Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 24(12)2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38931674

RESUMO

The transition to a low-carbon economy is one of the main challenges of our time. In this context, solar energy, along with many other technologies, has been developed to optimize performance. For example, solar trackers follow the sun's path to increase the generation capacity of photovoltaic plants. However, several factors need consideration to further optimize this process. Important variables include the distance between panels, surface reflectivity, bifacial panels, and climate variations throughout the day. Thus, this paper proposes an artificial intelligence-based algorithm for solar trackers that takes all these factors into account-mainly weather variations and the distance between solar panels. The methodology can be replicated anywhere in the world, and its effectiveness has been validated in a real solar plant with bifacial panels located in northeastern Brazil. The algorithm achieved gains of up to 7.83% on a cloudy day and obtained an average energy gain of approximately 1.2% when compared to a commercial solar tracker algorithm.

2.
Environ Sci Pollut Res Int ; 31(25): 37862-37876, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38795290

RESUMO

Ports have an indisputable effect on the decarbonization of urban areas, helping to minimize air and environmental pollution and achieve sustainable development. In this instance, it is crucial to do research that can advance our understanding of how to increase ports' energy independence by utilizing renewable energy sources. The current study aims to study the environmental benefits and techno-economic challenges of converting three Egyptian ports to eco-friendly green ports by using solar panels, offshore wind turbines, and hydrogen fuel cells. The study shows that from a technical point of view, the required green power to be installed at Alexandria, Port Said, and Suez ports is around 13 MW, 5 MW, and 1.5 MW, respectively. Furthermore, the environmental analysis findings demonstrate that integrating green energy will significantly lower emissions in seaports. It is anticipated that the ports of Alexandria, Port Said, and Suez will achieve annual reductions in carbon dioxide emissions of roughly 68,7 k-tons, 25,8 k-tons, and 6,4 k-tons, respectively. From an economic point of view, the ports could be supplied with green energy from wind turbines for a cost of between 0.115 and 0.125 USD/kWh, while solar panels have a cost range of 0.098 to 0.129 USD/kWh. Additionally, hydrogen fuel cell systems cost about 0.102 USD/kWh.


Assuntos
Energia Renovável , Egito , Dióxido de Carbono/análise
3.
Waste Manag ; 177: 196-202, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38330515

RESUMO

The delamination of layers of waste solar panels remains a major challenge due to the lack of effective solutions for removing the adhesive between layers. In this study, a novel efficient method for disengagement of glass from the rest of the module is introduced, in which only water is used under high pressure (<3 MPa) and relatively low temperatures (230-250 °C) in a hydrothermal reactor, allowing for facile separation of the glass from the interlayer. The other layers of the module can also easily be peeled apart in subsequent processes. The separated glass is free of metals and polymers that can be utilized directly for further applications. The benefits of this method include no use of chemicals, preservation of the recovered materials' quality (i.e., interlayers, Si sheet, and glass), relatively low-temperature operation, no hazardous gas generation, and reduced energy consumption. A pilot scale design of the method has been proposed for processing a full panel, demonstrating its industrial viability.


Assuntos
Temperatura Baixa , Vidro , Indústrias , Polímeros , Água
4.
Materials (Basel) ; 16(17)2023 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-37687532

RESUMO

The rapid growth and evolution of solar panel technology have been driven by continuous advancements in materials science. This review paper provides a comprehensive overview of the diverse range of materials employed in modern solar panels, elucidating their roles, properties, and contributions to overall performance. The discussion encompasses both traditional crystalline silicon-based panels and emerging thin-film technologies. A detailed examination of photovoltaic materials, including monocrystalline and polycrystalline silicon as well as alternative materials such as cadmium telluride (CdTe), copper indium gallium selenide (CIGS), and emerging perovskite solar cells, is presented. Furthermore, the impact of transparent conductive materials, encapsulation polymers, and antireflective coatings on solar panel efficiency and durability is explored. The review delves into the synergistic interplay between material properties, manufacturing processes, and environmental considerations. Through a comprehensive survey of materials utilized in modern solar panels, this paper provides insights into the current state of the field, highlighting avenues for future advancements and sustainable solar energy solutions.

5.
Nanomaterials (Basel) ; 13(18)2023 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-37764570

RESUMO

The large and necessary diffusion of huge solar plants in extra urban areas implies the adoption of maintenance strategies especially where human intervention would require high costs and logistic problems. Animal dejections like bird droppings and agricultural sprays are environmental agents able to significantly decrease light absorption and, in some cases, cause serious damage to the electric conversion systems in a photovoltaic panel. In this work, the performance of a superhydrophobic (SH) coating in terms of durable self-cleaning properties and transparency has been studied in the presence of commercial and simulated contaminants on glass reference and solar panel surfaces. Wettability studies have been carried out both in static and dynamic conditions in order to compare the compositional effect of commercial liquids used as fertilizers or pesticides and molecules like pancreatin as model substances simulating bird droppings. From these studies, it can be observed that the superhydrophobic coating, independently from the surface where it is applied, is able to repel water and substances used such as fertilizers or pesticides and substances simulating bird droppings, maintaining its properties and transparency. This kind of approach can provide information to design suitable spray formulations without the above-mentioned drawbacks to be used in natural environment areas and agrosolar plants.

6.
Heliyon ; 9(8): e18826, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37576324

RESUMO

Defects of solar panels can easily cause electrical accidents. The YOLO v5 algorithm is improved to make up for the low detection efficiency of the traditional defect detection methods. Firstly, it is improved on the basis of coordinate attention to obtain a LCA attention mechanism with a larger target range, which can enhance the sensing range of target features in addition to fully capturing feature information; secondly, the weighted bidirectional feature pyramid is used to balance the feature information with excessive pixel differences by assigning different weights, which is more conducive to multi-scale Fast fusion of features; finally, the usual coupled head of YOLO series is replaced with decoupled head, so that the task branch can be performed more accurately and the detection accuracy can be improved. The results of comparative experiments on the solar panel defect detection data set show that after the improvement of the algorithm, the overall precision is increased by 1.5%, the recall rate is increased by 2.4%, and the mAP is up to 95.5%, which is 2.5% higher than that before the improvement. It can more accurately determine whether there are defects, standardize the quality of solar panels, and ensure electrical safety.

7.
Materials (Basel) ; 16(7)2023 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-37049133

RESUMO

The disposal of end-of-life (EOL) photovoltaic solar panels has become a relevant environmental issue as they are considered to be a hazardous electronic waste. On the other hand, enormous benefits are achieved from recovering valuable metals and materials from such waste. Eventually, physical and chemical processing will become the most important stages during the recycling process. A physical treatment including crushing, grinding, and screening was achieved, and it was observed that a fine fraction of -0.25 mm had the maximum percentage of the required materials. Moreover, the optimum chemical treatment conditions were adjusted to reach the maximum recovery of silver, aluminum, and silicon. The synthesis of silicon oxide, silver oxide, alunite, and K-Alum from leachant solution was performed through a simple route. The structural and morphological properties of the prepared materials were defined by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and field emission scanning electron microscopy (FESEM).

9.
MethodsX ; 10: 101967, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36593762

RESUMO

Color sensing is a technique for identifying physical changes in materials based on appearance assessment. Dirt deposition on solar panels can change their physical appearance and performance. Considering that dirt accumulation on solar panels needs monitoring to make efficient cleaning schedules, reduce unnecessary costs, and optimize solar panel output generation. Color sensing can achieve fast, accurate, and economical dirt detection, unlike the use of robotic cameras, mathematical formulae, and considering varying output current and voltage methods. Here, we introduce a method that detects and removes dirt on solar panels based on TCS3200 and Arduino Uno components. The approach targets (i.) Panel color measurement, calibration, threshold selection process, (ii.) comparison of color measurement values, and (iii.) align further calibration in response to discoloration of solar panels. This method aims to correct the dirt detection methods previously in use. Hence, a high-speed rolling brush arrangement is designed to improve the cleaning of the solar panel without using water. Further investigations of the panel's color may require some improvement in terms of increasing the sensitivity of the color sensor even with increased distance from the solar panel. Combining multiple color sensors may also be necessary.

10.
J Environ Manage ; 320: 115791, 2022 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-35932742

RESUMO

Grazing may represent a major threat to biodiversity in arid grasslands. The increasing use of grasslands for solar parks may represent a new important threat. No study has investigated the effects of solar parks on soil insects. Tenebrionids are a major component of the arthropod fauna of grasslands of central Asia. These ecosystems are threatened by grazing and increasing land use for solar parks. Aim of this work was to investigate the effects of grazing and solar panels on tenebrionids in arid grasslands (desert steppe) in China by comparing their community structure in ungrazed, heavily grazed, and solar park sites. Beetles were sampled by pitfall traps, and sites were compared for abundance and diversity (Hill numbers). All sites were characterized by simple, strongly dominated tenebrionid communities. Species proportions varied among sites. Grazing negatively influenced overall abundance, but did not alter species proportions; by contrast, solar panels had no effect on the average abundance, but reduced the proportion of the most abundant species. Compared with the other two sites, the solar park was characterized by a higher plant biomass and lower temperatures. A major availability of resources and less harsh conditions in the solar park might have a role in reducing the dominance of the most abundant species, allowing other species to attain higher abundances. This led to a more balanced community structure, with higher values of diversity. Although neither grazing nor solar panel installation modified radically tenebrionid species-abundance distribution or diversity, grazing and solar panel installation had different effects in species abundances and their impact might amplify the effect of other disturbance factors such as the ongoing climate change.


Assuntos
Besouros , Ecossistema , Animais , Biodiversidade , Biomassa , Pradaria , Solo/química
11.
Waste Manag ; 150: 280-289, 2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-35870363

RESUMO

Traditional acid-base leching technology is the primary technology to recycle silver from crystal silicon solar panels, which is fussy and often employs poisonous/harmful chemicals. In the present study, silver was easily recycled from photovoltaic panels in self-synthesized. Deep-Eutectic Solvents System (DESs) without pretreatments and the reaction system could be cyclically utilized. The leaching and precipitation rate can reach 99% under the optimized conditions. In addition, the kinetic results showed that the leaching of silver followed the classical shrinkage core model, in which chemical reaction was the rate-controlling step and the apparent activation energy for leaching process is 172.36 kJ·mol-1. In the recycling process, Cu2+ acted as the oxidant, and the redox potential of Cu2+ in the DES system is much higher than that in aqueous system. Besides, the HNMR and FTIR analysis indicate that the intermolecular hydrogen bond formed in the DES mixed system, which would raise the melting and boiling point of the mixed system, and would be conducive to the following silver leaching process. Furthermore, the metal complex generation mechanisms were proposed in the present study, and urea plays not only an aprotic solvent which cannot solvate Cl-, but also the ligand which can complex with the metals as well as Cl- which can reduce the redox potentials and shift the equilibrium to the silver leaching side. In summary, this study can provide theoretical foundation and practical experience for recycling precious metals from waste crystal silicon solar panels environmentally efficient and cost-effective.

12.
HardwareX ; 11: e00262, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35509907

RESUMO

This paper details the design and implementation of a photovoltaic current - voltage (I-V) tracer. The I-V tracer employs a capacitive load controlled by a raspberry pi model 4B. The complete measurement system includes protections, capacitor charging/discharging power electronics and current, voltage, irradiance and temperature sensors. Results, which include maximum power point, open circuit voltage, short circuit current and module efficiency, are displayed on an LCD touch display. Detailed description of the required software and the graphical user interface is also presented. This measurement system is very useful for testing photovoltaic installations, allowing an immediate verification whether the panels fulfill with the specifications and detection of possible failures.

13.
Sensors (Basel) ; 21(19)2021 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-34640662

RESUMO

Over the past few decades, the concentrating photovoltaic systems, a source of clean and renewable energy, often fully integrated into the roof structure, have been commonly installed on private houses and public buildings. The purpose of those panels is to transform the incoming solar radiation into electricity thanks to the photovoltaic effect. The produced electric power is affected, in the first instance, by the solar panel efficiency and its technical characteristics, but it is also strictly dependent on site elevation, the meteorological conditions and on the presence of the atmospheric constituents, i.e., clouds, hydrometeors, gas molecules and sub-micron-sized particles suspended in the atmosphere that can scatter and absorb the incoming shortwave solar radiation. The Aerosol Optical Depth (AOD) is an adimensional wavelength-dependent atmospheric column variable that accounts for aerosol concentration. AOD can be used as a proxy to evaluate the concentration of surface particulate matter and atmospheric column turbidity, which in turn affects the solar panel energy production. In this manuscript, a new technique is developed to retrieve the AOD at 550 nm through an iterative process: the atmospheric optical depth, incremented in steps of 0.01, is used as input together with the direct and diffuse radiation fluxes computed by Fu-Liou-Gu Radiative Transfer Model, to forecast the produced electric energy by a photovoltaic panel through a simple model. The process will stop at that AOD value (at 550 nm), for which the forecast electric power will match the real produced electric power by the photovoltaic panel within a previously defined threshold. This proof of concept is the first step of a wider project that aims to develop a user-friendly smartphone application where photovoltaic panel owners, once downloaded it on a voluntary basis, can turn their photovoltaic system into a sunphotometer to continuously retrieve the AOD, and more importantly, to monitor the air quality and detect strong air pollution episodes that pose a threat for population health.


Assuntos
Poluição do Ar , Energia Solar , Aerossóis , Poluição do Ar/análise , Atmosfera , Material Particulado
14.
Sci Total Environ ; 780: 146645, 2021 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-34030301

RESUMO

With the steady growth in the worldwide solar installed capacity, there is an immediate concern about the fate of the solar panels at the end of their life. Solar panel waste is often disposed of indiscriminately, exposing the environment to chemical hazards. The major objective of the current study was to evaluate the leaching potential of the polycrystalline solar panel waste under different simulated disposal conditions through toxicity characteristic leaching procedure (TCLP), synthetic precipitation leaching procedure (SPLP) and pH static leaching procedure tests. Moreover, the study evaluates the effects of ageing and the breakage of the Glass Laminate Encapsulation (GLE) of solar panels on their leaching potential. Among the metals studied (silver (Ag), aluminium (Al), cadmium (Cd), chromium (Cr), copper (Cu), manganese (Mn), lead (Pb), and zinc (Zn)), the concentrations of Pb were as high as 9.3 mg/L, 1.4 mg/L, 6.7 mg/L in the TCLP, SPLP, and pH static test respectively. This indicated the hazardous nature of the waste with leaching potential of Pb above the permissible limits stipulated by various regulatory bodies. The presence of GLE reduced the mobility of Pb by a factor of 4.1-8.8 in the TCLP test, thereby rendering the waste as non-hazardous for its disposal in a landfill. However, the indiscriminate disposal of solar panel waste in the natural environment as simulated by the SPLP test indicated its harmful nature irrespective of the physical condition. Ageing of the solar panels before disposal and acidic pH conditions also positively influenced the leaching potential of the selected metals subjected to their reactivity and the accessibility of internal layers of waste to the leaching solution. Strategies such as extended producer responsibilty, advance-recycling fee, and incentivizing the recycling industry will lead to both economic benefit creation and effective waste management of this waste stream.

15.
Entropy (Basel) ; 23(2)2021 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-33503797

RESUMO

In this work, the production of biologically synthesized silica nanoparticles was proposed to prepare a nanosuspension as a thermal fluid in parabolic solar panels at the laboratory level. Silica nanoparticles were produced from construction sand in two stages. Biosynthesis broth was produced by Aspergillus niger aerated fermentation in a 1 L bioreactor for 9 days. Each supernatant was contacted with 18% construction sand in a 500 L reactor with mechanical agitation, at a temperature of 25 °C, and a contact time of 30 min. Subsequently, the separation process was carried out. For day 9, a pH value of 1.71 was obtained as well as acid concentrations of 15.78 g/L for citrus and 4.16 g/L for malic. The metal extraction efficiency of Si nanoparticles was 19%. The vibration peaks in the FTIR were characteristic of the presence of silica nanoparticles in wavenumbers 1020 cm-1 and 1150 cm-1. Finally, a prototype solar radiation test bench for parabolic systems was built and provided with a radiation source that falls on a translucent pipe that transports the nanoparticles, which has a pump and a series of thermocouples. The heat capacity of the biotechnologically produced silica nanoparticle suspension was 0.72 ± 0.05 kJ/kgK, using material and energy balances in the flow circuit.

16.
Adv Colloid Interface Sci ; 286: 102309, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33166725

RESUMO

In this work the authors review the recent literature related to new solutions to prepare coatings with amphiphobic properties in order to provide self-maintaining systems able to limit the human intervention especially in large plants or harsh environments or, generally speaking, to keep the original functionalities of a solar module. Amphiphobic coatings match the requirements preventing both water and oil based pollutants from dust accumulation to natural and urban aerosols, from agriculture dispersions to bird droppings. The increasing need of renewable energy requires this step to be seriously faced with the aim to increase the yield and decrease the modules degradation. Still many issues have to be overcome and here we focus on surface aspects of aging and possible maintenance of the optical features of a solar panel.

17.
Glob Chall ; 4(8): 1900109, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32782820

RESUMO

Solar energy is one of the promising renewable energy sources which has the potential to meet the future energy demand around the world. To maximize the irradiance fall, solar panels are generally equipped with a motor tracking system and are placed at a specific tilt angle. However, tracking methods are not cost-effective and a fixed tilt angle is not productive. This study proposes a method for harnessing maximum output from photovoltaic (PV) panels throughout the year by determining the optimal tilt angle. The investigation is performed on real-time solar PV panels of 5 kWp rated capacity installed at 10°, 20°, 25°, 30°, and 40° angle on the rooftop of engineering institute situated at Chandigarh, India. The real-time power generation response for a year is used to find the optimal tilt angle. The results obtained from the practical setup are validated by comparing it with the simulation results of the regression analysis. In addition, the impact of the optimal angle on total power generation and carbon emissions is analyzed. The results reveal that the proposed approach is quite effective to increase the power generation of PV panels up to 7-8% and can be practically implemented in any location throughout the world.

18.
Glob Chall ; 4(1): 1900065, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31956430

RESUMO

Energy use is on the rise due to an increase in the number of households and general consumptions. It is important to estimate and forecast the number of houses and the resultant energy consumptions to address the effective and efficient use of energy in future planning. In this paper, the number of houses in Brunei Darussalam is estimated by using Spline interpolation and forecasted by using two methods, namely an autoregressive integrated moving average (ARIMA) model and nonlinear autoregressive (NAR) neural network. The NAR model is more accurate in forecasting the number of houses as compared to the ARIMA model. The energy required for water heating and other appliances is investigated and are found to be 21.74% and 78.26% of the total energy used, respectively. Through analysis, it is demonstrated that 9 m2 solar heater and 90 m2 of solar panel can meet these energy requirements.

19.
F1000Res ; 9: 1381, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-36127951

RESUMO

Roof mounted solar panels come in form of fixed panels, unable to adjust to sun's position during day and throughout the year. As an effect, the efficiency of such solution is usually dependent on the roof slope and position of the building in relation to sun's day arc during seasons. These problems can be bypassed in free standing solar installations by equipping solar panels with solar tracker installations. Thanks to solar tracking, solar panels can be dynamically positioned perpendicular to the sun position and gather energy more efficiently throughout the day. This article presents a possibility of creating a roof mounted solar tracking panel to increase its efficiency. A prototype of solar tracking panel with two axes of movement was designed with an intention of an easy adaptation to being mounted on sloped surfaces of building roofs. A reference stationary panel was used to compare the efficiency of both solutions. A 5-day study was carried out to determine if the proposed solution could provide any benefits. Based on the study, the authors made an attempt to draw a conclusion whether the design could considerably increase the solar energy output to be worth the extra spending associated with solar tracker installation.

20.
Chemosphere ; 237: 124514, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31408796

RESUMO

This study investigated the isolation and characterization of three novel bacterial strains; Acinetobacter calcoaceticus, Sphingobacterium multivorum, and Sinorhizobium, isolated form agriculture land. From three hundred strains of bacteria, the three isolates were identified for their superior diesel degradation ability by a series of bench-scale tests. The isolates were further investigated in bench tests for their ability to grow in different diesel fuel concentrations, temperature and pH; degrade diesel fuel in vitro; and for the identification of functional genes. Semi-pilot bioelectrokinetic tests were conducted in three electrokinetic cells. An innovative electrode configuration was adopted to stabilize the soil pH and water content during the test. The genes expressed in the diesel degradation process including Lipases enzymes Lip A, LipB, Alk-b2, rubA, P450, and 1698/2041 were detected in the three isolates. The results showed that the solar panel voltage output is in agreement with the trapezoid model. The temperatures in the cells were found to be 5-7 °C higher than the ambient temperature. The electrode configuration succeeded in stabilizing the soil pH and water content, preventing the development of a pH gradient, important progress for the survival of bacteria. The diesel degradation in the soil after bioelectrokinetic tests were 20-30%, compared to 10-12% in the controls. The study succeeded in developing environmentally friendly technology employing novel bacterial strains to degrade diesel fuel and utilizing solar panels to produce renewable energy for bioelectrokinetics during the winter season.


Assuntos
Biodegradação Ambiental , Petróleo/metabolismo , Microbiologia do Solo , Poluentes do Solo/metabolismo , Agricultura , Bactérias/metabolismo , Gasolina , Hidrocarbonetos/análise , Hidrocarbonetos/metabolismo , Petróleo/análise , Sinorhizobium/metabolismo , Solo , Poluentes do Solo/análise , Sphingobacterium/metabolismo , Entorses e Distensões , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA