabolismo , Proteínas de Transporte de Cátions/metabolismo , Proteínas de Transporte de Cátions/genética , Córtex Auditivo/metabolismo , Feminino , Masculino , Camundongos Knockout , Proteínas de Transporte/metabolismo , Proteínas de Transporte/genética , Camundongos Endogâmicos C57BL , Proteínas dos Microfilamentos/metabolismo , Proteínas dos Microfilamentos/genética , Potenciais Pós-Sinápticos Excitadores/fisiologia
6.
J Neurodev Disord ; 16(1): 25, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38730350

RESUMO

BACKGROUND: Phelan-McDermid syndrome (PMS) is a genetic neurodevelopmental disorder caused by SHANK3 haploinsufficiency and is associated with an increased risk for seizures. Previous literature indicates that around one third of individuals with PMS also have epilepsy or seizures, with a wide range of types and ages of onset. Investigating the impact of seizures on intellectual and adaptive functioning for PMS is a primary concern for caregivers and is important to understanding the natural history of this syndrome. METHODS: We report on results from 98 individuals enrolled in a prospective, longitudinal study. We detailed seizure frequency, type, and age of onset, and we analyzed seizure occurrence with best estimate IQ, adaptive functioning, clinical features, and genotype. We conducted multiple linear regression analyses to assess the relationship between the presence of seizures and the Vineland Adaptive Behavior Scale, Second Edition (VABS-II) Adaptive Behavior Composite score and the best estimate full-scale IQ. We also performed Chi-square tests to explore associations between seizure prevalence and genetic groupings. Finally, we performed Chi-square tests and t-tests to explore the relationship between seizures and demographic features, features that manifest in infancy, and medical features. RESULTS: Seizures were present in 41% of the cohort, and age of onset was widely variable. The presence of seizures was associated with significantly lower adaptive and intellectual functioning. Genotype-phenotype analyses were discrepant, with no differences in seizure prevalence across genetic classes, but with more genes included in deletions of participants with 22q13 deletions and seizures compared to those with 22q13 deletions and no seizures. No clinical associations were found between the presence of seizures and sex, history of pre- or neonatal complications, early infancy, or medical features. In this cohort, generalized seizures were associated with developmental regression, which is a top concern for PMS caregivers. CONCLUSIONS: These results begin to eludicate correlates of seizures in individuals with PMS and highlight the importance of early seizure management. Importantly, presence of seizures was associated with adaptive and cognitive functioning. A larger cohort might be able to identify additional associations with medical features. Genetic findings suggest an increased capability to realize genotype-phenotype relationships when deletion size is taken into account.


Assuntos
Deleção Cromossômica , Transtornos Cromossômicos , Cromossomos Humanos Par 22 , Convulsões , Humanos , Masculino , Feminino , Convulsões/genética , Transtornos Cromossômicos/complicações , Transtornos Cromossômicos/genética , Transtornos Cromossômicos/fisiopatologia , Cromossomos Humanos Par 22/genética , Criança , Pré-Escolar , Adolescente , Estudos Longitudinais , Adulto Jovem , Adulto , Estudos Prospectivos , Lactente , Proteínas do Tecido Nervoso/genética
7.
Mol Autism ; 15(1): 14, 2024 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-38570876

RESUMO

BACKGROUND: SH3 and multiple ankyrin repeat domains protein 3 (SHANK3) monogenic mutations or deficiency leads to excessive stereotypic behavior and impaired sociability, which frequently occur in autism cases. To date, the underlying mechanisms by which Shank3 mutation or deletion causes autism and the part of the brain in which Shank3 mutation leads to the autistic phenotypes are understudied. The hypothalamus is associated with stereotypic behavior and sociability. p38α, a mediator of inflammatory responses in the brain, has been postulated as a potential gene for certain cases of autism occurrence. However, it is unclear whether hypothalamus and p38α are involved in the development of autism caused by Shank3 mutations or deficiency. METHODS: Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis and immunoblotting were used to assess alternated signaling pathways in the hypothalamus of Shank3 knockout (Shank3-/-) mice. Home-Cage real-time monitoring test was performed to record stereotypic behavior and three-chamber test was used to monitor the sociability of mice. Adeno-associated viruses 9 (AAV9) were used to express p38α in the arcuate nucleus (ARC) or agouti-related peptide (AgRP) neurons. D176A and F327S mutations expressed constitutively active p38α. T180A and Y182F mutations expressed inactive p38α. RESULTS: We found that Shank3 controls stereotypic behavior and sociability by regulating p38α activity in AgRP neurons. Phosphorylated p38 level in hypothalamus is significantly enhanced in Shank3-/- mice. Consistently, overexpression of p38α in ARC or AgRP neurons elicits excessive stereotypic behavior and impairs sociability in wild-type (WT) mice. Notably, activated p38α in AgRP neurons increases stereotypic behavior and impairs sociability. Conversely, inactivated p38α in AgRP neurons significantly ameliorates autistic behaviors of Shank3-/- mice. In contrast, activated p38α in pro-opiomelanocortin (POMC) neurons does not affect stereotypic behavior and sociability in mice. LIMITATIONS: We demonstrated that SHANK3 regulates the phosphorylated p38 level in the hypothalamus and inactivated p38α in AgRP neurons significantly ameliorates autistic behaviors of Shank3-/- mice. However, we did not clarify the biochemical mechanism of SHANK3 inhibiting p38α in AgRP neurons. CONCLUSIONS: These results demonstrate that the Shank3 deficiency caused autistic-like behaviors by activating p38α signaling in AgRP neurons, suggesting that p38α signaling in AgRP neurons is a potential therapeutic target for Shank3 mutant-related autism.


Assuntos
Transtorno Autístico , Animais , Camundongos , Proteína Relacionada com Agouti/genética , Proteína Relacionada com Agouti/metabolismo , Núcleo Arqueado do Hipotálamo/metabolismo , Transtorno Autístico/genética , Transtorno Autístico/metabolismo , Hipotálamo/metabolismo , Proteínas dos Microfilamentos/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Neurônios/metabolismo , Proteína Quinase 14 Ativada por Mitógeno/metabolismo
8.
Cell Rep Med ; 5(5): 101534, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38670100

RESUMO

Thalamocortical (TC) circuits are essential for sensory information processing. Clinical and preclinical studies of autism spectrum disorders (ASDs) have highlighted abnormal thalamic development and TC circuit dysfunction. However, mechanistic understanding of how TC dysfunction contributes to behavioral abnormalities in ASDs is limited. Here, our study on a Shank3 mouse model of ASD reveals TC neuron hyperexcitability with excessive burst firing and a temporal mismatch relationship with slow cortical rhythms during sleep. These TC electrophysiological alterations and the consequent sensory hypersensitivity and sleep fragmentation in Shank3 mutant mice are causally linked to HCN2 channelopathy. Restoring HCN2 function early in postnatal development via a viral approach or lamotrigine (LTG) ameliorates sensory and sleep problems. A retrospective case series also supports beneficial effects of LTG treatment on sensory behavior in ASD patients. Our study identifies a clinically relevant circuit mechanism and proposes a targeted molecular intervention for ASD-related behavioral impairments.


Assuntos
Transtorno do Espectro Autista , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização , Proteínas do Tecido Nervoso , Tálamo , Animais , Tálamo/metabolismo , Tálamo/patologia , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/metabolismo , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/genética , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Camundongos , Transtorno do Espectro Autista/genética , Transtorno do Espectro Autista/metabolismo , Transtorno do Espectro Autista/fisiopatologia , Transtorno do Espectro Autista/patologia , Lamotrigina/farmacologia , Córtex Cerebral/metabolismo , Córtex Cerebral/patologia , Proteínas dos Microfilamentos/genética , Proteínas dos Microfilamentos/metabolismo , Canalopatias/genética , Canalopatias/metabolismo , Canalopatias/patologia , Humanos , Modelos Animais de Doenças , Masculino , Neurônios/metabolismo , Feminino , Camundongos Endogâmicos C57BL , Mutação/genética , Sono/fisiologia , Sono/efeitos dos fármacos , Sono/genética , Canais de Potássio
9.
Orphanet J Rare Dis ; 19(1): 134, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38532502

RESUMO

BACKGROUND: Phelan-McDermid syndrome (PMS) is a neurodevelopmental disorder caused by SHANK3 haploinsufficiency with clinical manifestations that can be devastating and profoundly affect quality of life. RESULTS: The Externally Led Patient-Focused Drug Development (EL-PFDD) meeting was an opportunity for families affected by PMS to share with the Food and Drug Administration (FDA) how symptoms impact their lives and how treatments could be most meaningful. The Voice of the Patient report serves as a summary of this meeting to influence upcoming drug development and clinical trials. The purpose of this report is to provide a clinical perspective on the results of the EL-PFDD meeting to amplify the voice of these caregivers to the scientific community. CONCLUSIONS: Caregivers prioritize an improved quality of life for their loved ones characterized by improved cognitive function, improved communication, increased independence, and reduced risk of regression. With these caregiver priorities in mind, this report provides the FDA and the scientific community with a clear understanding of which aspects of PMS should influence the development of future therapeutics.


Assuntos
Cuidadores , Transtornos Cromossômicos , Humanos , Qualidade de Vida , Transtornos Cromossômicos/genética , Deleção Cromossômica , Cromossomos Humanos Par 22
11.
Front Psychiatry ; 15: 1304300, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38352654

RESUMO

Autism spectrum disorders represent a diverse etiological spectrum that converge on a syndrome characterized by discrepant deficits in developmental domains often highlighted by concerns in socialization, sensory integration, and autonomic functioning. Importantly, the incidence and prevalence of autism spectrum disorders have seen sharp increases since the syndrome was first described in the 1940s. The wide etiological spectrum and rising number of individuals being diagnosed with the condition lend urgency to capturing a more nuanced understanding of the pathogenic mechanisms underlying the autism spectrum disorders. The current review seeks to understand how the disruption of AMPA receptor (AMPAr)-mediated neurotransmission in the cerebro-cerebellar circuit, particularly in genetic autism related to SHANK3 or SYNGAP1 protein dysfunction function and autism associated with in utero exposure to the anti-seizure medications valproic acid and topiramate, may contribute to the disease presentation. Initially, a discussion contextualizing AMPAr signaling in the cerebro-cerebellar circuitry and microstructural circuit considerations is offered. Subsequently, a detailed review of the literature implicating mutations or deletions of SHANK3 and SYNGAP1 in disrupted AMPAr signaling reveals how bidirectional pathogenic modulation of this key circuit may contribute to autism. Finally, how pharmacological exposure may interact with this pathway, via increased risk of autism diagnosis with valproic acid and topiramate exposure and potential treatment of autism using AMPAr modulator perampanel, is discussed. Through the lens of the review, we will offer speculation on how neuromodulation may be used as a rational adjunct to therapy. Together, the present review seeks to synthesize the disparate considerations of circuit understanding, genetic etiology, and pharmacological modulation to understand the mechanistic interaction of this important and complex disorder.

12.
ACS Chem Neurosci ; 15(5): 1026-1041, 2024 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-38387042

RESUMO

In consideration of the limited number of FDA-approved drugs for autism spectrum disorder (ASD), significant efforts have been devoted to identifying novel drug candidates. Among these, 5-HT7R modulators have garnered considerable attention due to their potential in alleviating autism-like behaviors in ASD animal models. In this study, we designed and synthesized biphenyl-3-ylmethylpyrrolidines 3 and biphenyl-3-yl-dihydroimidazoles 4 as 5-HT7R modulators. Through extensive biological tests of 3 and 4 in G protein and ß-arrestin signaling pathways of 5-HT7R, it was determined that 2-(2'-methoxy-[1,1'-biphenyl]-3-yl)-4,5-dihydro-1H-imidazole 4h acted as a 5-HT7R antagonist in both signaling pathways. In in vivo study with Shank3-/- transgenic (TG) mice, the self-grooming behavior test was performed with 4h, resulting in a significant reduction in the duration of self-grooming. In addition, an immunohistochemical experiment with 4h restored reduced neurogenesis in Shank3-/- TG mice, which is confirmed by the quantification of doublecortin (DCX) positive neurons, suggesting the promising therapeutic potential of 4h.


Assuntos
Transtorno do Espectro Autista , Compostos de Bifenilo , Animais , Camundongos , Serotonina , beta-Arrestinas , Transdução de Sinais , Camundongos Transgênicos , Proteínas de Ligação ao GTP , Modelos Animais de Doenças , Proteínas dos Microfilamentos , Proteínas do Tecido Nervoso
14.
Mol Autism ; 15(1): 9, 2024 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-38297387

RESUMO

BACKGROUND: SHANK3 gene is a highly replicated causative gene for autism spectrum disorder and has been well characterized in multiple Shank3 mutant rodent models. When compared to rodents, domestic dogs are excellent animal models in which to study social cognition as they closely interact with humans and exhibit similar social behaviors. Using CRISPR/Cas9 editing, we recently generated a dog model carrying Shank3 mutations, which displayed a spectrum of autism-like behaviors, such as social impairment and heightened anxiety. However, the neural mechanism underlying these abnormal behaviors remains to be identified. METHODS: We used Shank3 mutant dog models to examine possible relationships between Shank3 mutations and neuronal dysfunction. We studied electrophysiological properties and the synaptic transmission of pyramidal neurons from acute brain slices of the prefrontal cortex (PFC). We also examined dendrite elaboration and dendritic spine morphology in the PFC using biocytin staining and Golgi staining. We analyzed the postsynaptic density using electron microscopy. RESULTS: We established a protocol for the electrophysiological recording of canine brain slices and revealed that excitatory synaptic transmission onto PFC layer 2/3 pyramidal neurons in Shank3 heterozygote dogs was impaired, and this was accompanied by reduced dendrite complexity and spine density when compared to wild-type dogs. Postsynaptic density structures were also impaired in Shank3 mutants; however, pyramidal neurons exhibited hyperexcitability. LIMITATIONS: Causal links between impaired PFC pyramidal neuron function and behavioral alterations remain unclear. Further experiments such as manipulating PFC neuronal activity or restoring synaptic transmission in Shank3 mutant dogs are required to assess PFC roles in altered social behaviors. CONCLUSIONS: Our study demonstrated the feasibility of using canine brain slices as a model system to study neuronal circuitry and disease. Shank3 haploinsufficiency causes morphological and functional abnormalities in PFC pyramidal neurons, supporting the notion that Shank3 mutant dogs are new and valid animal models for autism research.


Assuntos
Transtorno do Espectro Autista , Transtorno Autístico , Humanos , Cães , Animais , Transtorno Autístico/genética , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Células Piramidais/metabolismo , Transmissão Sináptica/genética , Córtex Pré-Frontal , Ansiedade , Modelos Animais de Doenças
15.
Neurochem Res ; 49(4): 1008-1016, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38183586

RESUMO

Dysfunctional sensory systems, including altered olfactory function, have recently been reported in patients with autism spectrum disorder (ASD). Disturbances in olfactory processing can potentially result from gamma-aminobutyric acid (GABA)ergic synaptic abnormalities. The specific molecular mechanism by which GABAergic transmission affects the olfactory system in ASD remains unclear. Therefore, the present study aimed to evaluate selected components of the GABAergic system in olfactory brain regions and primary olfactory neurons isolated from Shank3-deficient (-/-) mice, which are known for their autism-like behavioral phenotype. Shank3 deficiency led to a significant reduction in GEPHYRIN/GABAAR colocalization in the piriform cortex and in primary neurons isolated from the olfactory bulb, while no change of cell morphology was observed. Gene expression analysis revealed a significant reduction in the mRNA levels of GABA transporter 1 in the olfactory bulb and Collybistin in the frontal cortex of the Shank3-/- mice compared to WT mice. A similar trend of reduction was observed in the expression of Somatostatin in the frontal cortex of Shank3-/- mice. The analysis of the expression of other GABAergic neurotransmission markers did not yield statistically significant results. Overall, it appears that Shank3 deficiency leads to changes in GABAergic synapses in the brain regions that are important for olfactory information processing, which may represent basis for understanding functional impairments in autism.


Assuntos
Transtorno do Espectro Autista , Córtex Olfatório , Humanos , Camundongos , Animais , Transtorno do Espectro Autista/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Neurônios/metabolismo , Sinapses/metabolismo , Ácido gama-Aminobutírico/metabolismo , Córtex Olfatório/metabolismo , Proteínas dos Microfilamentos/metabolismo
16.
Neuroscience ; 540: 27-37, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38218401

RESUMO

The expression levels of SHANK3 are associated with autism spectrum disorder (ASD). The dynamic changes in SHANK3 expression during different stages of brain development may impact the progression of ASD. However, no studies or detailed analyses exploring the upstream mechanisms that regulate SHANK3 expression have been reported. In this study, we employed immunofluorescence to examine the expression of SHANK3 in brain organoids at various stages. Our results revealed elevated levels of SHANK3 expression in brain-like organoids at Day 60. Additionally, we utilized bioinformatics software to predict and analyze the SHANK3 gene's transcription start site. Through the dual luciferase reporter gene technique, we identified core transcription elements within the SHANK3 promoter. Site-directed mutations were used to identify specific transcription sites of SHANK3. To determine the physical binding of potential transcription factors to the SHANK3 promoter, we employed electrophoretic mobility shift assay (EMSA) and chromatin immunoprecipitation (ChIP). Our findings demonstrated that the transcription factor EGR1 regulates SHANK3 expression by binding to the transcription site of the SHANK3 promoter. Although this study did not investigate the pathological phenotypes of human brain organoids or animal model brains with EGR1 deficiency, which could potentially substantiate the findings observed for SHANK3 mutants, our findings provide valuable insights into the relationship between the transcription factor, EGR1, and SHANK3. This study contributes to the molecular understanding of ASD and offers potential foundations for precise targeted therapy.


Assuntos
Transtorno do Espectro Autista , Animais , Humanos , Transtorno do Espectro Autista/genética , Transtorno do Espectro Autista/patologia , Regulação da Expressão Gênica , Fatores de Transcrição/metabolismo , Regiões Promotoras Genéticas , Encéfalo/metabolismo , Proteína 1 de Resposta de Crescimento Precoce/genética , Proteína 1 de Resposta de Crescimento Precoce/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo
17.
Pediatr Nephrol ; 39(3): 749-760, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37733098

RESUMO

BACKGROUND: Phelan-McDermid syndrome (PMS) is a rare genetic disorder caused by SHANK3 pathogenic variants or chromosomal rearrangements affecting the chromosome 22q13 region. Previous research found that kidney disorders, primarily congenital anomalies of the kidney and urinary tract, are common in people with PMS, yet research into candidate genes has been hampered by small study sizes and lack of attention to these problems. METHODS: We used a cohort of 357 people from the Phelan-McDermid Syndrome Foundation International Registry to investigate the prevalence of kidney disorders in PMS using a cross-sectional design and to identify 22q13 genes contributing to these disorders. RESULTS: Kidney disorders reported included vesicoureteral reflux (n = 37), hydronephrosis (n = 36), dysplastic kidneys (n = 19), increased kidney size (n = 19), polycystic kidneys (15 cases), and kidney stones (n = 4). Out of 315 subjects with a 22q13 deletion, 101 (32%) had at least one kidney disorder, while only one out of 42 (2%) individuals with a SHANK3 pathogenic variant had a kidney disorder (increased kidney size). We identified two genomic regions that were significantly associated with having a kidney disorder with the peak associations observed near positions approximately 5 Mb and 400 Kb from the telomere. CONCLUSIONS: The candidate genes for kidney disorders include FBLN1, WNT7B, UPK3A, CELSR1, and PLXNB2. This study demonstrates the utility of patient registries for uncovering genetic contributions to rare diseases. Future work should focus on functional studies for these genes to assess their potential pathogenic contribution to the different subsets of kidney disorders.


Assuntos
Transtornos Cromossômicos , Doenças Renais Policísticas , Humanos , Estudos Transversais , Proteínas do Tecido Nervoso/genética , Transtornos Cromossômicos/epidemiologia , Transtornos Cromossômicos/genética , Transtornos Cromossômicos/patologia , Deleção Cromossômica , Rim/patologia , Doenças Renais Policísticas/epidemiologia , Doenças Renais Policísticas/genética , Cromossomos Humanos Par 22
18.
Redox Biol ; 69: 102983, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38064762

RESUMO

Shank3, a key molecule related to the development and deterioration of autism, has recently been found to downregulate in the murine brain after ischemia/reperfusion (I/R). Despite this discovery, however, its effects on neuronal injury and the mechanism underlying the effects remain to be clarified. To address this, in this study, based on genetically modified mice models, we revealed that the expression of Shank3 showed a time-dependent change in murine hippocampal neurons after I/R, and that conditional knockout (cko) of Shank3 in neurons resulted in aggravated neuronal injuries. The protective effects of Shank3 against oxidative stress and inflammation after I/R were achieved through direct binding STIM1 and subsequent proteasome-mediated degradation of STIM1. The STIM1 downregulation induced the phosphorylation of downstream Nrf2 Ser40, which subsequently translocated to the nucleus, and further increased the expression of antioxidant genes such as NQO1 and HO-1 in HT22 cells. In vivo, the study has further confirmed that double knockout of Shank3 and Stim1 alleviated oxidative stress and inflammation after I/R in Shank3cko mice. In conclusion, the present study has demonstrated that Shank3 interacts with STIM1 and inhibits post-I/R neuronal oxidative stress and inflammatory response via the Nrf2 pathway. This interaction can potentially contribute to the development of a promising method for I/R treatment.


Assuntos
Isquemia Encefálica , Traumatismo por Reperfusão , Camundongos , Animais , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Traumatismo por Reperfusão/genética , Traumatismo por Reperfusão/metabolismo , Estresse Oxidativo , Isquemia Encefálica/genética , Isquemia Encefálica/metabolismo , Inflamação/genética , Inflamação/metabolismo , Reperfusão , Neurônios/metabolismo , Apoptose , Proteínas dos Microfilamentos/metabolismo , Proteínas dos Microfilamentos/farmacologia , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo
19.
bioRxiv ; 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-38106179

RESUMO

Social behaviors are crucial for human connection and belonging, often impacted in conditions like Autism Spectrum Disorder (ASD). The mesoaccumbens pathway (VTA and NAc) plays a pivotal role in social behavior and is implicated in ASD. However, the impact of ASD-related mutations on social reward processing remains insufficiently explored. This study focuses on the Shank3 mutation, associated with a rare genetic condition and linked to ASD, examining its influence on the mesoaccumbens pathway during behavior, using the Shank3-deficient rat model. Our findings indicate that Shank3-deficient rats exhibit atypical social interactions and have difficulty adjusting behavior based on reward values, associated with modified neuronal activity of VTA dopaminergic and GABAergic neurons and reduced dopamine release in the NAc. Moreover, we demonstrate that manipulating VTA neuronal activity can normalize this behavior, providing insights into the effects of Shank3 mutations on social reward and behavior, and identify a potential neural pathway for intervention.

20.
Mol Neurobiol ; 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37966684

RESUMO

Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by social disorder and stereotypical behavior, and its incidence rate is increasing yearly. It is considered that acritical period for the prognosis of young children with ASD exists, thus early treatment is crucial. Swimming, due to its comforting effect, is often used to induce enthusiasm in young children for completing activities and has a good effect in the treatment of ASD, but the effective path of swimming has yet to be reported. The intestinal microbiota of ASD patients and animal models has been reported to be different from that of healthy controls, and these changes may affect the brain environment. Therefore, whether the intestinal microbiota is involved in the treatment of ASD by early swimming is our concern. In this study, we used 8-day old Shank3 gene knockout rats with 8 weeks of early load swimming training and conducted behavioral, small intestine morphology, and intestinal content sequencing after training. The results showed that early load swimming significantly reduced the stereotyped and anxious behaviors of Shank3-/- rats, increased their muscle strength, increased the length of intestinal villi and the width of the muscular layer after Shank3 knockout, and affected the abundance of intestinal microorganisms. The abundances with statistical significance were Lactobacillus, Lachnospiraceae, and Alloprevotella. To further confirm the role of intestinal microorganisms in it, we designed a 14-day intestinal stool transplantation experiment. Fecal microbiota transplantation demonstrated that load swimming can significantly reduce the anxiety behavior of Shank3 rats, increase their muscle strength, change the structure of the small intestine, and affect the abundance of intestinal contents. The abundance of Epsilonbateraeota, Prevotella, and Bacteroides significantly changed after transplantation. Our findings confirm the possibility of early load swimming therapy for individuals with ASD and explain that the intestinal microbiota is a key pathway for early exercise therapy for patients with ASD.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA