Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Drug Deliv Transl Res ; 14(3): 573-580, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37783973

RESUMO

Microneedle (MN) technologies offer the opportunity to improve patient access and target delivery of drugs and vaccines to specific tissues. When in the form of skin patches, MNs can be administered by personnel with minimal training, or could be self-administered by patients, which can improve access to medication, especially those usually requiring injection. Because MNs are small (usually sub-millimetre), they can be used for precise tissue targeting. MN patches have been extensively studied to administer vaccines and drugs in preclinical work as well as in multiple clinical trials. When formulated with biodegradable polymer, MNs can enable long-acting therapies by slowly releasing drug as the MNs biodegrade. Targeted drug delivery by hollow MNs has resulted in FDA-approved products that are able to inject vaccines to skin-resident immune cells to improve immune response and to target specific parts of the eye (e.g., suprachoroidal space) for increased efficacy and avoidance of side effects in other parts of the eye. Cosmetic products based on MN technologies are already in widespread use, mostly as anti-aging agents. With extensive research coupled with FDA-approved products, MN technology promises to continue is growth in research leading to products that can benefit patients.


Assuntos
Agulhas , Vacinas , Humanos , Sistemas de Liberação de Medicamentos/métodos , Pele/metabolismo , Administração Cutânea , Preparações Farmacêuticas , Tecnologia
2.
Expert Rev Vaccines ; 22(1): 937-955, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37846657

RESUMO

INTRODUCTION: Microneedles are emerging as a promising technology for vaccine delivery, with numerous advantages over traditional needle and syringe methods. Preclinical studies have demonstrated the effectiveness of MAPs in inducing robust immune responses over traditional needle and syringe methods, with extensive studies using vaccines targeted against different pathogens in various animal models. Critically, the clinical trials have demonstrated safety, immunogenicity, and patient acceptance for MAP-based vaccines against influenza, measles, rubella, and SARS-CoV-2. AREAS COVERED: This review provides a comprehensive overview of the different types of microarray patches (MAPs) and analyses of their applications in preclinical and clinical vaccine delivery settings. This review also covers additional considerations for microneedle-based vaccination, including adjuvants that are compatible with MAPs, patient safety and factors for global vaccination campaigns. EXPERT OPINION: MAP vaccine delivery can potentially be a game-changer for vaccine distribution and coverage in both high-income and low- and middle-income countries. For MAPs to reach this full potential, many critical hurdles must be overcome, such as large-scale production, regulatory compliance, and adoption by global health authorities. However, given the considerable strides made in recent years by MAP developers, it may be possible to see the first MAP-based vaccines in use within the next 5 years.


Assuntos
Vacinas contra Influenza , Influenza Humana , Sarampo , Rubéola (Sarampo Alemão) , Animais , Humanos , Rubéola (Sarampo Alemão)/prevenção & controle , Vacinação/métodos , Sarampo/prevenção & controle , Agulhas
3.
Immunotherapy ; 14(7): 539-552, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35196877

RESUMO

Aim: Epicutaneous immunotherapy (EPIT) with peanut has been demonstrated to be safe but efficacy may be limited by allergen uptake through the skin barrier. To enhance allergen uptake into the skin, the authors used peanut-coated microneedles and compared them with EPIT in a peanut allergy mouse model. Methods: Sensitized mice were treated with peanut-coated microneedles or peanut-EPIT and then challenged with peanut to determine protection. Results: Treatment with peanut-coated microneedles was safe and showed enhanced desensitization to peanut compared with peanut-EPIT administered via a similar schedule. Protection was associated with reduced Th2 immune responses and mast cell accumulation in the intestine. Conclusion: Peanut-coated microneedles have the potential to present a safe method of improving allergen delivery for cutaneous immunotherapy.


Epicutaneous immunotherapy (EPIT) with peanut has been demonstrated to be safe but efficacy has been varied. The tight barrier provided by the skin may limit the amount of allergen taken up through the skin and thus reduce efficacy. The authors evaluated a microneedle-based approach to improve the amount of allergen deposited into the skin to improve efficacy. Mice were made allergic to peanut and then treated with peanut-coated microneedles or peanut-EPIT. Mice were challenged with peanut to determine suppression of allergic reactivity. In mice, treatment with peanut-coated microneedles was safe and enhanced desensitization to peanut compared with peanut-EPIT administered via a similar schedule. Peanut-coated microneedles may present a novel method of improving allergen immunotherapy delivered through the skin.


Assuntos
Alérgenos , Hipersensibilidade a Amendoim , Animais , Arachis , Dessensibilização Imunológica/métodos , Humanos , Camundongos , Hipersensibilidade a Amendoim/terapia , Pele
4.
ACS Appl Bio Mater ; 4(6): 4953-4961, 2021 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-34179728

RESUMO

We generated self-adjuvanted protein nanoparticles of conserved influenza antigens and immunized mice via skin vaccination with dissolvable microneedle patches (MNPs) to increase the strength and breadth of immune responses. We produced M2e nanoparticles via ethanol desolvation, and double-layered NA1/M2e (shell/core), NA1-FliC/M2e, NA2/M2e, and NA2-FliC/M2e protein nanoparticles by chemically crosslinking influenza NA and flagellin (FliC) onto the surfaces of the M2e nanoparticles. The resulting nanoparticles retained FliC TLR5 innate signaling activity and significantly increased antigen-uptake and dendritic cell maturation in vitro. We incorporated the nanoparticles into MNPs for skin vaccination in mice. The nanoparticle MNPs significantly increased M2e and NA-specific antibody levels, the numbers of germinal center B cells, and IL-4 positive splenocytes. Double-layered nanoparticle MNP skin vaccination protected mice against homologous and heterosubtypic influenza viruses. Our results demonstrated that MNP skin vaccination of NA-FliC/M2e nanoparticles could be developed into a standalone or synergistic component of a universal influenza vaccine strategy.


Assuntos
Sistemas de Liberação de Medicamentos , Flagelina/administração & dosagem , Vacinas contra Influenza/administração & dosagem , Nanopartículas/administração & dosagem , Neuraminidase/administração & dosagem , Infecções por Orthomyxoviridae/prevenção & controle , Vacinação/métodos , Proteínas da Matriz Viral/administração & dosagem , Animais , Anticorpos Antivirais/sangue , Linfócitos B/imunologia , Linfócitos T CD4-Positivos/imunologia , Linhagem Celular , Citocinas/imunologia , Células Dendríticas/imunologia , Flagelina/química , Imunoglobulina G/sangue , Vacinas contra Influenza/química , Pulmão/patologia , Pulmão/virologia , Camundongos Endogâmicos BALB C , Microinjeções , Nanopartículas/química , Agulhas , Neuraminidase/química , Neuraminidase/imunologia , Orthomyxoviridae/imunologia , Infecções por Orthomyxoviridae/imunologia , Infecções por Orthomyxoviridae/patologia , Infecções por Orthomyxoviridae/virologia , Proteínas da Matriz Viral/química , Proteínas da Matriz Viral/imunologia
5.
Micromachines (Basel) ; 12(4)2021 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-33919925

RESUMO

Transdermal vaccination route using biodegradable microneedles is a rapidly progressing field of research and applications. The fear of painful needles is one of the primary reasons most people avoid getting vaccinated. Therefore, developing an alternative pain-free method of vaccination using microneedles has been a significant research area. Microneedles comprise arrays of micron-sized needles that offer a pain-free method of delivering actives across the skin. Apart from being pain-free, microneedles provide various advantages over conventional vaccination routes such as intramuscular and subcutaneous. Microneedle vaccines induce a robust immune response as the needles ranging from 50 to 900 µm in length can efficiently deliver the vaccine to the epidermis and the dermis region, which contains many Langerhans and dendritic cells. The microneedle array looks like band-aid patches and offers the advantages of avoiding cold-chain storage and self-administration flexibility. The slow release of vaccine antigens is an important advantage of using microneedles. The vaccine antigens in the microneedles can be in solution or suspension form, encapsulated in nano or microparticles, and nucleic acid-based. The use of microneedles to deliver particle-based vaccines is gaining importance because of the combined advantages of particulate vaccine and pain-free immunization. The future of microneedle-based vaccines looks promising however, addressing some limitations such as dosing inadequacy, stability and sterility will lead to successful use of microneedles for vaccine delivery. This review illustrates the recent research in the field of microneedle-based vaccination.

6.
Vaccines (Basel) ; 9(4)2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33915696

RESUMO

Vaccines are an essential component of pandemic preparedness but can be limited due to challenges in production and logistical implementation. While vaccine candidates were rapidly developed against severe acute respiratory syndrome coronavirus 2 (SARS-COV-2), immunization campaigns remain an obstacle to achieving herd immunity. Dissolvable microneedle patches are advantageous for many possible reasons: improved immunogenicity; dose-sparing effects; expected low manufacturing cost; elimination of sharps; reduction of vaccine wastage; no need for reconstitution; simplified supply chain, with reduction of cold chain supply through increased thermostability; ease of use, reducing the need for healthcare providers; and greater acceptability compared to traditional hypodermic injections. When applied to coronavirus disease 2019 (COVID-19) and future pandemic outbreaks, microneedle patches have great potential to improve vaccination globally and save many lives.

7.
Vaccine ; 39(13): 1857-1869, 2021 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-33678451

RESUMO

The skin is potentially an important vaccine delivery route facilitated by a high number of resident antigen presenting cells (APCs), which are known to be stimulated by different Toll-like receptor agonists (TLRa). In this study, neonatal and adult pigs were vaccinated in the skin using dissolving microneedle patches to investigate the immuno-stimulatory potential of different TLRa and possible age-dependent differences early after vaccination. These patches contained TLR1/2a (Pam3Cys), TLR7/8a (R848) or TLR9a (CpG ODN) combined with inactivated porcine reproductive and respiratory syndrome virus (PRRSV) or with an oil-in-water stable emulsion. Vaccinated skin and draining lymph nodes were analysed for immune response genes using microfluidic high-throughput qPCR to evaluate the early immune response and activation of APCs. Skin pathology and immunohistochemistry were used to evaluate the local immune responses and APCs in the vaccinated skin, respectively. In both neonatal and adult pigs, skin vaccination with TLR7/8a induced the most prominent early inflammatory and immune cell responses, particularly in the skin. Skin histopathology and immunohistochemistry of APCs showed comparable results for neonatal and adult pigs after vaccination with the different TLRa vaccines. However, in vaccinated neonatal pigs in the skin and draining lymph node more immune response related genes were upregulated compared to adult pigs. We showed that both neonatal and adult skin could be stimulated to develop an immune response, particularly after TLR7/8a vaccination, with age-dependent differences in regulation of immune genes. Therefore, age-dependent differences in local early immune responses should be considered when developing skin vaccines.


Assuntos
Síndrome Respiratória e Reprodutiva Suína , Vírus da Síndrome Respiratória e Reprodutiva Suína , Vacinas Virais , Animais , Anticorpos Antivirais , Imunidade , Linfonodos , Suínos , Receptores Toll-Like , Vacinação
8.
Drug Deliv Transl Res ; 11(2): 692-701, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33590465

RESUMO

Skin vaccination by microneedle (MN) patch simplifies the immunization process to increase access to vaccines for global health. Lyophilization has been widely used to stabilize vaccines and other biologics during storage, but is generally not compatible with the MN patch manufacturing processes. In this study, our goal was to develop a method to incorporate lyophilized inactivated H1N1 influenza vaccine into MN patches during manufacturing by suspending freeze-dried vaccine in anhydrous organic solvent during the casting process. Using a casting formulation containing chloroform and polyvinylpyrrolidone, lyophilized influenza vaccine maintained activity during manufacturing and subsequent storage for 3 months at 40 °C. Influenza vaccination using these MN patches generated strong immune responses in a murine model. This manufacturing process may enable vaccines and other biologics to be stabilized by lyophilization and administered via a MN patch.


Assuntos
Vírus da Influenza A Subtipo H1N1 , Vacinas contra Influenza , Influenza Humana , Animais , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Agulhas , Solventes , Vacinação
9.
Allergy ; 76(1): 210-222, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32621318

RESUMO

BACKGROUND: Allergen-specific immunotherapy via the skin targets a tissue rich in antigen-presenting cells, but can be associated with local and systemic side effects. Allergen-polysaccharide neoglycogonjugates increase immunization efficacy by targeting and activating dendritic cells via C-type lectin receptors and reduce side effects. OBJECTIVE: We investigated the immunogenicity, allergenicity, and therapeutic efficacy of laminarin-ovalbumin neoglycoconjugates (LamOVA). METHODS: The biological activity of LamOVA was characterized in vitro using bone marrow-derived dendritic cells. Immunogenicity and therapeutic efficacy were analyzed in BALB/c mice. Epicutaneous immunotherapy (EPIT) was performed using fractional infrared laser ablation to generate micropores in the skin, and the effects of LamOVA on blocking IgG, IgE, cellular composition of BAL, lung, and spleen, lung function, and T-cell polarization were assessed. RESULTS: Conjugation of laminarin to ovalbumin reduced its IgE binding capacity fivefold and increased its immunogenicity threefold in terms of IgG generation. EPIT with LamOVA induced significantly higher IgG levels than OVA, matching the levels induced by s.c. injection of OVA/alum (SCIT). EPIT was equally effective as SCIT in terms of blocking IgG induction and suppression of lung inflammation and airway hyperresponsiveness, but SCIT was associated with higher levels of therapy-induced IgE and TH2 cytokines. EPIT with LamOVA induced significantly lower local skin reactions during therapy compared to unconjugated OVA. CONCLUSION: Conjugation of ovalbumin to laminarin increased its immunogenicity while at the same time reducing local side effects. LamOVA EPIT via laser-generated micropores is safe and equally effective compared to SCIT with alum, without the need for adjuvant.


Assuntos
Asma , Pneumonia , beta-Glucanas , Alérgenos , Animais , Asma/terapia , Lasers , Camundongos , Camundongos Endogâmicos BALB C , Ovalbumina
10.
Vet Immunol Immunopathol ; 232: 110170, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33383553

RESUMO

Vaccination of neonatal pigs could be supportive to prevent porcine reproductive and respiratory syndrome virus (PRRSV), which is an important porcine pathogen causing worldwide welfare and health problems in pigs of different age classes. However, neonatal immunity substantially differs to adults, thus different vaccines may be required in neonateal pigs. We examined if the immunogenicity and efficacy of inactivated PRRSV (iPRRSV) vaccines in neonatal pigs could be improved with adjuvants containing oil-in water (O/W) emulsions with or without Toll-like receptor (TLR) agonists and by altering the delivery route from intramuscular (i.m.) to the skin. Three-day-old PRRSV-naïve piglets (n = 54, divided in 6 groups) received a prime vaccination and a booster vaccination four weeks later. The vaccine formulations consisted of different O/W emulsions (Montanide™ ISA28RVG (ISA28)), a squalene in water emulsion (SWE) for i.m. or a Stable Emulsion (SE) with squalene for skin vaccination) and/or a mixture of TLR1/2, 7/8 and 9 agonists (TLRa) combined with iPRRSV strain 07V063. These vaccines were delivered either i.m. (ISA28, SWE, TLRa or SWE + TLRa) or into the skin (skiSE + TLRa) with dissolving microneedle (DMN)-patches. All animals received a challenge with homologous PRRSV three weeks after booster vaccination. Specific antibodies, IFN-γ production and viremia were measured at several time-points after vaccination and/or challenge, while lung pathology was studied at necropsy. After booster vaccination, only ISA28 induced a specific antibody response while a specific T-cell IFN-γ response was generated in the SWE group, that was lower for ISA28, and absent in the other groups. This suggests that prime vaccination in neonates induced a specific immune response after booster vaccination, dependent on the emulsion formulation, but not dependent on the presence of the TLRa or delivery route. Despite the measured immune responses none of the vaccines showed any efficacy. Further research focused on the early immune response in draining lymph nodes is needed to elucidate the potential of TLR agonists in vaccines for neonatal pigs.


Assuntos
Adjuvantes Imunológicos/farmacologia , Imunogenicidade da Vacina , Síndrome Respiratória e Reprodutiva Suína/prevenção & controle , Vírus da Síndrome Respiratória e Reprodutiva Suína/imunologia , Vacinas Virais/imunologia , Animais , Animais Recém-Nascidos , Citocinas/sangue , Imunidade Celular , Pulmão/patologia , Linfócitos/imunologia , Masculino , Síndrome Respiratória e Reprodutiva Suína/imunologia , Síndrome Respiratória e Reprodutiva Suína/patologia , Suínos , Vacinas de Produtos Inativados/imunologia , Viremia/veterinária
11.
Eur J Pharm Sci ; 155: 105560, 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-32949750

RESUMO

A painless skin delivery of vaccine for disease prevention is of great advantage in improving compliance in patients. To test this idea as a proof of concept, we utilized a pDNA vaccine construct, pDNAg333-2GnRH that has a dual function of controlling rabies and inducing immunocontraception in animals. The pDNA was administered to mice in a nanoparticulate form delivered through the skin using the P.L.E.A.S.E.® (Precise Laser Epidermal System) microporation laser device. Laser application was well tolerated, and mild skin reaction was healed completely in 8 days. We demonstrated that adjuvanted nanoparticulate pDNA vaccine significantly upregulated the expression of co-stimulatory molecules in dendritic cells. After topical administration of the adjuvanted nano-vaccine in mice, the high avidity serum for GnRH antibodies were induced and maintained up to 9 weeks. The induced immune response was of a mixed Th1/Th2 profile as measured by IgG subclasses (IgG2a and IgG1) and cytokine levels (IFN-γ and IL-4). Using flow cytometry, we revealed an increase of CD8+ T-cells and CD45R B cells upon the administration of the adjuvanted vaccine. Our previous study used the same pDNA nanoparticulate vaccine through an IM route, and a comparable immune response was induced using P.L.E.A.S.E. However, the vaccine dose in the current study was four-fold less than what was applied through the IM route.We concluded that laser-assisted skin vaccination has a potential of becoming a safe and reliable vaccination tool for rabies vaccination in animals or even in humans for pre- or post-exposure prophylaxis.


Assuntos
Vacina Antirrábica , Raiva , Adjuvantes Imunológicos , Animais , Linfócitos T CD8-Positivos , Humanos , Lasers , Camundongos , Camundongos Endogâmicos BALB C , Poloxâmero , Vacinação
12.
Pharmaceutics ; 12(3)2020 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-32183437

RESUMO

Transcutaneous immunization (TCI) is easy to use, minimally invasive, and has excellent efficacy in vaccines against infections. We focused on toll-like receptor (TLR) ligands as applicable adjuvants for transcutaneous formulations and characterized immune responses. TCI was performed using poke-and-patch methods, in which puncture holes are formed with a polyglycolic acid microneedle on the back skin of mice. Various TLR ligands were applied to the puncture holes and covered with an ovalbumin-loaded hydrophilic gel patch. During the screening process, K3 (CpG-oligonucleotide) successfully produced more antigen-specific antibodies than other TLR ligands and induced T helper (Th) 1-type polarization. Transcutaneously administered K3 was detected in draining lymph nodes and was found to promote B cell activation and differentiation, suggesting a direct transcutaneous adjuvant activity on B cells. Furthermore, a human safety test of K3-loaded self-dissolving microneedles (sdMN) was performed. Although a local skin reaction was observed at the sdMN application site, there was no systemic side reaction. In summary, we report a K3-induced Th1-type immune response that is a promising adjuvant for transcutaneous vaccine formulations using MN and show that K3-loaded sdMN can be safely applied to human skin.

13.
J Control Release ; 314: 38-47, 2019 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-31626861

RESUMO

The prevalence of peanut allergies has escalated over the last 20 years, yet there are no FDA approved treatments for peanut allergies. In this study we evaluated the potential of microneedles to deliver peanut protein extract (PE) into skin and assessed if the ensuing immune responses could desensitize mice that were sensitized to peanuts. Peanut sensitized mice were either treated through cutaneous immunotherapy using PE-coated microneedles or not treated, and then orally challenged with PE. After oral challenge, the clinical symptoms of peanut-induced anaphylaxis were significantly lower in the microneedle treated mice as compared to untreated mice, and this was accompanied by down-regulation of systemic anaphylaxis mediators such as histamine and mast cell protease-1 (MCPT-1) in the microneedles treated group. Overall, there was an up-regulation of Th1 cytokines (IL-2 and IFN-γ) as compared to Th2 cytokines (IL-4 and IL-5) in splenocyte culture supernatants of the microneedle treated group as compared to untreated group, suggesting that microneedles promoted immune modulation towards the Th1 pathway. Furthermore, mice treated with PE-coated microneedles were observed to retain integrity of their small intestine villi and had reduced eosinophilic infiltration as compared to the untreated but peanut sensitized mice, which further confirmed the desensitization capability of peanut cutaneous immunotherapy using coated microneedles. Thus, our current study represents a novel minimally invasive microneedle based cutaneous immunotherapy, which may provide a novel route of desensitization for the treatment of peanut allergies.


Assuntos
Alérgenos/administração & dosagem , Arachis/imunologia , Dessensibilização Imunológica/métodos , Hipersensibilidade a Amendoim/terapia , Alérgenos/imunologia , Animais , Citocinas/imunologia , Modelos Animais de Doenças , Feminino , Camundongos , Camundongos Endogâmicos BALB C , Agulhas , Hipersensibilidade a Amendoim/imunologia , Pele/metabolismo
14.
J Infect Dis ; 220(12): 1926-1934, 2019 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-31408163

RESUMO

BACKGROUND: This study evaluated dissolvable microneedle patch (dMNP) delivery of hepatitis B vaccine in rhesus macaques and provides evidence that dMNP delivery elicits seroprotective anti-HBs levels comparable with human seroprotection, potentially useful for hepatitis B birth dose vaccination in resource-constrained regions. METHODS: Sixteen macaques were each vaccinated twice; they were treated in 4 groups, with dMNP delivery of AFV at 24 ± 8 µg (n = 4) or 48 ± 14 µg (n = 4), intramuscular injection of AFV (10 µg; n = 4), or intramuscular injection of AAV (10 µg; n = 4). Levels of antibody to hepatitis B surface antigen (HBsAg) (anti-HBs) and HBsAg-specific T-cell responses were analyzed. RESULTS: Six of 8 animals with dMNP delivery of AFV had anti-HBs levels ≥10 mIU/mL after the first vaccine dose. After dMNP delivery of AFV, interferon γ, interleukin 2, and interleukin 4 production by HBsAg-specific T cells was detected. A statistically significant positive correlation was detected between anti-HBs levels and cells producing HBsAg-specific interferon γ and interleukin 2 (T-helper 1-type cytokine) and interleukin 4 (T-helper 2-type cytokine) in all anti-HBs-positive animals. CONCLUSIONS: dMNP delivery of AFV can elicit seroprotective anti-HBs levels in rhesus macaques that are correlated with human seroprotection, and it could be particularly promising for birth dose delivery of hepatitis B vaccine in resource-constrained regions.


Assuntos
Vacinas contra Hepatite B/imunologia , Vírus da Hepatite B/imunologia , Hepatite B/imunologia , Hepatite B/prevenção & controle , Imunização/métodos , Animais , Citocinas/metabolismo , Modelos Animais de Doenças , Epitopos de Linfócito T/imunologia , Anticorpos Anti-Hepatite B/imunologia , Antígenos de Superfície da Hepatite B/imunologia , Vacinas contra Hepatite B/administração & dosagem , Humanos , Imunidade Celular , Imunidade Humoral , Macaca mulatta , Vacinação/métodos
15.
Vet Immunol Immunopathol ; 212: 27-37, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31213249

RESUMO

Toll-like receptor (TLR) agonists can effectively stimulate antigen-presenting cells (APCs) and are anticipated to be promising adjuvants in combination with inactivated vaccines. In this study, the adjuvant potential of three different TLR-agonists were compared with an oil-in-water (O/W) adjuvant in combination with inactivated porcine reproductive and respiratory syndrome virus (iPRRSV) applied by different administration routes: intramuscular (i.m.) or into the skin using dissolving microneedle (DMN) patches. Pigs received a prime vaccination followed by a booster vaccination four weeks later. TLR1/2 (Pam3Cys), TLR7/8 (R848) or TLR9 (CpG ODN) agonists were used as adjuvant in combination with iPRRSV strain 07V063. O/W adjuvant (Montanide™) was used as reference control adjuvant and one group received a placebo vaccination containing diluent only. All animals received a homologous challenge with PRRSV three weeks after the booster vaccination. Antibody and IFN-γ production, serum cytokines and viremia were measured at several time-points after vaccination and/or challenge, and lung pathology at necropsy. Our results indicate that a TLR 1/2, 7/8 or 9 agonist as adjuvant with iPRRSV does not induce a detectable PRRSV-specific immune response, independent of the administration route. However, the i.m. TLR9 agonist group showed reduction of viremia upon challenge compared to the non-vaccinated animals, supported by a non-antigen-specific IFN-γ level after booster vaccination and an anamnestic antibody response after challenge. Montanide™-adjuvanted iPRRSV induced antigen-specific immunity after booster combined with reduction of vireamia. Skin application of TLR7/8 agonist, but not the other agonists, induced a local skin reaction. Further research is needed to explore the potential of TLR agonists as adjuvants for inactivated porcine vaccines with a preference for TLR9 agonists.


Assuntos
Adjuvantes Imunológicos/administração & dosagem , Oligodesoxirribonucleotídeos/imunologia , Síndrome Respiratória e Reprodutiva Suína/prevenção & controle , Receptor Toll-Like 9/agonistas , Vacinas Virais/imunologia , Animais , Anticorpos Antivirais/sangue , Citocinas/sangue , Citocinas/imunologia , Masculino , Oligodesoxirribonucleotídeos/administração & dosagem , Síndrome Respiratória e Reprodutiva Suína/imunologia , Vírus da Síndrome Respiratória e Reprodutiva Suína , Suínos , Receptor Toll-Like 9/imunologia , Vacinação , Vacinas de Produtos Inativados/imunologia , Viremia
16.
Front Immunol ; 9: 1705, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30105019

RESUMO

Skin vaccination using biodegradable microneedle patch (MNP) technology in vaccine delivery is a promising strategy showing significant advantages over conventional flu shots. In this study, we developed an MNP encapsulating a 4M2e-tFliC fusion protein and two types of whole inactivated influenza virus vaccines (H1N1 and H3N2) as a universal vaccine candidate. We demonstrated that mice receiving this tri-component influenza vaccine via MNP acquired improved IgG1 antibody responses with more balanced IgG1/IgG2a antibody responses and enhanced cellular immune responses, including increased populations of IL-4 and IFN-γ producing cells and higher frequencies of antigen-specific plasma cells compared with intramuscular injection. In addition, stronger germinal center reactions, increased numbers of Langerin-positive migratory dendritic cells, and increased cytokine secretion were observed in the skin-draining lymph nodes after immunization with the tri-component influenza MNP vaccine. The MNP-immunized group also possessed enhanced protection against a heterologous reassortant A/Shanghai/2013 H7N9 (rSH) influenza virus infection. Furthermore, the sera collected from 4M2e-tFliC MNP-immunized mice were demonstrated to have antiviral efficacy against reassortant A/Vietnam/1203/2004 H5N1 (rVet) and A/Shanghai/2013 H7N9 (rSH) virus challenges. The immunological advantages of skin vaccination with this tri-component MNP vaccine could offer a promising approach to develop an easily applicable and broadly protective universal influenza vaccine.


Assuntos
Proteção Cruzada/imunologia , Imunidade , Vírus da Influenza A/imunologia , Vacinas contra Influenza/administração & dosagem , Influenza Humana/prevenção & controle , Administração Cutânea , Animais , Anticorpos Antivirais/imunologia , Formação de Anticorpos , Citocinas/metabolismo , Modelos Animais de Doenças , Cães , Humanos , Soros Imunes/imunologia , Imunidade Celular , Imunização , Injeções Intradérmicas , Células Madin Darby de Rim Canino , Camundongos , Agulhas , Vacinação/métodos
17.
Eur J Pharm Biopharm ; 128: 119-130, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29660407

RESUMO

The intradermal delivery of biologics has long been recognized as attractive approach for cutaneous immunotherapy, particularly vaccination. Although intradermal (i.d.) or subcutaneous (s.c.) injection provide reproducible dosing and good cost- and delivery efficiency, the major objective to avoid sharps and the need for enhanced storage stability have renewed the interest in alternative needle-free delivery strategies. This study presents a new concept for the delivery of macromolecules and nanoparticles to viable skin layers with a high density of professional antigen-presenting cells (APCs). Stable polyvinyl alcohol (PVA) polymer films as well as PVA blends with carboxymethyl cellulose (CMC) or cross-linked carbomer were prepared using an easily-scalable film casting technique. Fluorescein isothiocyanate (FITC) and rhodamine B-labeled dextrane 70 kDa (RD70), used as small and macromolecular model substances, or polystyrene (PS)-nano- and microparticles with diameters of 0.5 µm and 5 µm were directly incorporated into the polymer formulations at varying concentrations. The assembly of the polymer films with an occlusive backing tape created a film patch that provided a fast drug release upon dissolution of the water-soluble film and facilitated an intradermal drug delivery on laser microporated skin. The minimally-invasive P.L.E.A.S.E.® laser poration system (Pantec Biosolutions, Ruggell, Liechtenstein) provided access to viable skin layers by thermally ablating the superficial tissue with a pulsed Er:YAG laser (λ = 2.94 µm). In our in vitro study using excised pig skin, laser microporation induced a 4- to 5-fold increase of water transport (TEWL) through excised skin in a Franz diffusion cell compared to intact skin. The TEWL values detected were comparable to in vivo human skin. The increased water transport facilitated the dissolution of all topically applied dry PVA-based film formulations within 6 h. No dissolution of the films was seen on intact skin. The incubation of the film patches on laser microporated skin for 24 h led to a considerable intradermal delivery of RD70 or PS-nanoparticles, which was superior for pure PVA films compared to PVA-CMC or PVA-carbomer blend formulations. No intradermal delivery was observed on intact skin or when larger PS-microparticles with a diameter of 5 µm were investigated. The presented concept provides a unique opportunity to exploit the improved storage stability of sensitive drug molecules in dry film formulations while providing protection and functionality.


Assuntos
Composição de Medicamentos/métodos , Sistemas de Liberação de Medicamentos/métodos , Nanopartículas/administração & dosagem , Pele/metabolismo , Adesivo Transdérmico , Administração Cutânea , Animais , Dextranos/administração & dosagem , Dextranos/farmacocinética , Difusão , Liberação Controlada de Fármacos , Fluoresceína-5-Isotiocianato/administração & dosagem , Fluoresceína-5-Isotiocianato/farmacocinética , Lasers , Microscopia de Fluorescência , Modelos Animais , Álcool de Polivinil/química , Rodaminas/administração & dosagem , Rodaminas/farmacocinética , Pele/efeitos dos fármacos , Pele/efeitos da radiação , Suínos , Água/química , Perda Insensível de Água/efeitos da radiação
18.
Adv Drug Deliv Rev ; 127: 85-105, 2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29273516

RESUMO

Transdermal gene delivery holds significant advantages as it is able to minimize the problems of systemic administration such as enzymatic degradation, systemic toxicity, and poor delivery to target tissues. This technology has the potential to transform the treatment and prevention of a range of diseases. However, the skin poses a great barrier for gene delivery because of the "bricks-and-mortar" structure of the stratum corneum and the tight junctions between keratinocytes in the epidermis. This review systematically summarizes the typical physical and chemical approaches to overcome these barriers and facilitate gene delivery via skin for applications in vaccination, wound healing, skin cancers and skin diseases. Next, the advantages and disadvantages of different approaches are discussed and the insights for future development are provided.


Assuntos
Técnicas de Transferência de Genes , Nanoestruturas/administração & dosagem , Peptídeos/administração & dosagem , Administração Cutânea , Humanos , Lipossomos , Nanoestruturas/química , Peptídeos/química
19.
J Control Release ; 266: 87-99, 2017 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-28919557

RESUMO

Due to its unique immunological properties, the skin is an attractive target tissue for allergen-specific immunotherapy. In our current work, we combined a dendritic cell targeting approach with epicutaneous immunization using an ablative fractional laser to generate defined micropores in the upper layers of the skin. By coupling the major birch pollen allergen Bet v 1 to mannan from S. cerevisiae via mild periodate oxidation we generated hypoallergenic Bet-mannan neoglycoconjugates, which efficiently targeted CD14+ dendritic cells and Langerhans cells in human skin explants. Mannan conjugation resulted in sustained release from the skin and retention in secondary lymphoid organs, whereas unconjugated antigen showed fast renal clearance. In a mouse model, Bet-mannan neoglycoconjugates applied via laser-microporated skin synergistically elicited potent humoral and cellular immune responses, superior to intradermal injection. The induced antibody responses displayed IgE-blocking capacity, highlighting the therapeutic potential of the approach. Moreover, application via micropores, but not by intradermal injection, resulted in a mixed TH1/TH17-biased immune response. Our data clearly show that applying mannan-neoglycoconjugates to an organ rich in dendritic cells using laser-microporation is superior to intradermal injection. Due to their low IgE binding capacity and biodegradability, mannan neoglycoconjugates therefore represent an attractive formulation for allergen-specific epicutaneous immunotherapy.


Assuntos
Alérgenos/administração & dosagem , Antígenos de Plantas/administração & dosagem , Células Dendríticas/imunologia , Lasers , Mananas/administração & dosagem , Pele/imunologia , Vacinação/métodos , Administração Cutânea , Animais , Ativação do Complemento , Feminino , Humanos , Imunoglobulina E/imunologia , Camundongos Endogâmicos BALB C , Porosidade , Células Th1/imunologia , Células Th17/imunologia
20.
J Control Release ; 265: 66-74, 2017 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-28434892

RESUMO

Intradermal DNA vaccination is a promising method of immunization that overcomes some practical drawbacks of conventional intramuscular vaccinations. However, it is difficult to deliver DNA vaccines to target cells in the skin and polyplexes. This study outlines the development of an intradermal pH1N1 DNA vaccine delivery platform using microneedles (MNs) coated with a polyplex containing poly lactic-co-glycolic acid/polyethyleneimine (PLGA/PEI) nanoparticles (NPs). Stainless steel MNs with enhanced hydrophilicity have been manufactured by silanization, which improves coating efficiency. MNs coated with the polyplex encapsulating pDNA vaccine were prepared by optimizing the N/P ratio, with a 6:1 ratio showing the highest transfection efficiency in mammalian cells. Polyplexes were coated on MNs without severe aggregation of the polyplex in the dry form. The coated polyplex rapidly dissolved in porcine skin (within 5min) and induced a greater humoral immune response than that of intramuscular polyplex delivery or naked pH1N1 DNA vaccine delivery by a dry-coated MN. These results indicate that intradermal delivery of pDNA vaccines within a cationic polyplex coated on MNs has potential in skin immunizations.


Assuntos
Vírus da Influenza A Subtipo H1N1/genética , Vacinas contra Influenza/imunologia , Nanopartículas/química , Agulhas , Pele/metabolismo , Vacinas de DNA/imunologia , Administração Cutânea , Animais , Linhagem Celular , Sistemas de Liberação de Medicamentos , Feminino , Imunidade Humoral , Vacinas contra Influenza/administração & dosagem , Camundongos Endogâmicos BALB C , Microinjeções , Tamanho da Partícula , Polietilenoimina/química , Ácido Poliglicólico/química , Propriedades de Superfície , Transfecção , Vacinas de DNA/administração & dosagem , Vacinas de DNA/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA