Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
DNA Res ; 31(5)2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39115130

RESUMO

In the long history of human relations with flowering cherry trees in Japan, 'Somei-Yoshino' occupies an exceptional position among a variety of flowering trees: it is a self-incompatible interspecific hybrid but has been enthusiastically planted by grafting throughout Japan, due most likely to its flamboyant appearance upon full bloom. Thus, 'Somei-Yoshino' gives us a rare opportunity to trace and investigate the occurrence and distribution of somatic mutations within a single plant species through analysis of the genomes of the clonally propagated trees grown under a variety of geographical and artificial environments. In the studies presented here, a total of 46 samples of 'Somei-Yoshino' trees were collected and their genomes were analysed. We identified 684 single nucleotide mutations, of which 71 were present in more than two samples. Clustering analysis of the mutations indicated that the 46 samples were classified into eight groups, four of which included 36 of the 46 samples analysed. Interestingly, all the four tree samples collected in Ueno Park of Tokyo were members of the four groups mentioned above. Based on comparative analysis of their mutations, one of the four trees growing in Ueno Park was concluded to be the closest to the original ancestor. We propose that somatic mutations may be used as tracers to establish the ancestral relationship amongst clonally propagated individuals.


Assuntos
Mutação , Genoma de Planta , Japão , Prunus/genética , Flores/genética , Filogenia
2.
Int J Mol Sci ; 23(17)2022 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-36077445

RESUMO

SQUAMOSA Promoter-Binding Protein-Like (SPL) genes encode plant-specific transcription factors which bind to the SQUAMOSA promoter of the MADS-box genes to regulate its expression. It plays important regulatory roles in floral induction and development, fertility, light signals and hormonal transduction, and stress response in plants. In this study, 32 PySPL genes with complete SBP (squamosa promoter binding protein) conserved domain were identified from the genome of Prunus × yedoensis 'Somei-yoshino' and analyzed by bioinformatics. 32 PySPLs were distributed on 13 chromosomes, encoding 32 PySPL proteins with different physical and chemical properties. The phylogenetic tree constructed with Arabidopsis thaliana and Oryza sativa can be divided into 10 subtribes, indicating PySPLs of different clusters have different biological functions. The conserved motif prediction showed that the number and distribution of motifs on each PySPL is varied. The gene structure analysis revealed that PySPLs harbored exons ranging from 2 to 10. The predictive analysis of acting elements showed that the promoter of PySPLs contain a large number of light-responsive elements, as well as response elements related to hormone response, growth and development and stress response. The analysis of the PySPLs expressions in flower induction and flower organs based on qRT-PCR showed that PySPL06/22 may be the key genes of flower development, PySPL01/06 and PySPL22 may play a role in the development of sepal and pistil, respectively. The results provide a foundation for the study of SPL transcription factors of Prunus × yedoensis 'Somei-yoshino' and provide more reference information of the function of SPL gene in flowering.


Assuntos
Arabidopsis , Oryza , Prunus , Arabidopsis/genética , Flores/metabolismo , Regulação da Expressão Gênica de Plantas , Família Multigênica , Oryza/genética , Filogenia , Proteínas de Plantas/metabolismo , Prunus/genética , Prunus/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
3.
Insects ; 13(2)2022 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-35206724

RESUMO

We investigated the ecological traits of emerging adults and the boring density in Aromia bungii-infested flowering cherry (Cerasus × yedoensis 'Somei-yoshino') and peach (Prunus persica) trees to evaluate their suitability as food resources for A. bungii, and their vulnerability to infestation. The number of adults per m3 that emerged from P. persica was 10-times larger than from C. × yedoensis, and the numbers of emergence holes, entrance holes, and pupal chambers were also larger in P. persica logs. The lifetime fecundity of adults that emerged from P. persica was also higher. Elytral length, sex ratios, and adult lifespans did not differ between the two host trees. Our results indicate that peach trees provide more suitable conditions than do flowering cherry trees for A. bungii larvae. Although flowering cherry trees, primarily C. × yedoensis, which are currently grown as street or ornamental trees in Japan, have been more severely affected by A. bungii to date, the greater risk in the long term is to P. persica, an agricultural species in the main producing areas surrounding the Kanto region.

4.
Front Plant Sci ; 10: 1555, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31921231

RESUMO

As with many other ornamental and cultivated plants that have been under human selection and cultivation for a long time, it has been a major challenge to trace back the complex evolutionary history of flowering cherry, Prunus yedoensis. This challenge has been further amplified by great morphological similarities, little molecular divergence, frequent natural and artificial hybridization, and poor documentation of breeding history among cultivated and wild flowering cherries. The origin and taxonomic distinction between wild P. yedoensis from Jeju Island, Korea, and one of the most popular cultivated flowering cherries, P. × yedoensis "Somei-yoshino" has been a controversy for the past few decades. We sampled many areas extensively, and using four different molecular markers we provided evidence for their independent origin. Wild P. yedoensis in Korea originated from multiple bidirectional hybridization events between two sympatric species, P. spachiana f. ascendens as the maternal species and P. serrulata var. spontanea/P. serrulata var. quelpaertensis as the most probable paternal species. On the contrary, our results supported a single artificial hybrid origin of P. × yedoensis "Somei-yoshino" from cultivated P. spachiana f. ascendens as the maternal species and P. speciosa, a species endemic to Izu Islands, as the paternal species. Based on extensive sampling, we provided strong evidence that wild and cultivated P. yedoensis are distinct taxonomic entities that have originated from different evolutionary processes. A potential for the development of new cultivars from wild P. yedoensis and conservation of diverse germplasms in situ insular setting and ex situ should be explored in the future.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA