Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 772
Filtrar
1.
J Colloid Interface Sci ; 678(Pt A): 806-817, 2025 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-39217696

RESUMO

Transition metal-based nanoparticles (NPs) are emerging as potential alternatives to platinum for catalyzing the oxygen reduction reaction (ORR) in zinc-air batteries (ZAB). However, the simultaneous coexistence of single-atom moieties in the preparation of NPs is inevitable, and the structural complexity of catalysts poses a great challenge to identifying the true active site. Herein, by employing in situ and ex situ XAS analysis, we demonstrate the coexistence of single-atom moieties and iron phosphide NPs in the N, P co-doped porous carbon (in short, Fe-N4-Fe2P NPs/NPC), and identify that ORR predominantly proceeds via the atomic-dispersed Fe-N4 sites, while the presence of Fe2P NPs exerts an inhibitory effect by decreasing the site utilization and impeding mass transfer of reactants. The single-atom catalyst Fe-N4/NPC displays a half-wave potential of 0.873 V, surpassing both Fe-N4-Fe2P NPs/NPC (0.858 V) and commercial Pt/C (0.842 V) in alkaline condition. In addition, the ZAB based on Fe-N4/NPC achieves a peak power density of 140.3 mW cm-2, outperforming that of Pt/C-based ZAB (91.8 mW cm-2) and exhibits excellent long-term stability. This study provides insight into the identification of true active sites of supported ORR catalysts and offers an approach for developing highly efficient, nonprecious metal-based catalysts for high-energy-density metal-air batteries.

2.
J Colloid Interface Sci ; 677(Pt B): 933-941, 2025 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-39178672

RESUMO

Electrochemical nitrate (NO3-) reduction reaction (NO3-RR) to ammonium (NH4+) or nitrogen (N2) provides a green route for nitrate remediation. However, nitrite generation and hydrogen evolution reactions hinder the feasibility of the process. Herein, dual single atom catalysts were rationally designed by introducing Ag/Bi/Mo atoms to atomically dispersed NiNC moieties supported by nitrogen-doped carbon nanosheet (NCNS) for the NO3-RR. Ni single atoms loaded on NCNS (Ni/NCNS) tend to reduce NO3- to valuable NH4+ with a high selectivity of 77.8 %. In contrast, the main product of NO3-RR catalyzing by NiAg/NCNS, NiBi/NCNS, and NiMo/NCNS was changed to N2, giving rise to N2 selectivity of 48.4, 47.1 and 47.5 %, respectively. Encouragingly, Ni/NCNS, NiBi/NCNS, and NiAg/NCNS showed excellent durability in acidic electrolytes, leading to nitrate conversion rates of 70.3, 91.1, and 93.2 % after a 10-h reaction. Simulated wastewater experiments showed that NiAg/NCNS could remove NO3- up to 97.8 % at -0.62 V after 9-h electrolysis. This work afforded a new strategy to regulate the reaction pathway and improve the conversion efficiency of the NO3-RR via engineering the dual atomic sites of the catalysts.

3.
ACS Nano ; 2024 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-39484823

RESUMO

Single-atom catalysts are promising for electrocatalytic CO2 conversion but face challenges in controllable syntheses. Herein, a facile selenic acid etching-assisted strategy has been developed to fabricate a hybrid metal-semimetal dual single-atom catalyst for electrocatalytic CO2 reduction. This strategy enables the simultaneous generation of monodisperse active sites and hierarchical morphologies with hollow nanostructures. The as-obtained catalyst with Fe-Se dual single-atom sites supported by porous nitrogen-doped carbon (FeSe-NC) shows exceptional catalytic activity and CO selectivity, delivering a Faradaic efficiency (FE) of >97% with industrially comparable jCO, superior to the Fe single-atom catalyst. Moreover, the FeSe-NC-based rechargeable Zn-CO2 battery delivers a high power density (2.01 mW cm-2) and outstanding FECO (>90%), as well as excellent cycling stability. Experimental results together with theoretical calculations reveal that the etching-induced defects and the Se-modulated Fe centers with asymmetrical polarized charge distributions synergistically facilitate the key intermediate *CO desorption and thus accelerate the CO2-to-CO conversion.

4.
Angew Chem Int Ed Engl ; : e202416912, 2024 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-39445491

RESUMO

For single-atom catalysts (SACs), the dopants situated near the metal site have demonstrated a significant impact on the catalytic properties. However, the effect of dopants situated further away from the metal centers and their working mechanisms remain to be elucidated. Herein, we conduct density functional theory-driven studies on regulating the peripheral nitrogen dopants in graphene-based SACs, with a particular focus on Ir1 SAC, for propane dehydrogenation (PDH). It is found that increasing the distance between the N dopant and the Ir1 site results in a different energy change for the reaction process compared to the dense doping model with only first and second-shell N species. The proposed stochastic doping models demonstrate statistically that increasing the N dopant in farther shells not only enhances the activity of Ir1 but also maintains a high selectivity for propene, which is verified by experimental tests. The modulation of the d-band center of Ir1 by stochastic N dopants effectively modifies the binding strength of reaction intermediates, thereby enabling the optimization of the potential energy surface of PDH. These results deepen the understanding of dopant states around metal sites and provide an important implication for the doping engineering in heterogeneous catalysis.

5.
Small Methods ; : e2400478, 2024 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-39436087

RESUMO

It is imperative to design robust single atom catalysts (SACs) that maintain the stability of the active component under diverse reaction conditions and prevent aggregation or deactivation. Confining the single atom active site within sub-nanometer (sub-1-nm) spaces has proven effective in enhancing the stability and activity of the catalyst, owing to the strong constraints and regulations imposed on atomic behavior at this scale. Bimetallic bond atomic sites, comprising two distinct metal compositions, often exhibit unique electronic structures and catalytic properties. Designing SACs under reaction-induced conditions, such as varying temperatures, pressures, and atmospheres, can facilitate a deeper understanding of the formation and migration behavior of active sites in real reactions, as well as the optimization mechanisms for performance enhancement. The objective of this review is to promote a robust SAC design strategy that encapsulates bimetallic bonding active sites within sub-1-nm spaces and investigates catalyst preparation and performance under reaction-induced conditions. This design strategy is anticipated to bolster the catalytic activity and stability of the catalyst while also offering fresh perspectives and optimization avenues for the catalytic processes involved in practical chemical reactions.

6.
Angew Chem Int Ed Engl ; : e202417435, 2024 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-39385458

RESUMO

Photocatalytic reduction of diluted CO2 from anthropogenic sources holds tremendous potential for achieving carbon neutrality, while the huge barrier to forming *COOH key intermediate considerably limits catalytic effectiveness. Herein, via coordination engineering of atomically scattered Ni sites in conductive metal-organic frameworks (CMOFs), we propose a facile strategy for tailoring the d­band center of metal active sites towards high-efficiency photoreduction of diluted CO2. Under visible-light irradiation in pure CO2, CMOFs with Ni-O4 sites (Ni-O4 CMOFs) exhibits an outstanding rate for CO generation of 13.3 µmol h-1 with a selectivity of 94.5%, which is almost double that of its isostructural counterpart with traditional Ni-N4 sites (Ni-N4 CMOFs), outperforming most reported systems under comparable conditions. Interestingly, in simulated flue gas, the CO selectivity of Ni-N4 CMOFs decreases significantly while that of Ni-O4 CMOFs is mostly unchanged, signifying the supremacy for Ni-O4 CMOFs in leveraging anthropogenic diluted CO2. In-situ spectroscopy and density functional theory (DFT) investigations demonstrate that O coordination can move the center of the Ni sites' d-band closer to the Fermi level, benefiting the generation of *COOH key intermediate as well as the desorption of *CO and hence leading to significantly boosted activity and selectivity for CO2-to-CO photoreduction.

7.
Sci Bull (Beijing) ; 2024 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-39419667

RESUMO

In Fenton-like reactions, high-valent cobalt-oxo (CoIV=O) has attracted increasing interests due to high redox potential, long lifetime, and anti-interference properties, but its generation is hindered by the electron repulsion between the electron rich oxo- and cobalt centers. Here, we demonstrate CoIV=O generation from peroxymonosulfate (PMS) activation over cobalt single-atom catalysts (Co-SACs) using in-situ Co K-edge X-ray absorption spectra, and discern that CoIV=O generation is dependent on the support work-function (WF) due to the strong electronic metal-support interaction (EMSI). Supports with a high WF value like anatase-TiO2 facilitate the binding of PMS-terminal oxo-ligand to Co sites by extracting Co-d electrons, thus decreasing the generation barrier for the critical intermediate (Co-OOSO32-). The Co atoms anchored on anatase-TiO2 (Co-TiO2) exhibited enhanced CoIV=O generation and superior activity for sulfamethoxazole (SMX) degradation during PMS activation. The normalized steady-state concentration of CoIV=O in Co-TiO2/PMS system was three orders of magnitude higher than that of free radicals, and 1.3- to 11-fold higher than that generated in other Co-SACs/PMS systems. Co-TiO2/PMS sustained efficient removal of SMX with minimal Co2+ leaching under continuous flow operation, suggesting its attractive water purification potential. Overall, these results underscore the significance of support selection for enhanced generation of high-valent metal-oxo species and efficient PMS activation in supported metal SACs.

8.
Nanomicro Lett ; 17(1): 32, 2024 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-39363132

RESUMO

The current single-atom catalysts (SACs) for medicine still suffer from the limited active site density. Here, we develop a synthetic method capable of increasing both the metal loading and mass-specific activity of SACs by exchanging zinc with iron. The constructed iron SACs (h3-FNC) with a high metal loading of 6.27 wt% and an optimized adjacent Fe distance of ~ 4 Å exhibit excellent oxidase-like catalytic performance without significant activity decay after being stored for six months and promising antibacterial effects. Attractively, a "density effect" has been found at a high-enough metal doping amount, at which individual active sites become close enough to interact with each other and alter the electronic structure, resulting in significantly boosted intrinsic activity of single-atomic iron sites in h3-FNCs by 2.3 times compared to low- and medium-loading SACs. Consequently, the overall catalytic activity of h3-FNC is highly improved, with mass activity and metal mass-specific activity that are, respectively, 66 and 315 times higher than those of commercial Pt/C. In addition, h3-FNCs demonstrate efficiently enhanced capability in catalyzing oxygen reduction into superoxide anion (O2·-) and glutathione (GSH) depletion. Both in vitro and in vivo assays demonstrate the superior antibacterial efficacy of h3-FNCs in promoting wound healing. This work presents an intriguing activity-enhancement effect in catalysts and exhibits impressive therapeutic efficacy in combating bacterial infections.

9.
Small ; : e2407427, 2024 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-39402770

RESUMO

Metal nitrogen carbon (MNC)-based Fenton reactions leveraged with robust peroxymonosulfate (PMS) interaction effectively guarantee the elimination of refractory contaminants, yet the precise design of local microenvironment of MNC to couple with the multiple PMS activation pose major challenges. Herein, a porous Co single-atom catalyst (SAC) with nitrogen defects (Nv) (MCo/NC-6) is fabricated to initiate PMS oxidation reaction. The weaker but richer coordination between Co and N in the precursor facilitates the formation of Nv and porous structure during pyrolysis, achieving simultaneously electronic structure and spatial distribution tuning. Compared with the Co SAC (ZCo/NC-6), the optimized MCo/NC-6 significantly increase the bisphenol A (BPA) reactivity (k = 0.63 min-1), PMS utilization (78%), and singlet oxygen (1O2) yield (100%) by 15.3, 2.4, and 2.6 times, respectively. Experimental analyses and theoretical calculations reveal that the Co─N─C coordination regulated by both micro space and neighboring Nv is endowed high-mobility electrons, thus synergistically facilitating rapid generation and efficient utilization of 1O2. This work promises new opportunities for the design of local microenvironments-regulated SACs, and charts new trajectories in complex Fenton-like systems.

10.
Small ; : e2405952, 2024 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-39377360

RESUMO

Enhancement of an alkaline water splitting reaction in Pt-based single-atom catalysts (SACs) relies on effective metal-support interactions. A Pt single atom (PtSA)-immobilized three-phased PtSA@VP-Ni3P-MoP heterostructure on nickel foam is presented, demonstrating high catalytic performance. The existence of PtSA on triphasic metal phosphides gives an outstanding performance toward overall water splitting. The PtSA@VP-Ni3P-MoP performs a low overpotential of 28 and 261 mV for hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) at a current density of 10 and 25 mA cm-2, respectively. The PtSA@VP-Ni3P-MoP (+,-) alkaline electrolyzer achieves a minimum cell voltage of 1.48 V at a current density of 10 mA cm-2 for overall water splitting. Additionally, the electrocatalyst exhibits a substantial Faradaic yield of ≈98.12% for H2 and 98.47% for O2 at a current density of 50 mA cm-2. Consequently, this study establishes a connection for understanding the active role of single metal atoms in substrate configuration for catalytic performance. It also facilitates the successful synthesis of SACs, with a substantial loading on transition metal phosphides and maximal atomic utilization, providing more active sites and, thereby enhancing electrocatalytic activity.

11.
Adv Mater ; : e2412386, 2024 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-39460391

RESUMO

Direct electro- and photo-synthesis of H2O2 through the 2e- O2 reduction reaction (ORR) and H2O oxidation reaction (WOR) offer promising alternatives for on-demand and on-site production of this chemical. Exploring robust and selective active sites is crucial for enhancing H2O2 production through these pathways. Single-atom catalysts (SACs), featuring isolated active sites on supports, possess attractive properties for promoting catalysis and unraveling catalytic mechanisms. This review first systematically summarizes significant advancements in atomic engineering of both metal and nonmetal single-atom sites for electro- and photo-catalytic 2e- ORR to H2O2, as well as the dynamic behaviors of active sites during catalytic processes. Next, the progress of single-atom sites in H2O2 production through 2e- WOR is overviewed. The effects of the local physicochemical environments on the electronic structures and catalytic behaviors of isolated sites, along with the atomic catalytic mechanism involved in these H2O2 production pathways, are discussed in detail. This work also discusses the recent applications of H2O2 in advanced chemical transformations. Finally, a perspective on the development of single-atom catalysis is highlighted, aiming to provide insights into future research on SACs for electro- and photo-synthesis of H2O2 and other advanced catalytic applications.

12.
Artigo em Inglês | MEDLINE | ID: mdl-39446556

RESUMO

Developing efficient electrocatalysts for CO2 reduction into value-added products is crucial for a green economy. Inspired by the recent experimental synthesis of biphenylene (BPH) and the excellent catalytic activity of copper dispersed on two-dimensional (2D) materials, we chose to systematically investigate the pristine, defective, and Cu-decorated BPH for the electrocatalytic CO2 reduction to value-added hydrocarbons. It is observed that the CO2 molecules bind weakly to the pristine BPH, indicating their chemical inertness. Carbon single-vacancy defects facilitate CO2 adsorption with a strong binding energy (Eb) of -3.23 eV, detrimental to the CO2 reduction reaction (CRR) mechanism. We have further investigated the binding energy and kinetic stability of Cu-decorated BPH as a single-atom-catalyst (SAC). The molecular dynamics simulations confirm the kinetic stability, revealing that the Cu-atom avoids agglomeration under low metal dispersal conditions. The CO2 molecule gets adsorbed horizontally on the Cu-BPH surface with a ΔEb of -0.52 eV. The CRR mechanism is investigated using two pathways beginning with two different initial states, formate (*OCOH) and carboxylic (*COOH). The formate pathway confirms the conversion of *OCOH to *HCOOH with the rate-limiting potential (UL) of 0.39 eV for the production of HCOOH, while for the carboxylic pathway, the conversion of *COH to *CHOH has a UL of 0.32 eV, eventually producing CH3OH. Our findings highlight the role of Cu-BPH as an efficient SAC for CO2 catalytic activity to C1 products, as compared to the state-of-the-art Cu, and holds promise as an electrocatalyst for CRR.

13.
Angew Chem Int Ed Engl ; : e202416715, 2024 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-39448377

RESUMO

The two-electron oxygen reduction reaction (2e- ORR) is a pivotal pathway for the distributed production of hydrogen peroxide (H2O2). In nature, enzymes containing manganese (Mn) centers can convert reactive oxygen species into H2O2. However, Mn-based heterogeneous catalysts for 2e- ORR are scarcely reported. Herein, we developed a nature-inspired single-atom electrocatalyst comprising N, O co-coordinated Mn sites, utilizing carbon dots as the modulation platform (Mn CD/C). As-synthesized Mn CD/C exhibited exceptional 2e- ORR activity with an onset potential of 0.786 V and a maximum H2O2 selectivity of 95.8%. Impressively, Mn CD/C continuously produced 0.1 M H2O2 solution at 200 mA/cm2 for 50 h in the flow cell, with negligible loss in activity and H2O2 faradaic efficiency, demonstrating practical application potential. The enhanced activity was attributed to the incorporation of Mn atomic sites into the carbon dots. Theoretical calculations revealed that the N, O co-coordinated structure, combined with abundant oxygen-containing functional groups on the carbon dots, optimized the binding strength of intermediate *OOH at the Mn sites to the apex of the catalytic activity volcano. This work illustrates that carbon dots can serve as a versatile platform for modulating the microenvironment of single-atom catalysts and for the rational design of nature-inspired catalysts.

14.
Adv Mater ; : e2412670, 2024 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-39449208

RESUMO

Hydrogen peroxide (H2O2) is a high-value chemical widely used in electronics, textiles, paper bleaching, medical disinfection, and wastewater treatment. Traditional production methods, such as the anthraquinone oxidation process and direct synthesis, require high energy consumption, and involve risks from toxic substances and explosions. Researchers are now exploring photochemical, electrochemical, and photoelectrochemical synthesis methods to reduce energy use and pollution. This review focuses on the 2-electron oxygen reduction reaction (2e- ORR) for the electrochemical synthesis of H2O2, and discusses how catalyst active sites influence O2 adsorption. Strategies to enhance H2O2 selectivity by regulating these sites are presented. Catalysts require strong O2 adsorption to initiate reactions and weak *OOH adsorption to promote H2O2 formation. The review also covers advances in single-atom catalysts (SACs), multi-metal-based catalysts, and highlights non-noble metal oxides, especially perovskite oxides, for their versatile structures and potential in 2e- ORR. The potential of localized surface plasmon resonance (LSPR) effects to enhance catalyst performance is also discussed. In conclusion, emphasis is placed on optimizing catalyst structures through theoretical and experimental methods to achieve efficient and selective H2O2 production, aiming for sustainable and commercial applications.

15.
Angew Chem Int Ed Engl ; : e202418964, 2024 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-39470988

RESUMO

The location control of single atoms relative to supports is challenging for single-atom catalysts, leading to a large proportion of inaccessible single atoms buried under supports. Herein, a "sequential thermal transition" strategy is developed to afford single-atom Pt preferentially dispersed on the outer surface of TiO2. Specifically, a Ti-MOF confining Pt nanoparticles is converted to PtNPs and TiO2 composite coated by carbon (PtNPs&TiO2@C-800) at 800 °C in N2. Subsequent thermal-driven atomization of PtNPs at 600 °C in air produce single-atom Pt decorated TiO2 (Pt1/TiO2-600). The resulting Pt1/TiO2-600 exhibits superior p-chloroaniline (p-CAN) selectivity (99%) to PtNPs/TiO2-400 (45%) and much better activity than Pt1@TiO2-600 with randomly dispersed Pt1 both outside and inside TiO2 in the hydrogenation of p-chloronitrobenzene (p-CNB). Mechanism investigations reveal that Pt1/TiO2-600 achieves 100% accessibility of Pt1 and preferably adsorbs the -NO2 group of p-CNB while weakly adsorbs -Cl group of p-CNB and p-CAN, promoting catalytic activity and selectivity.

16.
Adv Mater ; : e2402747, 2024 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-39291881

RESUMO

For traditional metal complexes, intricate chemistry is required to acquire appropriate ligands for controlling the electron and steric hindrance of metal active centers. Comparatively, the preparation of single-atom catalysts is much easier with more straightforward and effective accesses for the arrangement and control of metal active centers. The presence of coordination atoms or neighboring functional atoms on the supports' surface ensures the stability of metal single-atoms and their interactions with individual metal atoms substantially regulate the performance of metal active centers. Therefore, the collaborative interaction between metal and the surrounding coordination environment enhances the initiation of reaction substrates and the formation and transformation of crucial intermediate compounds, which imparts single-atom catalysts with significant catalytic efficacy, rendering them a valuable framework for investigating the correlation between structure and activity, as well as the reaction mechanism of catalysts in organic reactions. Herein, comprehensive overviews of the coordination interaction for both homogeneous metal complexes and single-atom catalysts in organic reactions are provided. Additionally, reflective conjectures about the advancement of single-atom catalysts in organic synthesis are also proposed to present as a reference for later development.

17.
Nanomicro Lett ; 17(1): 1, 2024 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-39317789

RESUMO

Green hydrogen from water splitting has emerged as a critical energy vector with the potential to spearhead the global transition to a fossil fuel-independent society. The field of catalysis has been revolutionized by single-atom catalysts (SACs), which exhibit unique and intricate interactions between atomically dispersed metal atoms and their supports. Recently, bimetallic SACs (bimSACs) have garnered significant attention for leveraging the synergistic functions of two metal ions coordinated on appropriately designed supports. BimSACs offer an avenue for rich metal-metal and metal-support cooperativity, potentially addressing current limitations of SACs in effectively furnishing transformations which involve synchronous proton-electron exchanges, substrate activation with reversible redox cycles, simultaneous multi-electron transfer, regulation of spin states, tuning of electronic properties, and cyclic transition states with low activation energies. This review aims to encapsulate the growing advancements in bimSACs, with an emphasis on their pivotal role in hydrogen generation via water splitting. We subsequently delve into advanced experimental methodologies for the elaborate characterization of SACs, elucidate their electronic properties, and discuss their local coordination environment. Overall, we present comprehensive discussion on the deployment of bimSACs in both hydrogen evolution reaction and oxygen evolution reaction, the two half-reactions of the water electrolysis process.

18.
Molecules ; 29(18)2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39339299

RESUMO

Water electrolysis has been recognized as a promising technology that can convert renewable energy into hydrogen for storage and utilization. The superior activity and low cost of catalysis are key factors in promoting the industrialization of water electrolysis. Single-atom catalysts (SACs) have attracted attention due to their ultra-high atomic utilization, clear structure, and highest hydrogen evolution reaction (HER) performance. In addition, the performance and stability of single-atom (SA) substrates are crucial, and various two-dimensional (2D) nanomaterial supports have become promising foundations for SA due to their unique exposed surfaces, diverse elemental compositions, and flexible electronic structures, to drive single atoms to reach performance limits. The SA supported by 2D nanomaterials exhibits various electronic interactions and synergistic effects, all of which need to be comprehensively summarized. This article aims to organize and discuss the progress of 2D nanomaterial single-atom supports in enhancing HER, including common and widely used synthesis methods, advanced characterization techniques, different types of 2D supports, and the correlation between structural hydrogen evolution performance. Finally, the latest understanding of 2D nanomaterial supports was proposed.

19.
ACS Nano ; 18(40): 27718-27726, 2024 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-39312392

RESUMO

Urea electrosynthesis by coelectrolysis of NO3- and CO2 (UENC) holds enormous promise for sustainable urea production, while the efficient UENC process relies on the rational design of high-performance catalysts to facilitate the electrocatalytic C-N coupling efficiency and the hydrogenation reaction process. Herein, Fe single atoms supported on MoS2 (Fe1/MoS2) are developed as a highly effective and robust catalyst for UENC. Theoretical calculations and operando spectroscopic measurements reveal a tandem catalysis mechanism of the Fe1-S3 motif and MoS2-edge to jointly promote the UENC process, where the Fe1-S3 motif drives the early C-N coupling and subsequent *CO2NO2-to-*CO2NH2 step. The generated *CO2NH2 is then migrated from the Fe1-S3 motif to the nearby MoS2-edge, which facilitates the *CO2NH2 → *COOHNH2 step for urea formation. Noticeably, Fe1/MoS2 assembled in a flow cell reaches a maximum urea Faraday efficiency of 54.98% with a corresponding urea yield rate of 18.98 mmol h-1 g-1, performing at the top level among all of the UENC catalysts reported to date.

20.
ACS Nano ; 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-39219106

RESUMO

Conductive metal-organic frameworks (cMOFs) offer high porosity and electrical conductivity simultaneously, making them ideal for application in chemiresistive sensors. Recently, incorporating foreign elements such as catalytic nanoparticles into cMOFs has become a typical strategy to enhance their sensing properties. However, this approach has led to critical challenges, such as pore blockage that impedes gas diffusion, as well as limited improvement in reversibility. Herein, single-atom catalyst (SAC)-functionalized cMOF is presented as a robust solution to the current limitations. Facile functionalization of SACs in a cMOF can be achieved through electrochemical deposition of metal precursors. As a proof of concept, a Pd SAC-functionalized cMOF is synthesized. The Pd SACs are stabilized at the interplanar sites of cMOF with Pd-N4 coordination while preserving the porosity of the MOF matrix. Notably, the microenvironment created by Pd SACs prevents irreversible structural distortion of cMOFs and facilitates a reversible charge transfer with NO2. Consequently, the cMOF exhibits a fully recoverable NO2 response, which was not previously attainable with the nanoparticle functionalization. Additionally, with the combination of preserved porosity for gas diffusion, it demonstrates the fastest level of response and recovery speed compared to other 2D-cMOFs of this class.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA