Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 419
Filtrar
1.
Biomed Pharmacother ; 177: 116998, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38901197

RESUMO

Inflammatory skin disorders are the fourth leading cause of chronic non-fatal conditions, which have a serious impact on the patient quality of life. Due to their treatment with conventional corticosteroids, which often result in poor therapeutic efficacy, relapses and systemic side effects from prolonged therapy, these diseases represent a global burden that negatively impacts the global economy. To avoid these problems and optimize corticosteroid benefits, beclomethasone was loaded into liposome formulations specifically tailored for skin delivery. These formulations were enhanced with mucin (0.1 and 0.5 % w/v) to further ensure prolonged formulation permanence at the site of application. The addition of 0.5 % w/v mucin resulted in the formation of small unilamellar vesicles and multicompartment vesicles. Liposomes and 1mucin-liposomes were smaller (∼48 and ∼61 nm, respectively) and more monodispersed (PI ∼ 0.14 and ∼ 0.17, respectively) than 5mucin-liposomes, which were larger (∼137 nm), slightly polydispersed (PI ∼ 0.23), and less stable during storage (4 months in the dark at 25 °C). Liposomes were negatively charged (∼ -79 mV) irrespective of their composition, and capable of incorporating high amount of beclomethasone (∼ 80 %). In vitro studies on skin fibroblasts and keratinocytes confirmed the high biocompatibility of all formulations (viability ≥ 95 %). However, the use of mucin-liposomes resulted in higher efficacy against nitric oxide production and free radical damage. Finally, topical applications using 12-O-tetradecanoylphorbol-13-acetate-injured skin in vivo experiments showed that only the mucin-enriched formulations could restore healthy conditions within 4 days, underscoring promise as a treatment for skin disorders.

2.
Plants (Basel) ; 13(12)2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38931136

RESUMO

Cannabis contains numerous natural components and has several effects such as anticancer, anti-inflammatory and antioxidant. Cheungsam is a variety of non-drug-type hemp, developed in Korea and is used for fiber (stem) and oil (seed). The efficacy of Cheungsam on skin is not yet known, and although there are previous studies on Cheungsam seed oil, there are no studies on Cheungsam seed husk. In this study, we investigated the potential of Cheungsam seed husk ethanol extract (CSSH) to alleviate skin inflammation through evaluating the gene and protein expression levels of inflammatory mediators. The results showed that CSSH reduced pro-inflammatory cytokines (IL-1ß, IL-6, IL-8, MCP-1 and CXCL10) and atopic dermatitis-related cytokines (IL-4, CCL17, MDC and RANTES) in TNF-α/IFN-γ-induced HaCaT cells. Furthermore, ERK, JNK and p38 phosphorylation were decreased and p-p65, p-IκBα, NLRP3, caspase-1, p-JAK1 and p-STAT6 were suppressed after CSSH treatment. CSSH significantly increased the level of the skin barrier factors filaggrin and involucrin. These results suggest that Cheungsam seed husk ethanol extract regulates the mechanism of skin inflammation and can be used as a new treatment for skin inflammatory diseases.

3.
J Adv Res ; 2024 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-38909883

RESUMO

BACKGROUND: Rosacea is an inflammatory skin disorder characterized by the release of inflammatory mediators from keratinocytes, which are thought to play a crucial role in its pathogenesis. Despite an incidence of approximately 5.5%, rosacea is associated with a poor quality of life. However, as the pathogenesis of rosacea remains enigmatic, treatment options are limited. OBJECTIVES: To investigate the pathogenesis of rosacea and explore new therapeutic strategies. METHODS: Transcriptome data from rosacea patients combined with immunohistochemical staining were used to investigate the activation of STAT3 in rosacea. The role of STAT3 activation in rosacea was subsequently explored by inhibiting STAT3 activation both in vivo and in vitro. The key molecules downstream of STAT3 activation were identified through data analysis and experiments. Dual-luciferase assay and ChIP-qPCR analysis were used to validate the direct binding of STAT3 to the IL-36G promoter. DARTS, in combination with experimental screening, was employed to identify effective drugs targeting STAT3 for rosacea treatment. RESULTS: STAT3 signaling was hyperactivated in rosacea and served as a promoter of the keratinocyte-driven inflammatory response. Mechanistically, activated STAT3 directly bind to the IL-36G promoter region to amplify downstream inflammatory signals by promoting IL-36G transcription, and treatment with a neutralizing antibody (α-IL36γ) could mitigate rosacea-like inflammation. Notably, a natural plant extract (pogostone), which can interact with STAT3 directly to inhibit its activation and affect the STAT3/IL36G signaling pathway, was screened as a promising topical medication for rosacea treatment. CONCLUSIONS: Our study revealed a pivotal role for STAT3/IL36G signaling in the development of rosacea, suggesting that targeting this pathway might be a potential strategy for rosacea treatment.

4.
Biomed Pharmacother ; 176: 116911, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38861857

RESUMO

Atopic dermatitis (AD) is a globally increasing chronic inflammatory skin disease with limited and potentially side-effect-prone treatment options. Monotropein is the predominant iridoid glycoside in Morinda officinalis How roots, which has previously shown promise in alleviating AD symptoms. This study aimed to systematically investigate the pharmacological effects of monotropein on AD using a 2, 4-dinitrochlorobenzene (DNCB)/Dermatophagoides farinae extract (DFE)-induced AD mice and tumor necrosis factor (TNF)-α/interferon (IFN)-γ-stimulated keratinocytes. Oral administration of monotropein demonstrated a significant reduction in AD phenotypes, including scaling, erythema, and increased skin thickness in AD-induced mice. Histological analysis revealed a marked decrease in immune cell infiltration in skin lesions. Additionally, monotropein effectively downregulated inflammatory markers, encompassing pro-inflammatory cytokines, T helper (Th)1 and Th2 cytokines, and pro-inflammatory chemokines in skin tissues. Notably, monotropein also led to a considerable decrease in serum immunoglobulin (Ig)E and IgG2a levels. At a mechanistic level, monotropein exerted its anti-inflammatory effects by suppressing the phosphorylation of Janus kinase / signal transducer and activator of transcription proteins in both skin tissues of AD-induced mice and TNF-α/IFN-γ-stimulated keratinocytes. In conclusion, monotropein exhibited a pronounced alleviation of AD symptoms in the experimental models used. These findings underscore the potential application of monotropein as a therapeutic agent in the context of AD, providing a scientific basis for further exploration and development.


Assuntos
Dermatite Atópica , Janus Quinases , Queratinócitos , Transdução de Sinais , Pele , Animais , Dermatite Atópica/tratamento farmacológico , Dermatite Atópica/patologia , Dermatite Atópica/induzido quimicamente , Transdução de Sinais/efeitos dos fármacos , Camundongos , Janus Quinases/metabolismo , Pele/efeitos dos fármacos , Pele/patologia , Pele/metabolismo , Queratinócitos/efeitos dos fármacos , Queratinócitos/metabolismo , Citocinas/metabolismo , Camundongos Endogâmicos BALB C , Fatores de Transcrição STAT/metabolismo , Humanos , Dinitroclorobenzeno , Anti-Inflamatórios/farmacologia , Feminino , Modelos Animais de Doenças , Inflamação/tratamento farmacológico , Inflamação/patologia , Imunoglobulina E/sangue , Dermatophagoides farinae/imunologia , Iridoides/farmacologia
5.
Antioxidants (Basel) ; 13(6)2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38929186

RESUMO

PAPLAL, a mixture of platinum (nPt) and palladium (nPd) nanoparticles, is widely used as a topical agent because of its strong antioxidant activity. Allergic contact dermatitis (ACD) is one of the most common occupational skin diseases worldwide. However, the role of oxidative stress in ACD remains unclear. In the present study, we investigated the protective effects of topical PAPLAL treatment on 2,4-dinitrofluorobenzene (DNFB)-induced ACD. DNFB treatment increased 8-isoprostane content; upregulated Xdh, Nox2, and Nox4, pro-oxidant genes; and downregulated Sod1, an antioxidant gene, indicating oxidative damage in the ear skin. PAPLAL therapy significantly reduced ear thickness associated with the downregulation of inflammatory cytokine-related genes. PAPLAL also significantly increased the expression of the stress-response-related genes Ahr and Nrf2, as well as their target genes, but failed to alter the expression of redox-related genes. Furthermore, Sod1 loss worsened ACD pathologies in the ear. These results strongly suggest that PAPLAL protects against ACD through its antioxidant activity and activation of the AHR and NRF2 axes. The antioxidant PAPLAL can be used as a novel topical therapy for ACD that targets oxidative stress.

6.
Phytomedicine ; 129: 155679, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38701542

RESUMO

BACKGROUND: As the largest organ of the body, the skin is constantly subjected to ultraviolet radiation (UVR), leading to inflammations and changes that mirror those seen in chronological aging. Although various small molecule drugs have been explored for treating skin photoaging, they typically suffer from low stability and a high incidence of adverse reactions. Consequently, the continued investigation of photoaging treatments, particularly those utilizing herbal products, remains a critical clinical endeavor. One such herbal product, Lapagyl, is derived from the bark of the lapacho tree and possesses antioxidant efficacies that could be beneficial in combating skin photoaging. PURPOSE: This research aimed to evaluate the efficacy of the herbal product Lapagyl in combating UVR-induced skin photoaging. Additionally, it sought to unravel the mechanisms by which Lapagyl promotes the regeneration of the skin extracellular matrix. METHODS: To investigate whether Lapagyl can alleviate skin aging and damage, a UVR radiation model was established using SKH-1 hairless mice. The dorsal skins of these mice were evaluated for wrinkle formation, texture, moisture, transepidermal water loss (TEWL), and elasticity. Pathological assessments were conducted to determine Lapagyl's efficacy. Additionally, single-cell sequencing and spectrum analysis were employed to elucidate the working mechanisms and primary components of Lapagyl in addressing UVR-induced skin aging and injury. RESULTS: Lapagyl markedly reduced UVR-induced wrinkles, moisture loss, and elasticity decrease in SKH-1 mice. Single-cell sequencing demonstrated that Lapagyl corrected the imbalance in cell proportions caused by UVR, decreased UVR-induced ROS expression, and protected basal and spinous cells from skin damage. Additionally, Lapagyl effectively prevented the entry of inflammatory cells into the skin by reducing CCL8 expression and curtailed the UVR-induced formation of Foxp3+ regulatory T cells (Tregs) in the skin. Both pathological assessments and ex vivo skin model results demonstrated that Lapagyl effectively reduced UVR-induced damage to collagen and elastin. Spectrum analysis identified Salidroside as the primary compound remaining in the skin following Lapagyl treatment. Taken together, our study elucidated the skin protection mechanism of the herbal product Lapagyl against UVR damage at the cellular level, revealing its immunomodulatory effects, with salidroside identified as the primary active compound for skin. CONCLUSION: Our study provided a thorough evaluation of Lapagyl's protective effects on skin against UVR damage, delving into the mechanisms at the cellular level. We discovered that Lapagyl mitigates skin inflammation and immunosuppression by regulating Foxp3+ Tregs and the CCL pathway. These insights indicate that Lapagyl has potential as a novel therapeutic option for addressing skin photoaging.


Assuntos
Fatores de Transcrição Forkhead , Camundongos Pelados , Envelhecimento da Pele , Pele , Linfócitos T Reguladores , Raios Ultravioleta , Animais , Feminino , Camundongos , Antioxidantes/farmacologia , Quimiocinas/metabolismo , Fatores de Transcrição Forkhead/metabolismo , Inflamação , Pele/efeitos dos fármacos , Pele/efeitos da radiação , Envelhecimento da Pele/efeitos dos fármacos , Envelhecimento da Pele/efeitos da radiação , Linfócitos T Reguladores/efeitos dos fármacos , Linfócitos T Reguladores/efeitos da radiação , Transcriptoma/efeitos dos fármacos
7.
J Invest Dermatol ; 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38735363

RESUMO

Psoriasis and rosacea are both chronic inflammatory skin disorders resulted from aberrant keratinocyte-immune cell crosstalk, but the common molecular foundations for these 2 conditions are poorly understood. In this study, we reveal that both patients with psoriasis and those with rosacea as well as their mouse models have significantly elevated expressions of SERPINB3/B4 (members of serine protease inhibitor) in the lesional skin. Skin inflammation in mice that resembles both psoriasis and rosacea is prevented by SERPINB3/B4 deficiency. Mechanistically, we demonstrate that SERPINB3/B4 positively induces NF-κB signaling activation, thereby stimulating disease-characteristic inflammatory chemokines and cytokines production in keratinocytes and promoting the chemotaxis of CD4+ T cells. Our results suggest that in keratinocytes, SERPINB3/B4 may be involved in the pathogenesis of both psoriasis and rosacea by stimulating NF-κB signaling, and they indicate a possible treatment overlap between these 2 diseases.

8.
Cell Rep ; 43(6): 114261, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38776224

RESUMO

Thymocyte development requires precise control of PI3K-Akt signaling to promote proliferation and prevent leukemia and autoimmune disorders. Here, we show that ablating individual clusters of the miR-17∼92 family has a negligible effect on thymocyte development, while deleting the entire family severely impairs thymocyte proliferation and reduces thymic cellularity, phenocopying genetic deletion of Dicer. Mechanistically, miR-17∼92 expression is induced by Myc-mediated pre-T cell receptor (TCR) signaling, and miR-17∼92 promotes thymocyte proliferation by suppressing the translation of Pten. Retroviral expression of miR-17∼92 restores the proliferation and differentiation of Myc-deficient thymocytes. Conversely, partial deletion of the miR-17∼92 family significantly delays Myc-driven leukemogenesis. Intriguingly, thymocyte-specific transgenic miR-17∼92 expression does not cause leukemia or lymphoma but instead aggravates skin inflammation, while ablation of the miR-17∼92 family ameliorates skin inflammation. This study reveals intricate roles of the miR-17∼92 family in balancing thymocyte development, leukemogenesis, and autoimmunity and identifies those microRNAs (miRNAs) as potential therapeutic targets for leukemia and autoimmune diseases.


Assuntos
Autoimunidade , Leucemia , MicroRNAs , Timócitos , MicroRNAs/metabolismo , MicroRNAs/genética , Animais , Timócitos/metabolismo , Timócitos/patologia , Autoimunidade/genética , Camundongos , Leucemia/patologia , Leucemia/genética , Proliferação de Células , PTEN Fosfo-Hidrolase/metabolismo , PTEN Fosfo-Hidrolase/genética , Diferenciação Celular/genética , Transdução de Sinais , Proteínas Proto-Oncogênicas c-myc/metabolismo , Proteínas Proto-Oncogênicas c-myc/genética , Camundongos Endogâmicos C57BL , Receptores de Antígenos de Linfócitos T/metabolismo , Carcinogênese/genética , Carcinogênese/patologia , Carcinogênese/metabolismo
9.
Foods ; 13(10)2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38790770

RESUMO

Houttuynia cordata Thunb is rich in active substances and has excellent antioxidant and anti-inflammatory activity. Scanning electron microscopy and gel permeation chromatography were used to analyze the molecular characteristics of the fermentation broth of Houttuynia cordata Thunb obtained through fermentation with Clavispora lusitaniae (HCT-f). The molecular weight of HCT-f was 2.64265 × 105 Da, and the polydispersity coefficient was 183.10, which were higher than that of unfermented broth of Houttuynia cordata Thunb (HCT). By investigating the active substance content and in vitro antioxidant activity of HCT-f and HCT, the results indicated that HCT-f had a higher active substance content and exhibited a superior scavenging effect on 2,2-diphenyl-1-picrylhydrazyl radicals and hydroxyl radicals, with IC50 values of 11.85% and 9.01%, respectively. Our results showed that HCT-f could effectively alleviate the increase in the secretion of inflammatory factors and apoptotic factors caused by lipopolysaccharide (LPS) stimulation, and had a certain effect on repairing skin barrier damage. HCT-f could exert an anti-inflammatory effect by down-regulating signaling in the MAPK/NF-κB pathway. The results of erythrocyte hemolysis and chicken embryo experiments showed that HCT-f had a high safety profile. Therefore, this study provides a theoretical basis for the application of HCT-f as an effective ingredient in food and cosmetics.

10.
Front Med (Lausanne) ; 11: 1384055, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38698787

RESUMO

Background: Chronic inflammatory skin diseases (CISDs) are among the most common diseases in the Western world. Current estimates of medical care for CISDs are primarily based on surveys among patients in medical care facilities and on health insurance data. Aim: Survey-based examination to what extent CISD patients in health-aware environment consider their skin disease to be controlled. Methods: The survey of CISD patients was carried out in 2022 among the employees of a pharmaceutical company located in Germany and Switzerland. Software-based, anonymous, self-reported questionnaires were used. Results: The number of employees, who answered the questionnaire, was 905. Of these, 222 participants (24.5%) reported having at least one CISD. 28.7% of participants with CISD described their disease as being hardly or not controlled. Regarding the nature of disease, more than one third of participants suffering from hidradenitis suppurativa (HS) or psoriasis fell into the hardly/not controlled category. In contrast, the largest proportion of participants with chronic spontaneous urticaria (43%) or atopic dermatitis (42%) considered their CISD to be completely or well controlled. Only 35.5% of CISD sufferers stated that they were currently under medical care for their skin condition. Being under medical care, however, had no influence on the extent CISD sufferers considered their skin disease to be controlled. The number of active CISD episodes but not the total number of symptomatic days per year was negatively associated with poor disease control (p = 0.042 and p = 0.856, respectively). Poor disease control had a negative effect on the personal and professional lives of those affected, as deduced from its positive association with the extent of daily activity impairment and presenteeism (p = 0.005 and p = 0.005, respectively). Moreover, 41.4 and 20.7% of participants with hardly/not controlled disease stated that their CISD had a moderate and severe or very severe impact on their overall lives (p < 0.001), respectively. A severe or very severe impact of their CISD on their overall life was most commonly reported by participants with HS. Conclusion: Medical care for CISDs, even in an environment with high socio-economic standard and high health-awareness, still appears to be limited and has a negative impact on individuals and society.

11.
Allergy ; 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38727640

RESUMO

BACKGROUND: Meteorin-like protein (METRNL)/Interleukin-41 (IL-41) is a novel immune-secreted cytokine/myokine involved in several inflammatory diseases. However, how METRNL exerts its regulatory properties on skin inflammation remains elusive. This study aims to elucidate the functionality and regulatory mechanism of METRNL in atopic dermatitis (AD). METHODS: METRNL levels were determined in skin and serum samples from patients with AD and subsequently verified in the vitamin D3 analogue MC903-induced AD-like mice model. The cellular target of METRNL activity was identified by multiplex immunostaining, single-cell RNA-seq and RNA-seq. RESULTS: METRNL was significantly upregulated in lesions and serum of patients with dermatitis compared to healthy controls (p <.05). Following repeated MC903 exposure, AD model mice displayed elevated levels of METRNL in both ears and serum. Administration of recombinant murine METRNL protein (rmMETRNL) ameliorated allergic skin inflammation and hallmarks of AD in mice, whereas blocking of METRNL signaling led to the opposite. METRNL enhanced ß-Catenin activation, limited the expression of Th2-related molecules that attract the accumulation of Arginase-1 (Arg1)hi macrophages, dendritic cells, and activated mast cells. CONCLUSIONS: METRNL can bind to KIT receptor and subsequently alleviate the allergic inflammation of AD by inhibiting the expansion of immune cells, and downregulating inflammatory gene expression by regulating the level of active WNT pathway molecule ß-Catenin.

12.
Clin Rev Allergy Immunol ; 66(2): 164-191, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38642273

RESUMO

Psoriasis is one of the most common inflammatory skin diseases with a chronic, relapsing-remitting course. The last decades of intense research uncovered a pathological network of interactions between immune cells and other types of cells in the pathogenesis of psoriasis. Emerging evidence indicates that dendritic cells, TH17 cells, and keratinocytes constitute a pathogenic triad in psoriasis. Dendritic cells produce TNF-α and IL-23 to promote T cell differentiation toward TH17 cells that produce key psoriatic cytokines IL-17, IFN-γ, and IL-22. Their activity results in skin inflammation and activation and hyperproliferation of keratinocytes. In addition, other cells and signaling pathways are implicated in the pathogenesis of psoriasis, including TH9 cells, TH22 cells, CD8+ cytotoxic cells, neutrophils, γδ T cells, and cytokines and chemokines secreted by them. New insights from high-throughput analysis of lesional skin identified novel signaling pathways and cell populations involved in the pathogenesis. These studies not only expanded our knowledge about the mechanisms of immune response and the pathogenesis of psoriasis but also resulted in a revolution in the clinical management of patients with psoriasis. Thus, understanding the mechanisms of immune response in psoriatic inflammation is crucial for further studies, the development of novel therapeutic strategies, and the clinical management of psoriasis patients. The aim of the review was to comprehensively present the dysregulation of immune response in psoriasis with an emphasis on recent findings. Here, we described the role of immune cells, including T cells, B cells, dendritic cells, neutrophils, monocytes, mast cells, and innate lymphoid cells (ILCs), as well as non-immune cells, including keratinocytes, fibroblasts, endothelial cells, and platelets in the initiation, development, and progression of psoriasis.


Assuntos
Células Dendríticas , Psoríase , Psoríase/imunologia , Psoríase/etiologia , Humanos , Células Dendríticas/imunologia , Animais , Queratinócitos/imunologia , Citocinas/metabolismo , Pele/imunologia , Pele/patologia , Transdução de Sinais , Células Th17/imunologia , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo
13.
Allergy ; 79(6): 1573-1583, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38641894

RESUMO

BACKGROUND: The antimicrobial ribonuclease RNase 7 is abundantly expressed in the epidermis of lesional skin of atopic dermatitis (AD). Host RNase inhibitor (RI) binds to RNase 7 and blocks its ribonuclease activity. This study aimed to evaluate the impact of RNase 7-RI interactions on AD. METHODS: Cultured human primary keratinocytes, with siRNA-mediated downregulation of RNase 7 and RI, were stimulated with the synthetic RNA polyinosinic-polycytidylic acid (poly I:C). Induction of proinflammatory mediators was analyzed by real-time PCR and ELISA. RI expression in AD non-lesional and lesional skin biopsies and healthy controls was analyzed by real-time PCR and immunostaining. RI protein release in vivo on the AD skin surface was determined by western blot. Antimicrobial and ribonuclease assays were used to investigate the functional role of RI. RESULTS: RNase 7 inhibited the RNA-induced expression of proinflammatory mediators in keratinocytes. Accordingly, downregulation of RNase 7 in keratinocytes enhanced RNA-mediated induction of proinflammatory mediators, whereas downregulation of RI had the opposite effect. RI was released by damaged keratinocytes and epidermis. In vivo expression and release of RI on the skin surface were enhanced in lesional AD skin. Rinsing solution from the surface of lesional AD skin blocked the ribonuclease activity of RNase 7. The anti-Staphylococcus aureus activity of RNase 7 was abrogated by RI. CONCLUSIONS: Our data suggest a novel role of RI as a trigger factor of inflammation in AD by blocking the ribonuclease and antimicrobial activity of RNase 7, thereby enhancing RNA-mediated inflammation and S. aureus growth.


Assuntos
Dermatite Atópica , Queratinócitos , Ribonucleases , Staphylococcus aureus , Humanos , Dermatite Atópica/metabolismo , Ribonucleases/metabolismo , Queratinócitos/metabolismo , Inflamação/metabolismo , Células Cultivadas
14.
Int J Cosmet Sci ; 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38685711

RESUMO

OBJECTIVE: Magnolia biondii, a plant containing many magnolian-like compounds in its flowers or buds, exhibits anti-inflammatory and antiallergic effects; however, no study has addressed its effect on alleviating ultraviolet light (UV)-induced skin damage. We thus aimed at studying the effects of M. biondii flower extract (MB) on UVB-induced skin damage and determine the relationship between cell damage and damage-associated molecular patterns (DAMPs). METHODS: Reconstructed epidermal models and foreskin samples were selected to detect cellular reactions after UVB irradiation and MB treatment. MTT, haematoxylin-eosin and immunofluorescence staining were used to examine total viability, sunburned cells and expression and migration of DAMPs at 16 or 48 h. Prostaglandin E2 (PGE-2) and interleukin 8 (IL-8) levels were measured using enzyme-linked immunosorbent assays. A clinical UVB-damaged test was carried out on human arms subjected to MB pre- or post-treatment. Human skin probes were used to measure erythema, melanin, ITA° and transepidermal water loss (TEWL), while skin photos were captured using the VISIA system. RESULTS: MB is rich in lignans such as magnolin, pinoresinol dimethyl ether and fargesin, and shows weak UV absorption at 280-320 nm. Coculturing with MB for 16 or 48 h after UVB irradiation improved the tissue viability and structure of Skinovo-Epi, and reduced the expression and migration of high mobility group box protein B1 (HMGB1) as well as the expression of IL-8 and PGE-2. In the excised foreskin treated with MB after UVB irradiation, the generation of 8-hidroxy-2-deoxyguanosine and nuclear transfer of HMGB1 were reduced. When pre-treated with MB for 3 days, UVB-induced skin erythema and ITA° were significantly decreased. When post-treated with MB for 5 days, a decrease in skin erythema, melanin and TEWL values and an increase in skin ITA° were observed. CONCLUSIONS: Treatment with MB attenuated UVB-induced skin damage, such as erythema, pigmentation and skin barrier function, by improving the tissue viability and structure and reducing sunburned cells and skin inflammation. This effect may be related to DNA damage, which causes the migration of HMGB1 from the nucleus to the outside of the cell to induce skin inflammation.


OBJECTIF: Magnolia biondii, une plante dont les fleurs et les bourgeons contiennent de nombreux composés de type magnolien, possède des effets anti­inflammatoires et antiallergiques. Cependant, aucune étude n'a abordé son effet sur la réduction des lésions cutanées induites par la lumière ultraviolette (UV). Dès lors, nous avons cherché à étudier les effets de l'extrait de fleur de M. biondii sur les lésions cutanées induites par les UVB et à déterminer le lien entre les lésions cellulaires et les profils moléculaires associés aux lésions (PMAL). MÉTHODES: Des modèles épidermiques reconstruits et des échantillons de prépuce ont été sélectionnés pour détecter les réactions cellulaires après une irradiation aux UVB et un traitement par extrait de fleur de M. biondii. Le test MTT, l'hématoxyline­éosine (HE) et la coloration par immunofluorescence ont été utilisés pour examiner la viabilité totale, les cellules brûlées par le soleil, ainsi que l'expression et la migration des PMAL à 16 ou 48 h. Les taux de prostaglandine E2 (PGE­2) et d'interleukine 8 (IL­8) ont été mesurés par dosages immuno­enzymatiques (ELISA). Une analyse clinique des lésions dues aux UVB avant ou après traitement a été effectuée sur des bras humains traités par extrait de fleur de M. biondii. Des sondes cutanées humaines ont permis de mesurer l'érythème, le taux de mélanine, l'ITA° et la perte en eau transépidermique, tandis que la peau a été photographiée à l'aide du système VISIA. RÉSULTATS: L'extrait de fleur de M. biondii est riche en lignans, comme la magnoline, le pinorésinol diméthyléther et la fargésine, et montre une faible absorption des UV à une longueur d'onde de 280 à 320 nm. La mise en culture de l'extrait de fleur de M. biondii pendant 16 ou 48 h après irradiation aux UVB a amélioré la viabilité et la structure des tissus de Skinovo­Epi et réduit l'expression et la migration de la protéine B1 du groupe à haute mobilité (HMGB1), ainsi que l'expression de l'IL­8 et de la PGE­2. Dans le prépuce excisé traité par extrait de fleur de M. biondii après irradiation aux UVB, la génération de 8­hidroxy­2­désoxyguanosine et le transfert nucléaire de HMGB1 étaient réduits. Lors d'un prétraitement par extrait de fleur de M. biondii pendant 3 jours, l'érythème cutané induit par les UVB et l'ITA° avaient diminué significativement. Lors d'un post­traitement par extrait de fleur de M. biondii pendant 5 jours, une diminution des valeurs de l'érythème cutané, de la mélanine et de la perte en eau transépidermique et une augmentation de l'ITA° cutané ont été observées. CONCLUSIONS: Le traitement par extrait de fleur de M. biondii a atténué les lésions cutanées induites par les UVB, comme l'érythème, la pigmentation et la fonction de barrière cutanée, en améliorant la viabilité et la structure des tissus et en réduisant les cellules brûlées par le soleil et l'inflammation cutanée. Cet effet peut être lié à une altération de l'ADN, qui entraînent la migration du HMGB1 du noyau vers l'extérieur de la cellule, induisant ainsi une inflammation cutanée.

15.
Phytomedicine ; 129: 155565, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38579646

RESUMO

BACKGROUND: Paeonia lactiflora Pall. (PL) is widely used in China as a homologous plant of medicine and food. PL flower is rich in bioactive substances with anti-inflammatory effects, while the pathogenesis of skin inflammation is complex and the specific mechanism is not clear, the current treatment of skin inflammation is mainly hormonal drugs, and hormonal drugs have obvious toxic side effects. The research on the treatment of skin inflammation by PL flowers is relatively small, so this study provides a basis for the development and utilisation of PL resources. OBJECTIVE: Our study was to investigate the interventional effects of PL flower extracts on skin inflammation and thus to understand its functional role in the treatment of skin inflammation and its molecular mechanisms. METHODS: The major active substances in PL flower extracts were investigated by the HPLC-DAD method, and the potential targets of action were predicted by network pharmacology, which was combined with in vitro experimental validation to explore the mechanism of PL flower extracts on the regulation of skin inflammation. The HPLC-DAD analysis identified seven major active components in PL flower extracts, and in response to the results, combined with the potential mechanism of network pharmacological prediction with skin inflammation, the PL flower extract is closely related to MAPK and NF-κB signaling pathways. In addition, we also investigated the interventional effects of PL flower extract on skin inflammation by western blot detection of MAPK signaling pathway and NF-κB signaling pathway proteins in cells. RESULT: Seven active components were identified and quantified from the extract of PL flowers, including Gallic acid, 1,2,3,4,6-O-Pentagalloylglucose, Oxypaeoniflorin, Paeoniflorin, Albiflorin, Benzoyloxypeoniflorin, and Rutin. It was predicted targets for the treatment of skin inflammation, with PPI showing associations with targets such as TNF, MAPK1, and IL-2. KEGG enrichment analysis revealed that the main signaling pathways involved included MAPK and T cell receptor signaling pathways. Cell experiments showed that the peony flower extract could inhibit the release of NO and inflammatory factors, as well as reduce ROS levels and inhibit cell apoptosis. Furthermore, the extract was found to inhibit the activation of the MAPK and NF-κB signaling pathways in cells. CONCLUSIONS: In this study, we found that PL flower extract can inhibit the production of cell inflammatory substances, suppress the release of inflammatory factors, and deactivate inflammatory signaling pathways, further inhibiting the production of cell inflammation. This indicates that PL flower extract has a therapeutic effect on skin inflammation.


Assuntos
Anti-Inflamatórios , Flores , Farmacologia em Rede , Paeonia , Extratos Vegetais , Paeonia/química , Flores/química , Cromatografia Líquida de Alta Pressão , Anti-Inflamatórios/farmacologia , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Humanos , NF-kappa B/metabolismo , Células HaCaT , Inflamação/tratamento farmacológico , Pele/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos
16.
Regen Ther ; 27: 342-353, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38645281

RESUMO

Background: One of the key obstacles to the healing of diabetic wound is the persistence of active inflammation. We previously demonstrated the potential of cell-free fat extract (CEFFE) to promote the healing of diabetic wounds, and annexin A5 (A5) is a crucial anti-inflammatory protein within CEFFE. This study aimed to evaluate the therapeutic potential of A5 in diabetic wounds. Methods: A5 was loaded into GelMA hydrogels and applied to skin wounds of diabetic mice in vivo. The diabetic wounds with the treatment of GelMA-A5 were observed for 14 days and evaluated by histological analysis. Accessment of inflammation regulation were conducted through anti-CD68 staining, anti-CD86 and anti-CD206 staining, and qRT-PCR of wound tissue. In presence of A5, macrophages stimulated by lipopolysaccharide (LPS) in vitro, and detected through qRT-PCR, flow cytometry, and immunocytofluorescence staining. Besides, epithelial cells were co-cultured with A5 for epithelialization regulation by CCK-8 assay and cell migration assay. Results: A5 could promote diabetic wound healing and regulate inflammations by promoting the transition of macrophages from M1 to M2 phenotype. In vitro experiments demonstrated that A5 exerted a significant effect on reducing pro-inflammatory factors and inhibiting the polarization of macrophages from M0 toward M1 phenotype. A5 significantly promoted the migration of epithelial cells. Conclusion: Annexin A5 has a significant impact on the regulation of macrophage inflammation and promotion of epithelialization.

17.
Biomed Eng Lett ; 14(3): 367-392, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38645592

RESUMO

Bioelectric medicine (BEM) refers to the use of electrical signals to modulate the electrical activity of cells and tissues in the body for therapeutic purposes. In this review, we particularly focused on the microcurrent stimulation (MCS), because, this can take place at the cellular level with sub-sensory application unlike other stimuli. These extremely low-level currents mimic the body's natural electrical activity and are believed to promote various physiological processes. To date, MCS has limited use in the field of BEM with applications in several therapeutic purposes. However, recent studies provide hopeful signs that MCS is more scalable and widely applicable than what has been used so far. Therefore, this review delves into the landscape of MCS, shedding light on the multifaceted applications and untapped potential of MCS in the realm of healthcare. Particularly, we summarized the hierarchical mediation from cell to whole body responses by MCS including its physiological applications. Our final objective of this review is to contribute to the growing body of literature that unveils the captivating potential of BEM, with MCS poised at the intersection of technological innovation and the intricacies of the human body.

18.
Eur J Immunol ; 54(4): e2350580, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38430129

RESUMO

Recombinant human IL-2 has been used to treat inflammatory diseases and cancer; however, side effects like skin rashes limit the use of this therapeutic. To identify key molecules and cells inducing this side effect, we characterized IL-2-induced cutaneous immune reactions and investigated the relevance of CD25 (IL-2 receptor α) in the process. We injected IL-2 intradermally into WT mice and observed increases in immune cell subsets in the skin with preferential increases in frequencies of IL-4- and IL-13-producing group 2 innate lymphoid cells and IL-17-producing dermal γδ T cells. This overall led to a shift toward type 2/type 17 immune responses. In addition, using a novel topical genetic deletion approach, we reduced CD25 on skin, specifically on all cutaneous cells, and found that IL-2-dependent effects were reduced, hinting that CD25 - at least partly - induces this skin inflammation. Reduction of CD25 specifically on skin Tregs further augmented IL-2-induced immune cell infiltration, hinting that CD25 on skin Tregs is crucial to restrain IL-2-induced inflammation. Overall, our data support that innate lymphoid immune cells are key cells inducing side effects during IL-2 therapy and underline the significance of CD25 in this process.


Assuntos
Imunidade Inata , Interleucina-2 , Camundongos , Humanos , Animais , Interleucina-2/efeitos adversos , Interleucina-2/metabolismo , Linfócitos , Inflamação , Linfócitos T Reguladores , Subunidade alfa de Receptor de Interleucina-2/metabolismo , Pele
19.
Front Med (Lausanne) ; 11: 1298229, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38463491

RESUMO

Inflammatory skin diseases like psoriasis and atopic dermatitis are chronic inflammatory skin conditions continuously under investigation due to increased prevalence and lack of cure. Moreover, long-term treatments available are often associated with adverse effects and drug resistance. Consequently, there is a clear unmet need for new therapeutic approaches. One promising and cutting-edge treatment option is the use of adipose-derived mesenchymal stromal cells (AD-MSCs) due to its immunomodulatory and anti-inflammatory properties. Therefore, this mini review aims to highlight why adipose-derived mesenchymal stromal cells are a potential new treatment for these diseases by summarizing the pre-clinical and clinical studies investigated up to date and addressing current limitations and unresolved clinical questions from a dermatological and immunomodulatory point of view.

20.
Int J Mol Sci ; 25(6)2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38542294

RESUMO

An important hallmark of radiation dermatitis is the impairment of the mitotic ability of the stem/progenitor cells in the basal cell layers due to radiation-induced DNA damage, leading to suppressed cell renewal in the epidermis. However, this mechanism alone does not adequately explain the complex pathogenesis of radiation-induced skin injury. In this review, we summarize the latest findings on the complex pathogenesis of radiation dermatitis and correlate these with the clinical features of radiation-induced skin reactions. The current studies show that skin exposure to ionizing radiation induces cellular senescence in the epidermal keratinocytes. As part of their epithelial stress response, these senescent keratinocytes secrete pro-inflammatory mediators, thereby triggering skin inflammation. Keratinocyte-derived cytokines and chemokines modulate intercellular communication with the immune cells, activating skin-resident and recruiting skin-infiltrating immune cells within the epidermis and dermis, thereby orchestrating the inflammatory response to radiation-induced tissue damage. The increased expression of specific chemoattractant chemokines leads to increased recruitment of neutrophils into the irradiated skin, where they release cytotoxic granules that are responsible for the exacerbation of an inflammatory state. Moreover, the importance of IL-17-expressing γδ-T cells to the radiation-induced hyperproliferation of keratinocytes was demonstrated, leading to reactive hyperplasia of the epidermis. Radiation-induced, reactive hyperproliferation of the keratinocytes disturbs the fine-tuned keratinization and cornification processes, leading to structural dysfunction of the epidermal barrier. In summary, in response to ionizing radiation, epidermal keratinocytes have important structural and immunoregulatory barrier functions in the skin, coordinating interacting immune responses to eliminate radiation-induced damage and to initiate the healing process.


Assuntos
Dermatite , Radiodermite , Neoplasias Cutâneas , Humanos , Epiderme/metabolismo , Queratinócitos/metabolismo , Pele/patologia , Radiodermite/patologia , Dermatite/patologia , Neoplasias Cutâneas/patologia , Quimiocinas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA