RESUMO
Microbial contamination is the leading cause of food spoilage and food-borne disease. Here, we developed a multifunctional surface based on polylactic acid (PLA) bioplastic with antifouling and antibacterial properties via a facile dual-coating approach. The surface was designed with hierarchical micro/nano-scale roughness and low surface energy. Bactericidal agent polyhexamethylene guanidine hydrochloride (PHMG) was incorporated to endow the film with bactericidal activity. The film had good superhydrophobic, antifouling and antibacterial performance, with a water contact angle of 154.3°, antibacterial efficiency against E. coli and S. aureus of 99.9 % and 99.6 %, respectively, and biofilm inhibition against E. coli and S. aureus of 63.5 % and 68.9 %, respectively. Synergistic effects of antibacterial adhesion and contact killing of bacteria contributed to the significant antibacterial performance of the film. The biobased biodegradable film was highly effective in preventing microbial growth when applied as antibacterial food packaging for poultry product, extending the shelf life of fresh chicken breast up to eight days.
Assuntos
Antibacterianos , Galinhas , Escherichia coli , Embalagem de Alimentos , Conservação de Alimentos , Carne , Poliésteres , Staphylococcus aureus , Embalagem de Alimentos/instrumentação , Poliésteres/química , Poliésteres/farmacologia , Animais , Antibacterianos/farmacologia , Antibacterianos/química , Escherichia coli/efeitos dos fármacos , Escherichia coli/crescimento & desenvolvimento , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/crescimento & desenvolvimento , Conservação de Alimentos/métodos , Conservação de Alimentos/instrumentação , Carne/análise , Carne/microbiologia , Biofilmes/efeitos dos fármacosRESUMO
Electron beam (EB) technology typically consists of high-energy electron streams produced by a linear accelerator. Although promising, the use of EB irradiation as a technique to delay ripening and prevent spoilage in tomatoes has not been extensively investigated. In this study, the effectiveness of EB irradiation in prolonging the shelf life of tomatoes postharvest was investigated. The results indicated that EB irradiation successfully reduced microbial contamination and decay, preserved key quality attributes (such as total soluble solids, titratable acidity, pH, and firmness), and significantly minimized weight loss. Notably, the treatment delayed the biosynthesis of lycopene, a key indicator of ripening, without adversely affecting phenolic content and antioxidant activity, which remained consistent regardless of irradiation. Additionally, different methods for detecting irradiation were evaluated. Thermoluminescence analysis proved to be the most dependable technique, especially for doses exceeding 600 Gy, due to its high sensitivity and specificity. In contrast, photostimulated luminescence and electron spin resonance analyses showed limitations in accurately identifying the irradiation status of foods with high moisture content, such as tomatoes. This study confirms that EB irradiation, while maintaining postharvest quality, extends the shelf life of tomatoes by 5-10 days, suggesting its potential for commercial application in food preservation.
RESUMO
Pelargonium plants are very popular and well-known for their essential oils (EOs), which are used for medicinal purposes and in food. This study focused on the EO of Pelargonium odoratissimum. First, its composition and antioxidant and antimicrobial activity were evaluated, and finally, its efficacy as a natural preservative in ground beef was tested. The main EO constituents were citronellol (40.0%), nerol (15.3%), and citronellyl formate (12.6%). The antibacterial activity of POEO showed that Enterococcus faecalis ATCC 29212 was the most susceptible strain compared to the other eight strains tested. The antioxidant activity, as measured by the DPPH assay, showed a dose-dependent effect with an IC50 comparable to the standard used, gallic acid. Aerobic plate count, psychotropic bacteria, and Enterobacteriaceae, including Salmonella, were reduced by the addition of Pelargonium odoratissimum essential oils. The oxidative stability was significantly improved compared to the untreated sample. Additionally, the results for metmyoglobin demonstrated a notable preservative effect on sensory properties, including appearance, odor, color, and overall acceptability. The ability to discriminate between all samples and correlate protein and lipid oxidation processes, microbiological characteristics, and sensory measurements was made possible by principal component analysis and heat maps. This research shows the potential benefits of using POEO in the preservation of ground beef by effectively extending shelf life and improving product safety.
RESUMO
In this research, the Aronia melanocarpa pomace polyphenols (AMPPs) were extracted and purified. The purified AMPPs contained the most abundant chlorogenic acid (CGA) at 36.91 mg/100 mg, followed by chrysin at 8.61 mg/100 mg. At a concentration of 60 µg/mL, the purified AMPPs exhibited stronger scavenging activity against: DPPH radical, hydroxyl radical, ABTSâ+, and also showed greater Fe3+ reducing activity than the VC control group. To solve the problem of easy spoilage of chilled meat during storage, gelatin edible coatings containing Aronia melanocarpa pomace polyphenols, referred to as G/AMPPs, were investigated for their effect on the chilled storage of pork. At a 1:1 volume ratio of 1 % polyphenol solution to 3 % gelatin solution, the G/AMPPs coating effectively curbed pH, TVB-N, TVC, drip loss, and b* value increases in chilled pork, while delaying declines in hardness, adhesion, a* value and L* value; The TVB-N content and TVC values demonstrated that the G/AMPPs coating significantly extended the shelf life of chilled pork by up to 15 days. The results showed that G/AMPPs had good preservative, antibacterial and antioxidant effects on chilled pork and thus development of G/AMPPs based coating shows appeared to offer promise for meat preservation.
RESUMO
This research investigates the effects of using edible gel coatings and bio-based packaging materials on extending the shelf life of cherry tomatoes. Two edible gel coatings (guar gum and guar gum +5% of a lemon (Citrus limon (L.) Osbeck pomace extract obtained in the research laboratory) were applied on cherry tomatoes, then they were packaged in bio-based materials (cellulose tray + PLA lid). Guar gum, glycerol, sorbitol, extra virgin olive oil, and tween 20 were used in coating formulation. Uncoated tomatoes packed in bio-based materials and conventional plastic (PET trays + lid) were tested as a control. Samples were stored for 45 days at 20 °C and their quality parameters were evaluated. Coated tomatoes maintained firmness and weight, and the enriched coated samples showed a significant increase in phenol content, derived from the antioxidant extract. Samples packed in PET showed a sensory unacceptability (<4.5) after 45 days correlated with a greater decline in firmness (from 10.51 to 5.96 N) and weight loss (from 7.06 to 11.02%). Therefore, edible gel coating and bio-based packaging proved to be effective in maintaining the overall quality of cherry tomatoes for 45 days, offering a promising approach to reduce plastic polymer use and food waste.
RESUMO
This study aimed to assess the impact of an edible coating holding within chia seed gum (CSG) and Rosa canina L. extract (RCE) nanoemulsions (10%, 20%, and 40% w/w) on the oxidation, microbial load, and sensory characteristics of burgers in a 90-day frozen storage period. Based on the findings, the active CSG coatings showed remarkable antioxidant and antimicrobial activities. By increasing the level of RCE nanoemulsions, the functional activity of coatings significantly increased (P < 0.05). Upon the termination of the storage period, the lowest microbial load (i.e., a decrease of 0.5-2 log CFU/g in the number of different bacteria compared to the control) and oxidation stability were observed in burgers coated with a CSG solution containing 40% RCE nanoemulsions. This burger also showed the highest sensory acceptance on the last day. In conclusion, it is proposed to use the active coating produced in this study to maintain meat products' quality and safety and increase their shelf-life.
RESUMO
Challenges in global food supply chains include preserving postharvest quality and extending the shelf life of fruits and vegetables. The utilization of edible coatings (ECs) combined with biocontrol agents (BCAs) represents a promising strategy to enhance the postharvest quality and shelf life of these commodities. This review analyzes the most recent developments in EC technologies and their combination with BCAs, highlighting their synergistic effects on postharvest pathogen control and quality maintenance. Various types of ECs, including polysaccharides, proteins, and lipids, are discussed alongside coating fundamentals and the mechanisms through which BCAs contribute to pathogen suppression. The review also highlights the efficacy of these combined approaches in maintaining the physicochemical properties, sensory attributes, and nutritional value of fruits. Key challenges such as regulatory requirements, consumer acceptance, and the scalability of these technologies are addressed. Future research directions are proposed to optimize formulations, improve application techniques, and enhance the overall efficacy of these biocomposite coatings and multifunctional coatings. By synthesizing current knowledge and identifying gaps, this review provides a comprehensive understanding of the potential and limitations of using ECs and BCAs for sustainable postharvest management.
RESUMO
Strawberry fruits are popular all over the world due to their rich organoleptic properties and enormous health benefits. However, it is highly susceptible to postharvest spoilage due to various factors, including moisture loss, nutrient oxidation, and microbial spoilage. Recently, various researchers have studied the effect of chitosan-based flexible films and surface coatings on the shelf life of strawberries. Despite various reviews providing general information on the effects of chitosan-based films and coatings on various food products, no review has focused solely on their effects on postharvest preservation and the shelf life of strawberries. The purpose of this review is to summarize the current research on chitosan-based formulations for extending the shelf life of strawberries. Chitosan, a cationic carbohydrate polymer, possesses excellent properties such as film formation, mechanical strength, non-toxicity, biodegradability, edibility, UV-blocking ability, antioxidant activity, and antibacterial functionality, justifying its potential as packaging/coating material for fresh agricultural products, including strawberries. This review covers the various factors responsible for strawberry spoilage and the properties of chitosan that help counteract these factors. Additionally, the advantages of chitosan-based preservation technology compared to existing strawberry preservation methods were explained, efficiency was evaluated, and future research directions were suggested.
Assuntos
Quitosana , Embalagem de Alimentos , Conservação de Alimentos , Fragaria , Fragaria/microbiologia , Quitosana/química , Quitosana/farmacologia , Embalagem de Alimentos/métodos , Conservação de Alimentos/métodos , Frutas/química , Antioxidantes/química , Antioxidantes/farmacologiaRESUMO
An advanced biodegradable packaging film with antimicrobial and fresh-maintaining functions was constructed by incorporating berberine and L-arginine into the starch/polyvinyl alcohol (PVA) film matrix. The film was endowed with a dual antibacterial capacity thanks to the intrinsic antibacterial capability of berberine and cascaded photodynamic sterilization. The aggregated berberine presents an excellent photodynamic activity to generate reactive oxygen species (ROS), which further triggers the NO release from L-arginine. Under the synergetic action of ROS and NO, the as-prepared film not only has an antibacterial efficiency of over 99 % against both S. aureus and E. coli but also delays fruit ripening through antagonistic effects on ethylene to extend the shelf life of food. Meanwhile, the as-prepared film presents UV-shielding properties, thermal stability, and considerable mechanical properties. Specifically, the packaging film exhibits good biocompatibility and is biodegradable, with a degradation rate of 56 % within 16 days, which has great potential for improving food safety and environmental events.
Assuntos
Embalagem de Alimentos , Conservação de Alimentos , Álcool de Polivinil , Amido , Esterilização , Álcool de Polivinil/química , Amido/química , Conservação de Alimentos/métodos , Esterilização/métodos , Embalagem de Alimentos/métodos , Antibacterianos/farmacologia , Antibacterianos/química , Produtos Biológicos/química , Produtos Biológicos/farmacologia , Escherichia coli/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Berberina/química , Berberina/farmacologiaRESUMO
The quality profile, extraction yield, and fermentation chemistry of palm sap depend on various factors such as extraction technique, weather conditions, and preservation methods. This review aims to provide a detailed overview of palm sap extraction techniques and the methods for its preservation. The compositional analysis of palm sap, including physical and chemical parameters such as sugar content, acidity, and mineral composition, is discussed thoroughly. The role of microorganisms in fermentation and the effects of various influencing factors are also critically examined. Additionally, this review evaluates different preservation methods, including thermal processes, refrigeration, and electrical techniques, highlighting their effectiveness in extending the shelf life of palm sap. The review further explores the emerging impact of nanotechnology on palm sap preservation, offering insights into the latest industry challenges, developments, and future prospects. By presenting these findings, this review aims to enhance the scientific understanding of palm sap and stimulate additional research and innovation in the field, paving the way for improved production practices and product quality.
RESUMO
Quality and safety are one of the main concerns of the European Union in food preservation. Using chemical additives extends the shelf-life of fresh foods but raises consumer's concerns about the potential long-term carcinogenic effects. Using natural substances derived from agro-industrial by-products, which have significant antimicrobial and antioxidant activities, could extend the shelf-life of fresh foods such as meat. Furthermore, they can provide nutritional improvements without modifying organoleptic properties. This study analyzes the antimicrobial activity of pomegranate peel extract (PPE) and the antioxidant activity of olive leaf extract (OLE), added at concentrations of 10 mg g-1 and 0.25 mg g-1, respectively, to minced poultry and rabbit meat. PPE exhibited in vitro antimicrobial activity against foodborne pathogens starting at 10 mg/well. PPE and OLE determined a reduction in colony count over a storage period of 6 days at 4 °C. Additionally, the combination of PPE and OLE showed antioxidant effects, preserving lipid oxidation and maintaining pH levels. The obtained results demonstrate that PPE and OLE can be recommended as food additives to preserve the quality and extend the shelf-life of meat products.
RESUMO
The food industry is increasingly focused on maintaining the quality and safety of food products as consumers are becoming more health conscious and seeking fresh, minimally processed foods. However, deterioration and spoilage caused by foodborne pathogens continue to pose significant challenges, leading to decreased shelf life and quality. To overcome this issue, the food industry and researchers are exploring new approaches to prevent microbial growth in food, while preserving its nutritional value and safety. Active packaging, including antimicrobial packaging, has gained considerable attention among current food packaging methods owing to the wide range of materials used, application methods, and their ability to protect various food products. Both direct and indirect methods can be used to improve food safety and quality by incorporating antimicrobial compounds into the food packaging materials. This comprehensive review focuses on natural and synthetic antimicrobial substances and polymer-based films, and their mechanisms and applications in packaging systems. The properties of these materials are compared, and the persistent challenges in the field of active packaging are emphasized. Specifically, there is a need to achieve the controlled release of antimicrobial agents and develop active packaging materials that possess the necessary mechanical and barrier properties, as well as other characteristics essential for ensuring food protection and safety, particularly bio-based packaging materials.
RESUMO
This study investigates natural-based blends of glutinous rice starch (GRS) and chitosan (CS), varying their molar composition (0:100, 30:70, 50:50, 70:30, and 100:0) to explore their interaction dynamics. Our findings illustrate the versatility of these blends in solution and film forms, offering applications across diverse fields. Our objective is to understand their impact on coatings designed to extend the post-harvest shelf life of mangoes. Results reveal that increasing chitosan content in GRS/CS blends enhances mechanical strength, hydrophobicity, and resistance to Colletotrichum gloeosporioides infection, a common cause of mango anthracnose. These properties overcome limitations of GRS films. Advanced techniques, including FTIR analysis and stereo imaging, confirmed robust interaction between GRS/CS blend films and mango cuticles, improving coverage with higher chitosan content. This comprehensive coverage reduces mango dehydration and respiration, thereby preserving quality and extending shelf life. Coating with a GRS/CS blend containing at least 50% chitosan effectively prevents disease progression and maintains quality over a 10-day storage period, while uncoated mangoes fail to meet quality standards within 2 days. Moreover, increasing the starch proportion in GRS/CS blends enhances film density, optical properties, and reduces reliance on acidic solvents, thereby minimizing undesirable changes in product aroma and taste.
RESUMO
Conventional food preservation methods such as heat treatment, irradiation, chemical treatment, refrigeration, and coating have various disadvantages, like loss of food quality, nutrition, and cost-effectiveness. Accordingly, cold plasma is one of the new technologies for food processing and has played an important role in preventing food spoilage. Specifically, in-package cold plasma has become a modern trend to decontaminate, process, and package food simultaneously. This strategy has proven successful in processing various fresh food ingredients, including spinach, fruits, vegetables, and meat. In particular, cold plasma treatment within the package reduces the risk of post-processing contamination. Cryoplasm decontamination within packaging has been reported to reduce significantly the microbial load of many foods' spoilage-causing pathogens. However, studies are needed to focus more on the effects of in-package treatments on endogenous enzyme activity, pest control, and removal of toxic pesticide residues. In this review, we comprehensively evaluated the efficacy of in-package low-temperature plasma treatment to extend the shelf life of various foods. The mechanisms by which cold plasma interacts with food were investigated, emphasizing its effects on pathogen reduction, spoilage mitigation, and surface modification. The review also critically assessed the effects of the treatments on food quality, regulatory considerations, and their potential as viable technologies to improve food safety and packaging life. In-package cold plasma treatment could revolutionize food storage when combined with other sophisticated technologies such as nanotechnology.
Assuntos
Embalagem de Alimentos , Gases em Plasma , Embalagem de Alimentos/métodos , Gases em Plasma/farmacologia , Armazenamento de Alimentos/métodos , Conservação de Alimentos/métodos , Manipulação de AlimentosRESUMO
One of the most consumed foods is milk and milk products, and guaranteeing the suitability of these products is one of the major concerns in our society. This has led to the development of numerous sensors to enhance quality controls in the food chain. However, this is not a simple task, because it is necessary to establish the parameters to be analyzed and often, not only one compound is responsible for food contamination or degradation. To attempt to address this problem, a multiplex analysis together with a non-directed (e.g., general parameters such as pH) analysis are the most relevant alternatives to identifying the safety of dairy food. In recent years, the use of new technologies in the development of devices/platforms with optical or electrochemical signals has accelerated and intensified the pursuit of systems that provide a simple, rapid, cost-effective, and/or multiparametric response to the presence of contaminants, markers of various diseases, and/or indicators of safety levels. However, achieving the simultaneous determination of two or more analytes in situ, in a single measurement, and in real time, using only one working 'real sensor', remains one of the most daunting challenges, primarily due to the complexity of the sample matrix. To address these requirements, different approaches have been explored. The state of the art on food safety sensors will be summarized in this review including optical, electrochemical, and other sensor-based detection methods such as magnetoelastic or mass-based sensors.
Assuntos
Contaminação de Alimentos , Inocuidade dos Alimentos , Animais , Contaminação de Alimentos/análise , Leite/químicaRESUMO
This study explores the pivotal roles of microbiological safety, sensory qualities, packaging efficiency, and consumer preferences in determining the success of roasted pickled fish powder (RPFP) variants in the online marketplace. The comparison of the nutritional composition of the developed RPFP variants with a commercial benchmark reveals significant differences: the protein content in the herbal flavor variant is found to be 28.97%, which is lower than the 40.17% found in the commercial benchmark, while the fat content in the spicy flavor variant is measured at 19.51%, exceeding the 10.60% present in the benchmark. Additionally, the herbal flavor boasts a superior dietary fiber content of 14.23%, highlighting the intricate relationship between nutritional content and sensory attributes, which is critical in online retail, where physical product evaluation is not possible. Our comprehensive approach, evaluating both nutritional and sensory dimensions, introduces a novel perspective to the adaptation of traditional food products for e-commerce, addressing a gap in the literature. Despite this study's limitations, including a focused market analysis and constrained sample size, our findings offer valuable insights into enhancing product quality and integrity in the digital marketplace, positioning RPFP for competitive success while suggesting directions for future research.
RESUMO
The use of natural raw substances for food preservation could provide a great contribution to food waste reduction, circular economy enhancement, and green process application widening. Recent studies indicated that the use of porous materials as adsorbents for natural essential oils provided nanohybrids with excellent antioxidant and antimicrobial properties. Following this trend in this work, a thymol oil (TEO) rich SBA-15 nanohybrid was prepared and characterized physiochemically with various techniques. This TEO@SBA-15 nanohybrid, along with the pure SBA-15, was extruded with low-density polyethylene (LDPE) to develop novel active packaging films. Results indicated that TEO loading was higher than other porous materials reported recently, and the addition of both pure SBA-15 and TEO@SBA-15 to the LDPE increased the water/oxygen barrier. The film with the higher thyme-oil@SBA-15 nanohybrid content exhibited a slower release kinetic. The antioxidant activity of the final films ignited after 48 h, was in the range of 60-70%, and was almost constant for 7 days. Finally, all tests indicated a sufficient improvement by the addition of thyme-oil@SBA-15 nanohybrids in the pure LDPE matrix and the concentration of wt. 10% of such nanocarriers provided the optimum final LDPE/10TEO@SBE-15 active packaging film. This material could be a potential future product for active packaging applications.
RESUMO
Guavas are typical tropical fruit with high nutritional and commercial value. Because of their thin skin and high metabolic rate, guavas are highly susceptible to water loss, physical damage, and spoilage, severely limiting their shelf-life. Guavas can typically only be stored for approximately one week at room temperature, making transportation, storage, and handling difficult, resulting in low profit margins in the industry. This review focuses on the physiological and biochemical changes and their molecular mechanisms which occur in postharvest guavas, and summarizes the various management strategies for extending the shelf-life of these sensitive fruits by means of physical and chemical preservation and their combinations. This review also suggests future directions and reference ideas for the development of safe and efficient shelf-life extension techniques.
RESUMO
As a natural pH-sensing colorant, purple sweet potato anthocyanins (PSPAs) have demonstrated great potential in colorimetric film for freshness monitoring. However, the photothermal instability of PSPAs is still a challengeable issue. Herein, γ-cyclodextrin metal-organic framework (CD-MOF) loaded with PSPAs (PSPAs@CD-MOF, i.e., PM) and eugenol (EUG) were incorporated in cellulose acetate (CA) matrix for developing a smart active colorimetric film of CA/PM/EUG, where PM and EUG were hydrogen-bonded with CA. Attentions were focused on the photothermal colorimetric stability, colorimetric response, and antibacterial activity of the films. The presence of PM and EUG endowed the film outstanding UV-blocking performance and enhanced the barrier against water vapor and oxygen. Target film of CA/PM15/EUG10 had good photothermal colorimetric stability due to the protection of CD-MOF on PSPAs and the color changes with pH-stimuli were sensitive and reversible. In addition to antioxidant activity, CA/PM15/EUG10 had antibacterial activity against Escherichia coli and Staphylococcus aureus. The application trial results indicated that the CA/PM15/EUG10 was valid to indicate pork freshness and extended the shelf-life by 100 % at 25 °C, which has demonstrated a good perspective on smart active packaging for freshness monitoring and shelf-life extension.
Assuntos
Celulose/análogos & derivados , Ciclodextrinas , Ipomoea batatas , Estruturas Metalorgânicas , Carne de Porco , Carne Vermelha , Suínos , Animais , Antocianinas/farmacologia , Colorimetria , Eugenol , Antibacterianos/farmacologia , Escherichia coli , Embalagem de Alimentos , Concentração de Íons de HidrogênioRESUMO
Advancements in polymer science and nanotechnology hold significant potential for addressing the increasing demands of food security, by enhancing the shelf life, barrier properties, and nutritional quality of harvested fruits and vegetables. In this context, biopolymer-based delivery systems present themselves as a promising strategy for encapsulating bioactive compounds, improving their absorption, stability, and functionality. This study provides an exploration of the synthesis, characterization, and postharvest protection applications of nanocarriers formed through the complexation of chitosan oligomers, carboxymethylcellulose, and alginate in a 2:2:1 molar ratio. This complexation process was facilitated by methacrylic anhydride and sodium tripolyphosphate as cross-linking agents. Characterization techniques employed include transmission electron microscopy, energy-dispersive X-ray spectroscopy, infrared spectroscopy, thermal analysis, and X-ray powder diffraction. The resulting hollow nanospheres, characterized by a monodisperse distribution and a mean diameter of 114 nm, exhibited efficient encapsulation of carvacrol, with a loading capacity of approximately 20%. Their suitability for phytopathogen control was assessed in vitro against three phytopathogens-Botrytis cinerea, Penicillium expansum, and Colletotrichum coccodes-revealing minimum inhibitory concentrations ranging from 23.3 to 31.3 µg·mL-1. This indicates a higher activity compared to non-encapsulated conventional fungicides. In ex situ tests for tomato (cv. 'Daniela') protection, higher doses (50-100 µg·mL-1, depending on the pathogen) were necessary to achieve high protection. Nevertheless, these doses remained practical for real-world applicability. The advantages of safety, coupled with the potential for a multi-target mode of action, further enhance the appeal of these nanocarriers.