Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 589
Filtrar
1.
Materials (Basel) ; 17(18)2024 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-39336290

RESUMO

Silicon nitride (Si3N4) is widely used in structural ceramics and advanced manufacturing due to its excellent mechanical properties and high-temperature stability. These applications always involve deformation under mechanical loads, necessitating a thorough understanding of their mechanical behavior and performance under load. However, the mechanical properties of Si3N4, particularly at the micro- and nanoscale, are not well understood. This study systematically investigated the mechanical properties of bulk Si3N4 and Si3N4 whiskers using in situ SEM indentation and uniaxial tensile strategies. First, nanoindentation tests on bulk Si3N4 at different contact depths ranging from 125 to 450 nm showed significant indentation size effect on modulus and hardness, presumably attributed to the strain gradient plasticity theory. Subsequently, in situ uniaxial tensile tests were performed on Si3N4 whiskers synthesized with two different sintering aids, MgSiN2 and Y2O3. The results indicated that whiskers sintered with Y2O3 exhibited higher modulus and strength compared to those sintered with MgSiN2. This work provides a deeper understanding of the mechanical behavior of Si3N4 at the micro- and nanoscale and offers guidance for the design of high-performance Si3N4 ceramic whiskers.

2.
Materials (Basel) ; 17(18)2024 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-39336373

RESUMO

The issues of the high-cycle fatigue resistance of notches and the role of non-propagating short cracks in defining the fatigue notch sensitivity and fatigue limit of the configuration are addressed. A fracture mechanics approach is employed to determine the threshold configuration that defines the associated fatigue limit. The influence of notch sharpness, notch size, intrinsic fatigue limit, microstructural dimensions, and the threshold for crack propagation is examined. A simple expression is proposed to estimate the maximum fatigue notch factor, kfMax, which incorporates the influence of these non-propagating cracks. The fatigue limits for both blunt and sharp elliptical notches are analyzed and predicted based on experimental results reported in the literature. Additionally, shallow notches or small defects are analyzed, where it is found that the same hypothesis may not be applicable.

3.
Artigo em Inglês | MEDLINE | ID: mdl-39328847

RESUMO

Verbally memorized multiplication tables are thought to create language-specific memories. Supporting this idea, bilinguals are typically faster and more accurate in the language in which they learned math (LA+) than in their other language (LA- ) . No study has yet revealed the underlying neurocognitive mechanisms explaining this effect, or the role of problem size in explaining the recruitment of different brain regions in LA+ and LA- . To fill this gap in the literature, 29 Spanish-English early bilingual adults, proficient in both languages, verified simple multiplication problems in each language while functional magnetic resonance imaging (fMRI) was acquired. More specifically, this study aimed to answer two questions: 1) Does LA+ recruit left superior and middle temporal gyri (STG/MTG) to a greater extent than LA- , reflecting more robust verbal representations of multiplication facts in LA+? In contrast, does LA- recruit the inferior frontal gyrus (IFG), reflecting more effortful retrieval, or the intraparietal sulcus (IPS), reflecting reliance on quantity processes? 2) Is there an interaction between language and problem size, where language differences are more pronounced for less practiced, large multiplication problems (e.g., 8 × 9) in comparison to more familiar, small problems (e.g., 2 × 3). Functional localizer tasks were used to identify hypothesis-driven regions of interest in verbal areas associated with verbal representations of arithmetic facts (left STG/MTG) and with the effortful retrieval of these facts (left IFG) and quantity areas engaged when calculation-based strategies are used (bilateral IPS). In planned analyses, no cluster reached significance for the direct comparison of languages (question 1) or for the interaction between language and problem size (question 2). An exploratory analysis found a main effect of problem size, where small problems recruited left STG/MTG and left IFG to a greater extent than large problems, suggesting greater verbal involvement for these problems in both languages. Additionally, large problems recruited right IPS to a greater extent than small problems, suggesting reliance on quantity processes. Our results suggest that proficient early bilingual adults engage similar brain regions in both languages, even for more difficult, large problems.

4.
ACS Nano ; 2024 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-39325662

RESUMO

Electron-surface scattering is important for many transport phenomena and practical applications. Particularly, the downscaling of microelectronics demands higher electrical conductivity for interconnects, which are currently based on Cu, which suffers from strong surface scattering. However, much is still unclear, such as which surface orientation causes stronger scattering. Existing theories require phenomenological parameters whose values are unknown unless fitted to experimental data or based on assumptions, thereby limiting their accuracy and predictive power. Here we present an accurate, parameter-free approach that enables an accurate calculation of electronic transport with surface scattering. Then we apply it to study the conductivities of Cu films with different surface orientations. Contrary to the common belief that a more compact surface should have higher conductivity, we find that (111) is less conductive than (001). This can be explained by the symmetry of the electronic structure. Furthermore, we propose a phenomenological model that has a better fit to the first-principles results than the conventional one. Our work offers insights into electronic transport and enables accurate calculation, understanding, and prediction for a broad range of systems where surface scattering matters.

5.
Heliyon ; 10(17): e37370, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-39296156

RESUMO

Microplastics have emerged as pervasive contaminants, and determining their occurrence in aquafeed is key for evaluating their risks to farmed animals and, by extension, humans. However, knowledge about microplastic in aquafeed is still limited. Herein, we determined microplastic characteristics in aquafeed for five important aquaculture animals with different feeding habits. Aquafeed samples were collected for spotted sea bass, shrimp, grass carp, Tilapia, and frogs from main companies in China. The samples were digested using chemical digestion, and the residuals were subjected to a density separation. Microplastics were identified under the microscope and characterized by their shape, color, size, and polymer type. The results showed that microplastics are highly abundant in the feed of frogs, followed by spotted sea bass, Tilapia, grass carp, and shrimp. We found that feed size contributes to the total microplastic abundance in the feed. Further, microplastics were mainly in microfiber form, and the dominant polymer type was propylene, suggesting that packaging and processing are the main sources of pollution. Additionally, the most abundant size of microplastics was 100-1000 µm. Calculating microplastic ingestion risk, the spotted sea bass had the greatest recorded risk of microplastic ingestion, followed by grass carp, frogs, Tilapia, and shrimp. This study lays a foundational step toward understanding microplastic effects on aquaculture animals and calls for further environmentally relevant laboratory experiments to assess the risk of microplastic ingestion on animals and potential transfer to humans.

6.
Nano Lett ; 2024 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-39298740

RESUMO

The pursuit of harnessing superior mechanical properties achieved through the size effect on a macroscopic scale has been a prominent focus in engineering, as size-induced strengthening is enabled only in the nanoscale regime. This study presents a metal/ceramic/metal (MCM) nanocomposite reinforced by ceramic nanoarchitectures. Through proximity-field nanopatterning, the inch-scale production of nanoarchitecture films is enabled in a single fabrication step. The developed three-dimensional (3D) Ni/Al2O3/Ni nanocomposite film exhibits significantly high compressive strength, corresponding to an increase of approximately 30% compared with that calculated using the upper limits of the conventional rule of mixtures. The exceptional strength of the 3D MCM nanocomposite can be attributed to the extrinsic size effect of the ceramic nanoarchitectures. By combining size-induced strengthening of ceramics with the strengthening law for composites, a new type of strengthening model is derived and experimentally validated using the 3D MCM nanocomposite.

7.
Small ; : e2404638, 2024 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-39240073

RESUMO

The size dependence of metal cluster reactions frequently reveals valuable information on the mechanism of nanometal catalysis. Here, the reactivity of the Ptn + (n = 1-40) clusters with N2O is studied and a significant dependence on the size of these clusters is noticed. Interestingly, the small Ptn + clusters like Pt3 + and Pt4 + are inclined to form N2O complexes; some larger clusters, such as Pt19 +, Pt21 +, and Pt23 +, appear to be unreactive; however, the others such as Pt3 , 9,15 + and Pt18 + are capable of decomposing N2O. While Pt9 + rapidly reacts with N2O to form a stable quasitetrahedron Pt9O+ product, Pt18 + experiences a series of N2O decompositions to produce Pt18O1-7 +. Utilizing high-precision theoretical calculations, it is shown how the atomic structures and active sites of Ptn + clusters play a vital role in determining their reactivity. Cooperative dual Lewis-acid sites (CDLAS) can be achieved on specific metal clusters like Pt18 +, rendering accelerated N2O decomposition via both N- and O-bonding on the neighboring Pt atoms. The influence of CDLAS on the size-dependent reaction of Pt clusters with N2O is illustrated, offering insights into cluster catalysis in reactions that include the donation of electron pairs.

8.
NanoImpact ; 36: 100528, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-39226949

RESUMO

Vanadium dioxide (VO2) is an excellent phase transition material widely used in various applications, and thus inevitably enters the environment via different routes and encounters various organisms. Nonetheless, limited information is available on the environmental hazards of VO2. In this study, we investigated the impact of two commercial VO2 particles, nanosized S-VO2 and micro-sized M-VO2 on the white rot fungus Phanerochaete chrysosporium. The growth of P. chrysosporium is significantly affected by VO2 particles, with S-VO2 displaying a higher inhibitory effect on weight gain. In addition, VO2 at high concentrations inhibits the formation of fungal fibrous hyphae and disrupts the integrity of fungus cells as evidenced by the cell membrane damage and the loss of cytoplasm. Notably, at 200 µg/mL, S-VO2 completely alters the morphology of P. chrysosporium, while the M-VO2 treatment does not affect the mycelium formation of P. chrysosporium. Additionally, VO2 particles inhibit the laccase activity secreted by P. chrysosporium, and thus prevent the dye decoloration and sawdust decomposition by P. chrysosporium. The mechanism underlying this toxicity is related to the dissolution of VO2 and the oxidative stress induced by VO2. Overall, our findings suggest that VO2 nanoparticles pose significant environmental hazards and risks to white rot fungi.

9.
Angew Chem Int Ed Engl ; : e202413418, 2024 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-39294887

RESUMO

The selective synthesis of valuable azo- and azoxyaromatic chemicals via transfer coupling of nitroaromatic compounds has been achieved by fine-tuning the catalyst structure. Here, a direct method to modulate nitrobenzene reduction and selectively alter the product from azobenzene to azoxybenzene by employing the size effect of Au is reported. Au nanoclusters (NCs) with smaller sizes embedded in ZIF-8 controllably converted nitrobenzene into azoxybenzene, while supported Au nanoparticles (NPs) catalyzed nitrobenzene reduction to azobenzene. X-ray photoelectron spectroscopy (XPS) and Diffuse reflectance infrared Fourier transform spectroscopy on CO adsorption (CO-DRIFTS) of Au NC/ZIF-8 revealed a higher valence state and a lower electron density of Au than that of Au NP/ZIF-8, combined with the desorption of azoxybenzene from the Au NC and Au NP surface, suggesting that the Au NCs with lower electron density exhibit stronger adsorption. Density functional theory (DFT) calculations and charge density difference maps indicated that azoxybenzene bonded to Au NC/ZIF-8 with greater adsorption energy, resulting in more electron transfer between azoxybenzene and the generated Au sites, which inhibited further reduction of azoxybenzene and resulted in high azoxybenzene selectivity. The application of the size effect of Au particles to regulate nitrobenzene transfer coupling provided new insights into the structure-selectivity relationships.

10.
Environ Res ; 262(Pt 2): 119955, 2024 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-39243844

RESUMO

Particle size effects significantly impact the concentration and toxicity of heavy metals (HMs) in dust. Nevertheless, the differences in concentrations, sources, and risks of HMs in dust with different particle sizes are unclear. Therefore, guided by the definition of atmospheric particulate matter, dust samples with particle sizes under 1000 µm (DT1000), 100 µm (DT100), and 63 µm (DT63) from Beijing kindergartens were collected. The concentrations of HMs (e.g., Cd, Pb, Zn, Ni, Cr, Ba, Cu, V, Mn, Co, and Ti) in dust samples with different particle sizes were measured. Besides, the differences in HM concentrations, contamination levels, sources, and source-oriented health risks in dust samples of different particle sizes were systematically explored. The results show that the concentrations of Mn, V, Zn, and Cd gradually increase with decreasing dust particle sizes, the concentrations of Ba and Pb show a decreasing trend, and the concentrations of Cr, Cu, Ni, and Co display an increasing and then decreasing trend. The degree of contamination of HMs in dust of different particle sizes varies, with Cd being the most dominant contaminant. Compared with DT1000 and DT63, DT100 is the most polluted. In addition, the sources of HMs in DT1000, DT100, and DT63 become more single with decreasing particle size, which may be mainly due to the particle-size effect inducing the redistribution of HMs in different sources. Notably, the potential health risk is higher in DT100 than in DT1000 and DT63. The highest contribution of industrial sources to the health risk is found in DT100, which is mainly caused by highly toxic chromium (Cr). This work emphasizes the importance of considering particle size in risk assessment and pollution control, which can provide a theoretical basis for precise management of HMs pollution in dust.

11.
Polymers (Basel) ; 16(18)2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-39339016

RESUMO

The purpose of this study was to obtain information on the influence of the size factor on the climatic aging of circular fiber plastics produced by pultrusion. The kinetics of moisture transfer was obtained in humidification and drying modes at 60 °C in samples of epoxy basalt fiber reinforcement bars: after 28 months of exposure in the extremely cold climate of Yakutsk and 30 months of exposure in the moderately warm climate of Gelendzhik. It was shown that the 2D Langmuir model adequately describes the kinetics. The diffusion coefficients in the reinforcement direction for bars with diameters of 6, 8, 10, 16 and 20 mm turned out to be significantly higher than in the radial direction. To clarify the aging mechanism of the bars and the tensile, compressive and bending strength, the coefficient of linear thermal expansion and the glass transition temperature of the epoxy matrix of the bars with a diameter of 6, 8 and 10 mm after 51 months of exposure in Yakutsk and 54 months of exposure in Gelendzhik were measured. It was shown that after climatic exposure, the deformability of the bars decreased with increasing diameter of the bar; the glass transition temperature increased more significantly in the bar with a smaller diameter. In 6 mm diameter bars, the compressive and bending strength limits decreased by 10-25 % due to the plasticizing effect of moisture. With the same depth of moisture penetration into the volume of the samples, its effect on the strength of thin bars was significant, and for thick bars, it was insignificant. An increase in the glass transition temperature by 6 °C, associated with the additional curing of the polymer matrix, occurred in the surface layer of the epoxy basalt fiber reinforcement bars and was revealed in bars with a smaller diameter.

12.
Environ Int ; 190: 108938, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39111171

RESUMO

Plant microbiota are an important factor impacting plant cadmium (Cd) uptake. However, little is known about how plant microbiota affects the Cd uptake by plants under the influence of microplastics (MPs) with different particle sizes. In this study, bacterial structure and assembly in the rhizosphere and endosphere in pakchoi were analyzed by amplicon sequencing of 16S rRNA genes under the influence of different particle sizes of polystyrene microplastics (PS-MPs) combined with Cd treatments. Results showed that there were no significant differences observed in the shoot endophytes among different treatments. However, compared to Cd treatment, larger-sized PS-MPs (2 and 20 µm) significantly increased community diversity and altered the structural composition of rhizosphere bacteria and root endophytes, while smaller-sized PS-MPs (0.2 µm) did not. Under the treatment of larger-sized PS-MPs, the niche breadth of rhizosphere bacteria and root endophytes were significantly increased. And larger-sized PS-MPs also maintained stability and complexity of bacterial co-occurrence networks, while smaller-sized PS-MPs reduced them. Furthermore, compared to Cd treatment, the addition of larger particle size PS-MPs decreased the proportion of homogeneous section, while increased the proportion of drift in root endophytic bacterial community assembly. The role of larger-sized MPs in the community assembly of rhizosphere bacteria was opposite. Using random forest and structural equation models, the study found that larger-sized PS-MPs can promote the colonization of specific bacterial taxa, such as Brevundimonas, AKAU4049, SWB02, Ellin6055, Porphyrobacter, Sphingorhabdus, Rhodobacter, Erythrobacter, Devosia and some other bacteria belonging to Alphaproteobacteria, in the rhizosphere and root endosphere. The colonization of these taxa can may induce the formation of biofilms in the roots, immobilize heavy metals through oxidation processes, and promote plant growth, thereby reducing Cd uptake by pakchoi. The findings of this study provide important insights into the microbial mechanisms underlying the influence of MPs with different particle sizes on plant Cd uptake.


Assuntos
Cádmio , Microbiota , Microplásticos , Tamanho da Partícula , Rizosfera , Poluentes do Solo , Cádmio/metabolismo , Microbiota/efeitos dos fármacos , Poluentes do Solo/metabolismo , Bactérias/metabolismo , Bactérias/genética , Bactérias/classificação , Microbiologia do Solo , Raízes de Plantas/microbiologia , Raízes de Plantas/metabolismo , RNA Ribossômico 16S/genética , Plantas/metabolismo , Plantas/microbiologia , Endófitos
13.
Sci Rep ; 14(1): 20010, 2024 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-39198697

RESUMO

The phenomenon of indentation size effect (ISE) has received great attention in aerospace, nuclear power, microelectronics and medicine. Although researchers have proposed various ISE models, these models often involve different form and number of parameters that can make our wonder which is the best in existed ISE models. Herein, three types of ISE test data, namely, normal ISE, reverse ISE and transition of normal to reverse ISE, are used to evaluate the sixteen ISE models. The comparatively study indicates that Hou-Jennet(H-J), Nix-Gao-Feng (N-G-Fs), Nix-Gao-Hausild (N-G-H), Nix-Gao-Abu Al-Rub (N-G-A) and Nix-Gao-Qius (N-G-Qs) models can accurately predict the normal ISE. The reason for this is that the friction stress that is not related to dislocation activities or the indentation size effect of plastic zone has been introduced into these models. Therefore, these two factors should be considered in future ISE models. The sixteen ISE models are originally proposed to describe the normal ISE of different materials. However, to our surprise, some of these models are able to capture the reverse ISE and the transition of normal to reverse ISE of different materials. The determination coefficients (DC) of the sixteen ISE models are also determined for different materials. For reverse ISE, the highest DC value for Ni Carbide Silicon (NiCSi), TC4 titanium alloy (TC4) and Pulsed electro-deposited Ni (PED Ni) are given by the Exponential (EXP), Nix-Gao-Feng (N-G-Fs) and Nix-Gao-Abu Al-Rub (N-G-A) models, respectively. For the transition of normal to reverse ISE, the Nix-Gao-Yuan-Chen (N-G-YC), Nix-Gao-Feng (N-G-Fs), and Nix-Gao-Hausild (N-G-H) models produce the maximum DC for ZrO2 ceramic (ZrO2), Cu single crystals (Cu) and Y2O3-ZrO2 ceramic (Y2O3-ZrO2), respectively. Moreover, the mean DC of the Nix-Gao-Feng (N-G-Fs) model is the maximum among the sixteen ISE models, followed by the Nix-Gao-Hausild (N-G-H) model, but they cannot accurately predict the reverse ISE. Therefore, the Nix-Gao-Feng (N-G-Fs) and Nix-Gao-Hausild (N-G-H) models should be further modified to accurately predict the reverse ISE.

14.
Environ Int ; 191: 108965, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39167856

RESUMO

The coexistence of microorganisms in complex soil environments greatly affects the environmental behavior and ecological effects of microplastics (MPs). However, relevant studies are sparse, and internal mechanisms remain unclear. Herein, arbuscular mycorrhizal fungi (AMF), a common symbiotic microorganism in the soil-plant system, was proved to significantly affect MPs absorption and migration with a "size effect". Specifically, the existence of AMF accelerated small-sized MPs (0.5 µm) uptake but slowed large-sized MPs (2 µm) uptake in lettuce. The content of 0.5 µm MPs absorbed by plants with AMF was 1.26 times that of the non-AMF group, while the content of 2 µm MPs was only 77.62 % that of non-AMF group. Additionally, the different effects of microorganisms on the intake content of MPs with different particle sizes in plants also led to different toxic effects of MPs on lettuce, that is, AMF exacerbated small-size MPs toxicity in lettuce (e.g., reduced plant biomass, photosynthesis, etc), and it weakened large-sized MPs toxicity (e.g., increased plant height, antioxidant enzyme activity, etc). The above phenomenon mainly because of the change in AMF on the plant root structure, which can be visually observed through the intraradical and extraradical hyphae. The symbiotic structure (hyphae) formed by AMF and host plants root could enhance the absorption pathway for small-sized MPs in lettuce, although not for large-sized MPs. Additionally, the effects of AMF varied with the soil environment of differently sized MPs, which promoted the migration of small-particle MPs to plants but aggravated large-particle MPs fixation at the soil interface. These findings could deepen the understanding of MPs pollution in terrestrial systems and provide theoretical basis and technical support to accurately assess soil MPs pollution.


Assuntos
Microplásticos , Micorrizas , Microbiologia do Solo , Poluentes do Solo , Simbiose , Micorrizas/fisiologia , Poluentes do Solo/análise , Poluentes do Solo/metabolismo , Lactuca/microbiologia , Solo/química , Raízes de Plantas/microbiologia , Raízes de Plantas/metabolismo , Plantas/metabolismo , Plantas/microbiologia
15.
Sci Rep ; 14(1): 16402, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39014080

RESUMO

The study of rock burst tendency of rock masses with different sizes plays a key role in the prevention of rock burst. Through theoretical analysis, it is proposed that uniaxial compressive strength and deformation modulus ratio are the key mechanical parameters affecting rock burst occurrence. In order to find out the size effect of uniaxial compressive strength and deformation modulus ratio, theoretical analysis and uniaxial compression experiment are carried out on rock samples with different heights, different cross-sectional areas and different volumes. The results show that the smaller the uniaxial compressive strength is, the larger the deformation modulus ratio is, and the more likely rock burst are to occur. On the contrary, rock burst is still not easy to generate. The uniaxial compressive strength of rock samples with different heights, different cross-sectional areas and different volumes increases with the increase of rock sample size. The deformation modulus ratio of rock samples with different heights and different volumes shows an upward trend on the whole, while that of rock samples with different cross-sectional areas shows a downward trend on the whole. The fracture forms of rock are analyzed using the energy conversion law in the process of deformation and failure for three kinds of rock with different shapes and sizes.

16.
Sci Rep ; 14(1): 15773, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38982212

RESUMO

We carried out uniaxial compression tests on brittle red sandstone with different heights. The test results show that the uniaxial compressive strength of rock sample increases first and then tends to be stable with the increase of the size, which is approximately stable between 75 and 81 MPa. Both elastic energy and dissipated energy increase with the increase of rock sample size. In order to further analyze the mechanism behind these phenomena, we combined advanced numerical simulation and theoretical analysis to explain these phenomena, and systematically analyzed the end face effect as one of the key factors affecting the uniaxial compression characteristics of brittle red sandstone for the first time. Small sized rock samples are very sensitive to end effect. The middle of the large sized rock samples is in a uniform compression state, and the effect of end effect is weakend. When there are rigid pads at both ends of the rock sample, there is an obvious elastic vertebral body during the loading process of the rock sample. The bearing capacity of rock samples with rigid pads is greater than that of rock samples without rigid pads, and the energy released during instantaneous failure of rock samples without rigid pads is greater than that of rock samples with rigid pads. The findings of this paper make a valuable contribution to establishing optimal study sample sizes and advancing the utilization of laboratory test mechanics parameters in engineering applications.

17.
Rock Mech Rock Eng ; 57(7): 4679-4706, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39006378

RESUMO

We employed a novel combination of digital image correlation (DIC) and grain-based hybrid finite-discrete element method (GB-FDEM) to improve the comprehension of the relationships between microstructural features and the mechanical properties of granitic rocks. DIC and numerical results showed that macrocracks initiated and propagated along grain boundaries among different minerals driven by the high stiffness contrast between the compliant biotite and the stiffer feldspar/quartz grains. Surface deformation analyses revealed that tensile-dominated macrocracks open at monotonically increased rates before the crack damage threshold, and the opening accelerated afterwards with the increased shear component. The onset of the acceleration of the opening rate of macrocracks can be used to infer the crack damage threshold. Both strain and acoustic emission were used to infer damage stress thresholds in the synthetic numerical samples. Numerical results showed that the damage stress thresholds and uniaxial compressive strength decrease with increasing grain size following log-linear relations. Coarse-grained samples tend to fail by axial splitting, while fine-grained samples fail by shear zone formation. Biotite and quartz contents significantly affect mechanical properties, while quartz to feldspar ratio is positively related to the mechanical properties. Our study demonstrates the capacities of DIC and GB-FDEM in inferring damage conditions in granitic rocks and clarifies the microstructural control of the macroscopic mechanical behaviors. Our results also provide a comprehensive understanding of the systematics of strain localization, crack development, and acoustic emission during the rock progressive failure process. Supplementary Information: The online version contains supplementary material available at 10.1007/s00603-024-03789-7.

18.
Materials (Basel) ; 17(13)2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38998368

RESUMO

Exposure of metals to neutron irradiation results in an increase in the yield strength and a significant loss of ductility. Irradiation hardening is also closely related to the fracture toughness temperature shift or the ductile-to-brittle transition temperature (DBTT) shift in alloys with a body-centered cubic (bcc) crystal structure. Ion irradiation is an indispensable tool in the study of the radiation effects of materials for nuclear energy systems. Due to the shallow damage depth in ion-irradiated materials, the nanoindentation test is the most commonly used method for characterizing the changes in mechanical properties after ion irradiation. Issues that affect the analysis of irradiation hardening may arise due to changes in the surface morphology and mechanical properties, as well as the inherent complexities in nanoscale indentation. These issues, including changes in surface roughness, carbon contamination, the pile-up effect, and the indentation size effect, with corresponding measures, were reviewed. Modeling using the crystal plasticity finite element method of the nanoindentation of ion-irradiated materials was also reviewed. The challenges in extending the nanoindentation test to high temperatures and to multiscale simulation were addressed.

19.
J Funct Biomater ; 15(7)2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39057316

RESUMO

Nosocomial infections, a prevalent issue in intensive care units due to antibiotic overuse, could potentially be addressed by metal oxide nanoparticles (NPs). However, there is still no comprehensive understanding of the impact of NPs' size on their antibacterial efficacy. Therefore, this study provides a novel investigation into the impact of ZnO NPs' size on bacterial growth kinetics. NPs were synthesized using a sol-gel process with monoethanolamine (MEA) and water. X-ray diffraction (XRD), transmission electron microscopy (TEM), and Raman spectroscopy confirmed their crystallization and size variations. ZnO NPs of 22, 35, and 66 nm were tested against the most common nosocomial bacteria: Escherichia coli, Pseudomonas aeruginosa (Gram-negative), and Staphylococcus aureus (Gram-positive). Evaluation of minimum inhibitory and bactericidal concentrations (MIC and MBC) revealed superior antibacterial activity in small NPs. Bacterial growth kinetics were monitored using optical absorbance, showing a reduced specific growth rate, a prolonged latency period, and an increased inhibition percentage with small NPs, indicating a slowdown in bacterial growth. Pseudomonas aeruginosa showed the lowest sensitivity to ZnO NPs, attributed to its resistance to environmental stress. Moreover, the antibacterial efficacy of paint containing 1 wt% of 22 nm ZnO NPs was evaluated, and showed activity against E. coli and S. aureus.

20.
Chemosphere ; 363: 142768, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38969221

RESUMO

In the alkaline-surfactant-polymer flooding emulsion, oil droplets with various sizes exhibited different interfacial properties, resulting in different stabilization and destabilization behaviors. In view of this, it is expected to achieve outstanding oil-water separation efficiency by screening targeted demulsifier for oil droplets with different size ranges (0-1, 1-5 and 5-10 µm). Based on the size effect of oil droplets, a series of multibranched polyether-polyquaternium demulsifiers that integrated different charge neutralization and interfacial displacement functionalities were designed by regulating the cationicity and EO:PO ratios. As a result, the most effective polyether-polyquaternium variant for each size range of oil droplet was screened out. By employing these three selected polyether-polyquaternium variants in a sequential batch demulsification test, the maximum demulsification efficiency of 95.1% was obtained, which was much higher than that using a single polyether-polyquaternium variant (82.5%, 80.5% and 83.8%). The adsorption behaviors of polyether-polyquaternium variants on the oil/water interface were investigated by the molecular dynamics simulation. Moreover, the interfacial properties and oil droplet size variations during the demulsification process were monitored, so as explore the demulsification mechanism. This demulsification protocol based on the size effect of oil droplets with its excellent oil-water separation performance offered significant technical promise for the emulsified oil wastewater disposal.


Assuntos
Emulsões , Polímeros , Tensoativos , Tensoativos/química , Polímeros/química , Emulsões/química , Óleos/química , Água/química , Adsorção , Poluentes Químicos da Água/química , Tamanho da Partícula , Simulação de Dinâmica Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA