Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Neuroeng Rehabil ; 21(1): 121, 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39026268

RESUMO

BACKGROUND: During inpatient rehabilitation, physical therapists (PTs) often need to manually advance patients' limbs, adding physical burden to PTs and impacting gait retraining quality. Different electromechanical devices alleviate this burden by assisting a patient's limb advancement and supporting their body weight. However, they are less ideal for neuromuscular engagement when patients no longer need body weight support but continue to require assistance with limb advancement as they recover. The objective of this study was to determine the feasibility of using a hip flexion exosuit to aid paretic limb advancement during inpatient rehabilitation post-stroke. METHODS: Fourteen individuals post-stroke received three to seven 1-hour walking sessions with the exosuit over one to two weeks in addition to standard care of inpatient rehabilitation. The exosuit assistance was either triggered by PTs or based on gait events detected by body-worn sensors. We evaluated clinical (distance, speed) and spatiotemporal (cadence, stride length, swing time symmetry) gait measures with and without exosuit assistance during 2-minute and 10-meter walk tests. Sessions were grouped by the assistance required from the PTs (limb advancement and balance support, balance support only, or none) without exosuit assistance. RESULTS: PTs successfully operated the exosuit in 97% of sessions, of which 70% assistance timing was PT-triggered to accommodate atypical gait. Exosuit assistance eliminated the need for manual limb advancement from PTs. In sessions with participants requiring limb advancement and balance support, the average distance and cadence during 2-minute walk test increased with exosuit assistance by 2.2 ± 3.1 m and 3.4 ± 1.9 steps/min, respectively (p < 0.017). In sessions with participants requiring balance support only, the average speed during 10-meter walk test increased with exosuit by 0.07 ± 0.12 m/s (p = 0.042). Clinical and spatiotemporal measures of independent ambulators were similar with and without exosuit (p > 0.339). CONCLUSIONS: We incorporated a unilateral hip flexion exosuit into inpatient stroke rehabilitation in individuals with varying levels of impairments. The exosuit assistance removed the burden of manual limb advancement from the PTs and resulted in improved gait measures in some conditions. Future work will understand how to optimize controller and assistance profiles for this population.


Assuntos
Exoesqueleto Energizado , Estudos de Viabilidade , Reabilitação do Acidente Vascular Cerebral , Humanos , Reabilitação do Acidente Vascular Cerebral/métodos , Reabilitação do Acidente Vascular Cerebral/instrumentação , Masculino , Feminino , Pessoa de Meia-Idade , Idoso , Transtornos Neurológicos da Marcha/reabilitação , Transtornos Neurológicos da Marcha/etiologia , Acidente Vascular Cerebral/complicações , Marcha/fisiologia , Adulto , Paresia/reabilitação , Paresia/etiologia , Pacientes Internados
2.
Sensors (Basel) ; 23(19)2023 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-37837159

RESUMO

Work-related musculoskeletal disorders (WMSDs) are often caused by repetitive lifting, making them a significant concern in occupational health. Although wearable assist devices have become the norm for mitigating the risk of back pain, most spinal assist devices still possess a partially rigid structure that impacts the user's comfort and flexibility. This paper addresses this issue by presenting a smart textile-actuated spine assistance robotic exosuit (SARE), which can conform to the back seamlessly without impeding the user's movement and is incredibly lightweight. To detect strain on the spine and to control the smart textile automatically, a soft knitting sensor that utilizes fluid pressure as a sensing element is used. Based on the soft knitting hydraulic sensor, the robotic exosuit can also feature the ability of monitoring and rectifying human posture. The SARE is validated experimentally with human subjects (N = 4). Through wearing the SARE in stoop lifting, the peak electromyography (EMG) signals of the lumbar erector spinae are reduced by 22.8% ± 12 for lifting 5 kg weights and 27.1% ± 14 in empty-handed conditions. Moreover, the integrated EMG decreased by 34.7% ± 11.8 for lifting 5 kg weights and 36% ± 13.3 in empty-handed conditions. In summary, the artificial muscle wearable device represents an anatomical solution to reduce the risk of muscle strain, metabolic energy cost and back pain associated with repetitive lifting tasks.


Assuntos
Movimento , Postura , Humanos , Eletromiografia , Coluna Vertebral , Dor nas Costas , Remoção , Fenômenos Biomecânicos
3.
J Neuroeng Rehabil ; 20(1): 113, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37658408

RESUMO

BACKGROUND: Soft robotic exosuits can provide partial dorsiflexor and plantarflexor support in parallel with paretic muscles to improve poststroke walking capacity. Previous results indicate that baseline walking ability may impact a user's ability to leverage the exosuit assistance, while the effects on continuous walking, walking stability, and muscle slacking have not been evaluated. Here we evaluated the effects of a portable ankle exosuit during continuous comfortable overground walking in 19 individuals with chronic hemiparesis. We also compared two speed-based subgroups (threshold: 0.93 m/s) to address poststroke heterogeneity. METHODS: We refined a previously developed portable lightweight soft exosuit to support continuous overground walking. We compared five minutes of continuous walking in a laboratory with the exosuit to walking without the exosuit in terms of ground clearance, foot landing and propulsion, as well as the energy cost of transport, walking stability and plantarflexor muscle slacking. RESULTS: Exosuit assistance was associated with improvements in the targeted gait impairments: 22% increase in ground clearance during swing, 5° increase in foot-to-floor angle at initial contact, and 22% increase in the center-of-mass propulsion during push-off. The improvements in propulsion and foot landing contributed to a 6.7% (0.04 m/s) increase in walking speed (R2 = 0.82). This enhancement in gait function was achieved without deterioration in muscle effort, stability or cost of transport. Subgroup analyses revealed that all individuals profited from ground clearance support, but slower individuals leveraged plantarflexor assistance to improve propulsion by 35% to walk 13% faster, while faster individuals did not change either. CONCLUSIONS: The immediate restorative benefits of the exosuit presented here underline its promise for rehabilitative gait training in poststroke individuals.


Assuntos
Robótica , Acidente Vascular Cerebral , Humanos , Caminhada , Marcha , Extremidade Inferior
4.
J Neuroeng Rehabil ; 20(1): 85, 2023 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-37391851

RESUMO

BACKGROUND: Individualized, targeted, and intense training is the hallmark of successful gait rehabilitation in people post-stroke. Specifically, increasing use of the impaired ankle to increase propulsion during the stance phase of gait has been linked to higher walking speeds and symmetry. Conventional progressive resistance training is one method used for individualized and intense rehabilitation, but often fails to target paretic ankle plantarflexion during walking. Wearable assistive robots have successfully assisted ankle-specific mechanisms to increase paretic propulsion in people post-stroke, suggesting their potential to provide targeted resistance to increase propulsion, but this application remains underexamined in this population. This work investigates the effects of targeted stance-phase plantarflexion resistance training with a soft ankle exosuit on propulsion mechanics in people post-stroke. METHODS: We conducted this study in nine individuals with chronic stroke and tested the effects of three resistive force magnitudes on peak paretic propulsion, ankle torque, and ankle power while participants walked on a treadmill at their comfortable walking speeds. For each force magnitude, participants walked for 1 min while the exosuit was inactive, 2 min with active resistance, and 1 min with the exosuit inactive, in sequence. We evaluated changes in gait biomechanics during the active resistance and post-resistance sections relative to the initial inactive section. RESULTS: Walking with active resistance increased paretic propulsion by more than the minimal detectable change of 0.8 %body weight at all tested force magnitudes, with an average increase of 1.29 ± 0.37 %body weight at the highest force magnitude. This improvement corresponded to changes of 0.13 ± 0.03 N m kg- 1 in peak biological ankle torque and 0.26 ± 0.04 W kg- 1 in peak biological ankle power. Upon removal of resistance, propulsion changes persisted for 30 seconds with an improvement of 1.49 ± 0.58 %body weight after the highest resistance level and without compensatory involvement of the unresisted joints or limb. CONCLUSIONS: Targeted exosuit-applied functional resistance of paretic ankle plantarflexors can elicit the latent propulsion reserve in people post-stroke. After-effects observed in propulsion highlight the potential for learning and restoration of propulsion mechanics. Thus, this exosuit-based resistive approach may offer new opportunities for individualized and progressive gait rehabilitation.


Assuntos
Articulação do Tornozelo , Tornozelo , Humanos , Extremidades , Marcha , Peso Corporal
5.
Front Robot AI ; 9: 835237, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35572371

RESUMO

Leg motion is essential to everyday tasks, yet many face a daily struggle due to leg motion impairment. Traditional robotic solutions for lower limb rehabilitation have arisen, but they may bare some limitations due to their cost. Soft robotics utilizes soft, pliable materials which may afford a less costly robotic solution. This work presents a soft-pneumatic-actuator-driven exoskeleton for hip flexion rehabilitation. An array of soft pneumatic rotary actuators is used for torque generation. An analytical model of the actuators is validated and used to determine actuator parameters for the target application of hip flexion. The performance of the assembly is assessed, and it is found capable of the target torque for hip flexion, 19.8 Nm at 30°, requiring 86 kPa to reach that torque output. The assembly exhibits a maximum torque of 31 Nm under the conditions tested. The full exoskeleton assembly is then assessed with healthy human subjects as they perform a set of lower limb motions. For one motion, the Leg Raise, a muscle signal reduction of 43.5% is observed during device assistance, as compared to not wearing the device. This reduction in muscle effort indicates that the device is effective in providing hip flexion assistance and suggests that pneumatic-rotary-actuator-driven exoskeletons are a viable solution to realize more accessible options for those who suffer from lower limb immobility.

6.
Micromachines (Basel) ; 13(2)2022 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-35208282

RESUMO

The soft exosuit is an emerging robotics, which has been proven to considerably reduce the metabolic consumption of human walking and running. However, compared to walking, relatively few soft exosuits have been studied for running. Many soft exosuits used for running are worn on the back and with a heavy weight load, which may cause instability while running and potentially increase metabolic consumption. Therefore, reducing the weight of the whole soft exosuit system as much as possible and keeping the soft exosuit close to the center of gravity, may improve running stability and further reduce metabolic consumption. In this paper, a portable waist-loaded soft exosuit, the weight of which is almost entirely concentrated at the waist, is shown to assist hip flexion during running, and justifies choosing to assist hip flexion while running. As indicated by the experiments of motion flexibility, wearing the waist-loaded soft exosuit can assist in performing many common and complex motions. The metabolic consumption experiments proved that the portable waist-loaded soft exosuit reduces the metabolic consumption rate of wearers when jogging on the treadmill at 6 km per hour by 7.79% compared with locomotion without the exosuit. Additionally, at the running speed of 8 km per hour, using the waist-loaded soft exosuit can reduce metabolic consumption rate by 4.74%. Similarly, at the running speed of 10 km per hour, it also can be reduced by 6.12%. It is demonstrated that assisting hip flexion for running is also a reasonable method, and wearing the waist-loaded soft exosuit can keep human motion flexibility and reduce metabolic consumption.

7.
J Neuroeng Rehabil ; 18(1): 182, 2021 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-34961521

RESUMO

BACKGROUND: Ankle-targeting resistance training for improving plantarflexion function during walking increases rehabilitation intensity, an important factor for motor recovery after stroke. However, understanding of the effects of resisting plantarflexion during stance on joint kinetics and muscle activity-key outcomes in evaluating its potential value in rehabilitation-remains limited. This initial study uses a unilateral exosuit that resists plantarflexion during mid-late stance in unimpaired individuals to test the hypotheses that when plantarflexion is resisted, individuals would (1) increase plantarflexor ankle torque and muscle activity locally at the resisted ipsilateral ankle, but (2) at higher forces, exhibit a generalized response that also uses the unresisted joints and limb. Further, we expected (3) short-term retention into gait immediately after removal of resistance. METHODS: Ten healthy young adults walked at 1.25 m s-1 for four 10-min discrete bouts, each comprising baseline, exposure to active exosuit-applied resistance, and post-active sections. In each bout, a different force magnitude was applied based on individual baseline ankle torques. The peak resistance torque applied by the exosuit was 0.13 ± 0.01, 0.19 ± 0.01, 0.26 ± 0.02, and 0.32 ± 0.02 N m kg-1, in the LOW, MED, HIGH, and MAX bouts, respectively. RESULTS: (1) Across all bouts, participants increased peak ipsilateral biological ankle torque by 0.13-0.25 N m kg-1 (p < 0.001) during exosuit-applied resistance compared to corresponding baselines. Additionally, ipsilateral soleus activity during stance increased by 5.4-11.3% (p < 0.05) in all but the LOW bout. (2) In the HIGH and MAX bouts, vertical ground reaction force decreased on the ipsilateral limb while increasing on the contralateral limb (p < 0.01). Secondary analysis found that the force magnitude that maximized increases in biological ankle torque without significant changes in limb loading varied by subject. (3) Finally, peak ipsilateral plantarflexion angle increased significantly during post-exposure in the intermediate HIGH resistance bout (p < 0.05), which corresponded to the greatest average increase in soleus activity (p > 0.10). CONCLUSIONS: Targeted resistance of ankle plantarflexion during stance by an exosuit consistently increased local ipsilateral plantarflexor effort during active resistance, but force magnitude will be an important parameter to tune for minimizing the involvement of the unresisted joints and limb during training.


Assuntos
Articulação do Tornozelo , Tornozelo , Articulação do Tornozelo/fisiologia , Fenômenos Biomecânicos , Marcha/fisiologia , Humanos , Caminhada/fisiologia , Adulto Jovem
8.
Biosensors (Basel) ; 11(7)2021 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-34208947

RESUMO

Wearable robotic devices have been proved to considerably reduce the energy expenditure of human walking. It is not only suitable for healthy people, but also for some patients who require rehabilitation exercises. However, in many cases, the weight of soft exosuits are relatively large, which makes it difficult for the assistant effect of the system to offset the metabolic consumption caused by the extra weight, and the heavy weight will make people uncomfortable. Therefore, reducing the weight of the whole system as much as possible and keeping the soft exosuit output power unchanged, may improve the comfort of users and further reduce the metabolic consumption. In this paper, we show that a novel lightweight soft exosuit which is currently the lightest among all known powered exoskeletons, which assists hip flexion. Indicated from the result of experiment, the novel lightweight soft exosuit reduces the metabolic consumption rate of wearers when walking on the treadmill at 5 km per hour by 11.52% compared with locomotion without the exosuit. Additionally, it can reduce more metabolic consumption than the hip extension assisted (HEA) and hip flexion assisted (HFA) soft exosuit which our team designed previously, which has a large weight. The muscle fatigue experiments show that using the lightweight soft exosuit can also reduce muscle fatigue by about 10.7%, 40.5% and 5.9% for rectus femoris, vastus lateralis and gastrocnemius respectively compared with locomotion without the exosuit. It is demonstrated that decreasing the weight of soft exosuit while maintaining the output almost unchanged can further reduce metabolic consumption and muscle fatigue, and appropriately improve the users' comfort.


Assuntos
Exoesqueleto Energizado , Fenômenos Biomecânicos , Metabolismo Energético , Terapia por Exercício , Marcha/fisiologia , Humanos , Fadiga Muscular/fisiologia , Robótica/instrumentação , Caminhada/fisiologia , Dispositivos Eletrônicos Vestíveis
9.
Technol Health Care ; 29(4): 837-841, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33427699

RESUMO

BACKGROUND: Population aging is now a universal trend. Many elderly persons can only conduct limited and short time walking because of age-related skeletal muscle decline of the lower limbs. The wearable device for walking assistance is beneficial to improve the life quality of the elderly. OBJECTIVE: This study aimed to propose a soft exosuit for walking assistance of the elderly and verify its feasibility. METHODS: The wearable structure and control strategy were presented. The performance of the soft exosuit was tested by force tracking evaluation and metabolic cost test. RESULTS: The mean error of the measured and target peak force was 1.1%. The metabolic cost with assistance on while wearing the exosuit was reduced by 9.2% compared with that in locomotion assistance off. The reduction of assistance on was 7.1% compared with no exosuit. CONCLUSIONS: The proposed soft exosuit has the potential to improve the walking efficiency of the elderly.


Assuntos
Exoesqueleto Energizado , Robótica , Idoso , Fenômenos Biomecânicos , Terapia por Exercício , Humanos , Caminhada
10.
Front Robot AI ; 7: 595844, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33501357

RESUMO

The growing field of soft wearable exosuits, is gradually gaining terrain and proposing new complementary solutions in assistive technology, with several advantages in terms of portability, kinematic transparency, ergonomics, and metabolic efficiency. Those are palatable benefits that can be exploited in several applications, ranging from strength and resistance augmentation in industrial scenarios, to assistance or rehabilitation for people with motor impairments. To be effective, however, an exosuit needs to synergistically work with the human and matching specific requirements in terms of both movements kinematics and dynamics: an accurate and timely intention-detection strategy is the paramount aspect which assume a fundamental importance for acceptance and usability of such technology. We previously proposed to tackle this challenge by means of a model-based myoelectric controller, treating the exosuit as an external muscular layer in parallel to the human biomechanics and as such, controlled by the same efferent motor commands of biological muscles. However, previous studies that used classical control methods, demonstrated that the level of device's intervention and effectiveness of task completion are not linearly related: therefore, using a newly implemented EMG-driven controller, we isolated and characterized the relationship between assistance magnitude and muscular benefits, with the goal to find a range of assistance which could make the controller versatile for both dynamic and static tasks. Ten healthy participants performed the experiment resembling functional daily activities living in separate assistance conditions: without the device's active support and with different levels of intervention by the exosuit. Higher assistance levels resulted in larger reductions in the activity of the muscles augmented by the suit actuation and a good performance in motion accuracy, despite involving a decrease of the movement velocities, with respect to the no assistance condition. Moreover, increasing torque magnitude by the exosuit resulted in a significant reduction in the biological torque at the elbow joint and in a progressive effective delay in the onset of muscular fatigue. Thus, contrarily to classical force and proportional myoelectric schemes, the implementation of an opportunely tailored EMG-driven model based controller affords to naturally match user's intention detection and provide an assistance level working symbiotically with the human biomechanics.

11.
Front Neurorobot ; 13: 39, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31275129

RESUMO

The size, weight, and power consumption of soft wearable robots rapidly scale with their number of active degrees of freedom. While various underactuation strategies have been proposed, most of them impose hard constrains on the kinetics and kinematics of the device. Here we propose a paradigm to independently control multiple degrees of freedom using a set of modular components, all tapping power from a single motor. Each module consists of three electromagnetic clutches, controlled to convert a constant unidirectional motion in an arbitrary output trajectory. We detail the design and functioning principle of each module and propose an approach to control the velocity and position of its output. The device is characterized in free space and under loading conditions. Finally, we test the performance of the proposed actuation scheme to drive a soft exosuit for the elbow joint, comparing it with the performance obtained using a traditional DC motor and an unpowered-exosuit condition. The exosuit powered by our novel scheme reduces the biological torque required to move by an average of 46.2%, compared to the unpowered condition, but negatively affects movement smoothness. When compared to a DC motor, using the our paradigm slightly deteriorates performance. Despite the technical limitations of the current design, the method proposed in this paper is a promising way to design more portable wearable robots.

12.
J Neuroeng Rehabil ; 16(1): 29, 2019 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-30791919

RESUMO

BACKGROUND: Soft wearable robots (exosuits), being lightweight, ergonomic and low power-demanding, are attractive for a variety of applications, ranging from strength augmentation in industrial scenarios, to medical assistance for people with motor impairments. Understanding how these devices affect the physiology and mechanics of human movements is fundamental for quantifying their benefits and drawbacks, assessing their suitability for different applications and guiding a continuous design refinement. METHODS: We present a novel wearable exosuit for assistance/augmentation of the elbow and introduce a controller that compensates for gravitational forces acting on the limb while allowing the suit to cooperatively move with its wearer. Eight healthy subjects wore the exosuit and performed elbow movements in two conditions: with assistance from the device (powered) and without assistance (unpowered). The test included a dynamic task, to evaluate the impact of the assistance on the kinematics and dynamics of human movement, and an isometric task, to assess its influence on the onset of muscular fatigue. RESULTS: Powered movements showed a low but significant degradation in accuracy and smoothness when compared to the unpowered ones. The degradation in kinematics was accompanied by an average reduction of 59.20±5.58% (mean ± standard error) of the biological torque and 64.8±7.66% drop in muscular effort when the exosuit assisted its wearer. Furthermore, an analysis of the electromyographic signals of the biceps brachii during the isometric task revealed that the exosuit delays the onset of muscular fatigue. CONCLUSIONS: The study examined the effects of an exosuit on the characteristics of human movements. The suit supports most of the power needed to move and reduces the effort that the subject needs to exert to counteract gravity in a static posture, delaying the onset of muscular fatigue. We interpret the decline in kinematic performance as a technical limitation of the current device. This work suggests that a powered exosuit can be a good candidate for industrial and clinical applications, where task efficiency and hardware transparency are paramount.


Assuntos
Braço/fisiologia , Exoesqueleto Energizado , Movimento/fisiologia , Robótica , Adulto , Fenômenos Biomecânicos , Cotovelo/fisiologia , Eletromiografia , Feminino , Músculos Isquiossurais/fisiologia , Humanos , Contração Isométrica , Masculino , Fadiga Muscular/fisiologia , Desenho de Prótese , Tecnologia Assistiva , Torque , Dispositivos Eletrônicos Vestíveis
13.
Front Robot AI ; 5: 44, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-33500930

RESUMO

In this paper, we present a soft-inflatable exosuit to assist knee extension during gait training for stroke rehabilitation. The soft exosuit is designed to provide 25% of the knee moment required during the swing phase of the gait cycle and is integrated with inertial measurement units (IMUs) and smart shoe insole sensors to improve gait phase detection and controller design. The stiffness of the knee joint during level walking is computed using inverse dynamics. The soft-inflatable actuators, with an I cross-section, are mechanically characterized at varying angles to enable generation of the required stiffness outputs. A linear relation between the inflatable actuator stiffness and internal pressure as a function of the knee angle is obtained, and a two-layer stiffness controller is implemented to assist the knee joint by providing appropriate stiffness during the swing phase. Finally, to evaluate the ability of the exosuit to assist in swing motion, surface-electromyography (sEMG) sensors are placed on the three muscle groups of the quadriceps and two groups of the hamstrings, on three healthy participants. A reduction in muscle activity of the rectus femoris, vastus lateralis, and vastus medialis is observed, which demonstrates feasibility of operation and potential future usage of the soft inflatable exosuit by impaired users.

14.
J Neuroeng Rehabil ; 13(1): 43, 2016 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-27169361

RESUMO

BACKGROUND: Carrying load alters normal walking, imposes additional stress to the musculoskeletal system, and results in an increase in energy consumption and a consequent earlier onset of fatigue. This phenomenon is largely due to increased work requirements in lower extremity joints, in turn requiring higher muscle activation. The aim of this work was to assess the biomechanical and physiological effects of a multi-joint soft exosuit that applies assistive torques to the biological hip and ankle joints during loaded walking. METHODS: The exosuit was evaluated under three conditions: powered (EXO_ON), unpowered (EXO_OFF) and unpowered removing the equivalent mass of the device (EXO_OFF_EMR). Seven participants walked on an instrumented split-belt treadmill and carried a load equivalent to 30 % their body mass. We assessed their metabolic cost of walking, kinetics, kinematics, and lower limb muscle activation using a portable gas analysis system, motion capture system, and surface electromyography. RESULTS: Our results showed that the exosuit could deliver controlled forces to a wearer. Net metabolic power in the EXO_ON condition (7.5 ± 0.6 W kg(-1)) was 7.3 ± 5.0 % and 14.2 ± 6.1 % lower than in the EXO_OFF_EMR condition (7.9 ± 0.8 W kg(-1); p = 0.027) and in the EXO_OFF condition (8.5 ± 0.9 W kg(-1); p = 0.005), respectively. The exosuit also reduced the total joint positive biological work (sum of hip, knee and ankle) when comparing the EXO_ON condition (1.06 ± 0.16 J kg(-1)) with respect to the EXO_OFF condition (1.28 ± 0.26 J kg(-1); p = 0.020) and to the EXO_OFF_EMR condition (1.22 ± 0.21 J kg(-1); p = 0.007). CONCLUSIONS: The results of the present work demonstrate for the first time that a soft wearable robot can improve walking economy. These findings pave the way for future assistive devices that may enhance or restore gait in other applications.


Assuntos
Metabolismo Energético/fisiologia , Exoesqueleto Energizado , Robótica/instrumentação , Tecnologia Assistiva , Caminhada/fisiologia , Tornozelo/fisiologia , Fenômenos Biomecânicos , Eletromiografia , Quadril/fisiologia , Humanos , Joelho/fisiologia , Extremidade Inferior , Masculino , Robótica/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA