Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 628
Filtrar
1.
Phys Med Biol ; 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39008979

RESUMO

OBJECTIVE: 3D-localization of gamma sources has the potential to improve the outcome of radio-guided surgery. The goal of this paper is to analyze the localization accuracy for point-like sources with a single coded aperture camera. Approach: We both simulated and measured a point-like 241Am source at 17 positions distributed within the field of view of an experimental gamma camera. The setup includes a 0.11mm thick Tungsten sheet with a MURA mask of rank 31 and pinholes of 0.08mm in diameter and a detector based on the photon counting readout circuit Timepix3. Two methods, namely an iterative search (ISL) including either a symmetric Gaussian fitting or an exponentially modified Gaussian fitting (EMG) and a center of mass method were compared to estimate the 3D source position. Main results: Considering the decreasing axial resolution with source-to-mask distance, the EMG improved the results by a factor of 4 compared to the Gaussian fitting based on the simulated data. Overall, we obtained a mean localization error of 0.77mm on the simulated and 2.64mm on the experimental data in the imaging range of 20-100 mm. Significance: This paper shows that despite the low axial resolution, point-like sources in the nearfield can be localized as well as with more sophisticated imaging devices such as stereo cameras. The influence of the source size and the photon count on the imaging and localization accuracy remains an important issue for further research. The acquired datasets and the localization methods of this research are publicly available on GitHub.

2.
Comput Biol Med ; 178: 108704, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38852398

RESUMO

INTRODUCTION: High-density electroencephalography (hdEEG) is a technique used for the characterization of the neural activity and connectivity in the human brain. The analysis of EEG data involves several steps, including signal pre-processing, head modelling, source localization and activity/connectivity quantification. Visual check of the analysis steps is often necessary, making the process time- and resource-consuming and, therefore, not feasible for large datasets. FINDINGS: Here we present the Noninvasive Electrophysiology Toolbox (NET), an open-source software for large-scale analysis of hdEEG data, running on the cross-platform MATLAB environment. NET combines all the tools required for a complete hdEEG analysis workflow, from raw signals to final measured values. By relying on reconstructed neural signals in the brain, NET can perform traditional analyses of time-locked neural responses, as well as more advanced functional connectivity and brain mapping analyses. The extracted quantitative neural data can be exported to provide broad compatibility with other software. CONCLUSIONS: NET is freely available (https://github.com/bind-group-kul/net) under the GNU public license for non-commercial use and open-source development, together with a graphical user interface (GUI) and a user tutorial. While NET can be used interactively with the GUI, it is primarily aimed at unsupervised automation to process large hdEEG datasets efficiently. Its implementation creates indeed a highly customizable program suitable for analysis automation and tight integration into existing workflows.

3.
eNeuro ; 11(5)2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38702194

RESUMO

Elicited upon violation of regularity in stimulus presentation, mismatch negativity (MMN) reflects the brain's ability to perform automatic comparisons between consecutive stimuli and provides an electrophysiological index of sensory error detection whereas P300 is associated with cognitive processes such as updating of the working memory. To date, there has been extensive research on the roles of MMN and P300 individually, because of their potential to be used as clinical markers of consciousness and attention, respectively. Here, we intend to explore with an unsupervised and rigorous source estimation approach, the underlying cortical generators of MMN and P300, in the context of prediction error propagation along the hierarchies of brain information processing in healthy human participants. The existing methods of characterizing the two ERPs involve only approximate estimations of their amplitudes and latencies based on specific sensors of interest. Our objective is twofold: first, we introduce a novel data-driven unsupervised approach to compute latencies and amplitude of ERP components accurately on an individual-subject basis and reconfirm earlier findings. Second, we demonstrate that in multisensory environments, MMN generators seem to reflect a significant overlap of "modality-specific" and "modality-independent" information processing while P300 generators mark a shift toward completely "modality-independent" processing. Advancing earlier understanding that multisensory contexts speed up early sensory processing, our study reveals that temporal facilitation extends to even the later components of prediction error processing, using EEG experiments. Such knowledge can be of value to clinical research for characterizing the key developmental stages of lifespan aging, schizophrenia, and depression.


Assuntos
Eletroencefalografia , Potenciais Evocados P300 , Humanos , Masculino , Feminino , Adulto , Eletroencefalografia/métodos , Adulto Jovem , Potenciais Evocados P300/fisiologia , Percepção Auditiva/fisiologia , Córtex Cerebral/fisiologia , Estimulação Acústica/métodos , Potenciais Evocados/fisiologia
4.
Front Hum Neurosci ; 18: 1371648, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38736529

RESUMO

Human postural control system is inherently complex with nonlinear interaction among multiple subsystems. Accordingly, such postural control system has the flexibility in adaptation to complex environments. Previous studies applied complexity-based methods to analyze center of pressure (COP) to explore nonlinear dynamics of postural sway under changing environments, but direct evidence from central nervous system or muscular system is limited in the existing literature. Therefore, we assessed the fractal dimension of COP, surface electromyographic (sEMG) and electroencephalogram (EEG) signals under visual-vestibular habituation balance practice. We combined a rotating platform and a virtual reality headset to present visual-vestibular congruent or incongruent conditions. We asked participants to undergo repeated exposure to either congruent (n = 14) or incongruent condition (n = 13) five times while maintaining balance. We found repeated practice under both congruent and incongruent conditions increased the complexity of high-frequency (0.5-20 Hz) component of COP data and the complexity of sEMG data from tibialis anterior muscle. In contrast, repeated practice under conflicts decreased the complexity of low-frequency (<0.5 Hz) component of COP data and the complexity of EEG data of parietal and occipital lobes, while repeated practice under congruent environment decreased the complexity of EEG data of parietal and temporal lobes. These results suggested nonlinear dynamics of cortical activity differed after balance practice under congruent and incongruent environments. Also, we found a positive correlation (1) between the complexity of high-frequency component of COP and the complexity of sEMG signals from calf muscles, and (2) between the complexity of low-frequency component of COP and the complexity of EEG signals. These results suggested the low- or high-component of COP might be related to central or muscular adjustment of postural control, respectively.

5.
J Neurosurg ; : 1-9, 2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38788232

RESUMO

OBJECTIVE: Interictal epileptiform discharges (IEDs) are intermittent high-amplitude electrical signals that occur between seizures. They have been shown to propagate through the brain as traveling waves when recorded with epicortical grid-type electrodes and small penetrating microelectrode arrays. However, little work has been done to translate experimental IED analyses to more clinically relevant platforms such as stereoelectroencephalography (SEEG). In this pilot study, the authors aimed to define a computational method to identify and characterize IEDs recorded from clinical SEEG electrodes and leverage the directionality of IED traveling waves to localize the seizure onset zone (SOZ). METHODS: Continuous SEEG recordings from 15 patients with medically refractory epilepsy were collected, and IEDs were detected by identifying overlapping peaks of a minimum prominence. IED pathways of propagation were defined and compared to the SOZ location determined by a clinical neurologist based on the ictal recordings. For further analysis of the IED pathways of propagation, IED detections were divided into triplets, defined as a set of 3 consecutive contacts within the same IED detection. Univariate and multivariate linear regression models were employed to associate IED characteristics with colocalization to the SOZ. RESULTS: A median (range) of 22.6 (4.4-183.9) IEDs were detected per hour from 15 patients over a mean of 23.2 hours of recording. Depending on the definition of the SOZ, a median (range) of 20.8% (0.0%-54.5%) to 62.1% (19.2%-99.4%) of IEDs per patient traversed the SOZ. IEDs passing through the SOZ followed discrete pathways that had little overlap with those of the IEDs passing outside the SOZ. Contact triplets that occurred more than once were significantly more likely to be detected in an IED passing through the SOZ (p < 0.001). Per our multivariate model, patients with a greater proportion of IED traveling waves had a significantly greater proportion of IEDs that localized to the SOZ (ß = 0.64, 95% CI 0.01-1.27, p = 0.045). CONCLUSIONS: By using computational methods, IEDs can be meaningfully detected from clinical-grade SEEG recordings of patients with epilepsy. In some patients, a high proportion of IEDs are traveling waves according to multiple metrics that colocalize to the SOZ, offering hope that IED detection, with further refinement, could serve as an alternative method for SOZ localization.

6.
Sensors (Basel) ; 24(9)2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38732807

RESUMO

To address the challenge of accurately locating unmanned aerial vehicles (UAVs) in situations where radar tracking is not feasible and visual observation is difficult, this paper proposes an innovative acoustic source localization method based on improved Empirical Mode Decomposition (EMD) within an adaptive frequency window. In this study, the collected flight signals of UAVs undergo smoothing filtering. Additionally, Robust Empirical Mode Decomposition (REMD) is applied to decompose the signals into Intrinsic Mode Function (IMF) components for spectrum analysis. We introduce a sliding frequency window with adjustable bandwidth, which is automatically determined using a Grey Wolf Optimizer (GWO) with a sliding index. This window is used to lock and extract specific frequencies from the IMFs. Based on predefined criteria, the extracted IMF components are reconstructed, and trigger signal times are analyzed and recorded from these reconstructed IMFs. The time differences between sensor receptions are then calculated. Furthermore, this study introduces the Chan-Taylor localization algorithm based on weighted least squares. This advanced algorithm takes sensor time delay parameters as input and solves a set of nonlinear equations to determine the target's location. Simulations and real-world signal tests are used to validate the robustness and performance of the proposed method. The results indicate that the localization error remains below 5% within a 15 m × 15 m measurement area. This provides an efficient and real-time method for detecting the location of small UAVs.

7.
Sensors (Basel) ; 24(9)2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38732997

RESUMO

The accuracy of passive hyperbolic localization applications using Time Difference of Arrival (TDOA) measurements can be severely compromised in non-line-of-sight (NLOS) situations. Consensus functions have been successfully used to provide robust and accurate location estimates in such challenging situations. In this paper, a fast branch-and-bound computational method for finding the global maximum of consensus functions is proposed and the global convergence property of the algorithm is mathematically proven. The performance of the method is illustrated by simulation experiments and real measurements.

8.
J Neural Eng ; 21(3)2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38722315

RESUMO

Objective.Electroencephalography (EEG) has been widely used in motor imagery (MI) research by virtue of its high temporal resolution and low cost, but its low spatial resolution is still a major criticism. The EEG source localization (ESL) algorithm effectively improves the spatial resolution of the signal by inverting the scalp EEG to extrapolate the cortical source signal, thus enhancing the classification accuracy.Approach.To address the problem of poor spatial resolution of EEG signals, this paper proposed a sub-band source chaotic entropy feature extraction method based on sub-band ESL. Firstly, the preprocessed EEG signals were filtered into 8 sub-bands. Each sub-band signal was source localized respectively to reveal the activation patterns of specific frequency bands of the EEG signals and the activities of specific brain regions in the MI task. Then, approximate entropy, fuzzy entropy and permutation entropy were extracted from the source signal as features to quantify the complexity and randomness of the signal. Finally, the classification of different MI tasks was achieved using support vector machine.Main result.The proposed method was validated on two MI public datasets (brain-computer interface (BCI) competition III IVa, BCI competition IV 2a) and the results showed that the classification accuracies were higher than the existing methods.Significance.The spatial resolution of the signal was improved by sub-band EEG localization in the paper, which provided a new idea for EEG MI research.


Assuntos
Interfaces Cérebro-Computador , Eletroencefalografia , Entropia , Imaginação , Eletroencefalografia/métodos , Humanos , Imaginação/fisiologia , Dinâmica não Linear , Algoritmos , Máquina de Vetores de Suporte , Movimento/fisiologia , Reprodutibilidade dos Testes
9.
Front Neurosci ; 18: 1368172, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38817913

RESUMO

Introduction: Transcranial photobiomodulation (tPBM) is a non-invasive neuromodulation technique that improves human cognition. The effects of tPBM of the right forehead on neurophysiological activity have been previously investigated using EEG in sensor space. However, the spatial resolution of these studies is limited. Magnetoencephalography (MEG) is known to facilitate a higher spatial resolution of brain source images. This study aimed to image post-tPBM effects in brain space based on both MEG and EEG measurements across the entire human brain. Methods: MEG and EEG scans were concurrently acquired for 6 min before and after 8-min of tPBM delivered using a 1,064-nm laser on the right forehead of 25 healthy participants. Group-level changes in both the MEG and EEG power spectral density with respect to the baseline (pre-tPBM) were quantified and averaged within each frequency band in the sensor space. Constrained modeling was used to generate MEG and EEG source images of post-tPBM, followed by cluster-based permutation analysis for family wise error correction (p < 0.05). Results: The 8-min tPBM enabled significant increases in alpha (8-12 Hz) and beta (13-30 Hz) powers across multiple cortical regions, as confirmed by MEG and EEG source images. Moreover, tPBM-enhanced oscillations in the beta band were located not only near the stimulation site but also in remote cerebral regions, including the frontal, parietal, and occipital regions, particularly on the ipsilateral side. Discussion: MEG and EEG results shown in this study demonstrated that tPBM modulates neurophysiological activity locally and in distant cortical areas. The EEG topographies reported in this study were consistent with previous observations. This study is the first to present MEG and EEG evidence of the electrophysiological effects of tPBM in the brain space, supporting the potential utility of tPBM in treating neurological diseases through the modulation of brain oscillations.

10.
Neuroimage Clin ; 42: 103608, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38653131

RESUMO

Magnetoencephalography (MEG) is a non-invasive technique that can precisely capture the dynamic spatiotemporal patterns of the brain by measuring the magnetic fields arising from neuronal activity along the order of milliseconds. Observations of brain dynamics have been used in cognitive neuroscience, the diagnosis of neurological diseases, and the brain-computer interface (BCI). In this study, we outline the basic principle, signal processing, and source localization of MEG, and describe its clinical applications for cognitive assessment, the diagnoses of neurological diseases and mental disorders, preoperative evaluation, and the BCI. This review not only provides an overall perspective of MEG, ranging from practical techniques to clinical applications, but also enhances the prevalent understanding of neural mechanisms. The use of MEG is expected to lead to significant breakthroughs in neuroscience.


Assuntos
Magnetoencefalografia , Magnetoencefalografia/métodos , Humanos , Encéfalo/fisiologia , Processamento de Sinais Assistido por Computador , Interfaces Cérebro-Computador , Mapeamento Encefálico/métodos , Doenças do Sistema Nervoso/fisiopatologia , Doenças do Sistema Nervoso/diagnóstico
11.
J Phys Ther Sci ; 36(4): 161-166, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38562539

RESUMO

[Purpose] The sense of vision is omitted in blind soccer, and sound source localization to grasp the position of the ball is extremely important. The purpose of this study was to clarify whether there is a difference in ability in sound source localization in its approaching condition between visually impaired and sighted people, using the source actually used in blind soccer ball competitions. [Participants and Methods] Eighteen participants were divided into two groups; 10 sighted people and eight visually impaired people. The participants were asked to press a switch when a rolling blind soccer ball was sensed in any one of the four directions. We recorded time error as the difference between the time when the ball passed the optical sensor set under the participant's feet and when the participant pressed the switch. [Results] The time error in response increased with the ball speed in all cases; however, its dependence on the ball speed was significantly different between the two groups. [Conclusion] The visually impaired participants made less time errors in response to the localization of the ball than the sighted participants, even when the ball speed increased. The results indicate that visually impaired people have better sound source localization ability than sighted people do.

12.
Sensors (Basel) ; 24(7)2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38610393

RESUMO

Real-time source localization is crucial for high-end automation and artificial intelligence (AI) products. However, a low signal-to-noise ratio (SNR) and limited processing time can reduce localization accuracy. This work proposes a new architecture for a time-domain feedback-based beamformer that meets real-time processing demands. The main objective of this design is to locate reflective sources by estimating their direction of arrival (DOA) and signal range. Incorporating a feedback mechanism in this architecture refines localization precision, a unique aspect of this approach. We conducted an in-depth analysis to compare the effectiveness of time-domain feedback beamforming against conventional time-domain methods, highlighting their benefits and limitations. Our evaluation of the proposed architecture, based on critical performance indicators such as peak-to-sidelobe ratio, mainlobe width, and directivity factor, demonstrates its ability to improve beamformer effectiveness significantly.

13.
Sensors (Basel) ; 24(7)2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38610520

RESUMO

Robotic odor source localization (OSL) is a technology that enables mobile robots or autonomous vehicles to find an odor source in unknown environments. An effective navigation algorithm that guides the robot to approach the odor source is the key to successfully locating the odor source. While traditional OSL approaches primarily utilize an olfaction-only strategy, guiding robots to find the odor source by tracing emitted odor plumes, our work introduces a fusion navigation algorithm that combines both vision and olfaction-based techniques. This hybrid approach addresses challenges such as turbulent airflow, which disrupts olfaction sensing, and physical obstacles inside the search area, which may impede vision detection. In this work, we propose a hierarchical control mechanism that dynamically shifts the robot's search behavior among four strategies: crosswind maneuver, Obstacle-Avoid Navigation, Vision-Based Navigation, and Olfaction-Based Navigation. Our methodology includes a custom-trained deep-learning model for visual target detection and a moth-inspired algorithm for Olfaction-Based Navigation. To assess the effectiveness of our approach, we implemented the proposed algorithm on a mobile robot in a search environment with obstacles. Experimental results demonstrate that our Vision and Olfaction Fusion algorithm significantly outperforms vision-only and olfaction-only methods, reducing average search time by 54% and 30%, respectively.

14.
Sensors (Basel) ; 24(7)2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38610358

RESUMO

A comprehensive analysis and simulation of two memristor-based neuromorphic architectures for nuclear radiation detection is presented. Both scalable architectures retrofit a locally competitive algorithm to solve overcomplete sparse approximation problems by harnessing memristor crossbar execution of vector-matrix multiplications. The proposed systems demonstrate excellent accuracy and throughput while consuming minimal energy for radionuclide detection. To ensure that the simulation results of our proposed hardware are realistic, the memristor parameters are chosen from our own fabricated memristor devices. Based on these results, we conclude that memristor-based computing is the preeminent technology for a radiation detection platform.

15.
Neuroimage ; 292: 120614, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38631618

RESUMO

With increasing age, peak alpha frequency (PAF) is slowed, and alpha power is reduced during resting-states with eyes closed. These age-related changes are evident across the whole scalp but remained unclear at the source level. The purpose of this study was to determine whether age impacts the power and frequency of the dominant alpha rhythm equally across source generators or whether the impact of age varies across sources. A total of 28 young adults and 26 elderly adults were recruited. High-density EEG was recorded for 10 mins with eyes closed. Single dipoles for each independent component were localized and clustered based on their anatomical label, resulting in 36 clusters. Meta-analyses were then conducted to assess effect sizes for PAF and power at PAF for all 36 clusters. Subgroup analyses were then implemented for frontal, sensorimotor, parietal, temporal, and occipital regions. The results of the meta-analyses showed that the elderly group exhibited slower PAF and less power at PAF compared to the young group. Subgroup analyses revealed age effects on PAF in parietal (g = 0.38), temporal (g = 0.65), and occipital regions (g = 1.04), with the largest effects observed in occipital regions. For power at PAF, age effects were observed in sensorimotor (g = 0.84) and parietal regions (g = 0.80), with the sensorimotor region showing the largest effect. Our findings show that age-related slowing and attenuation of the alpha rhythm manifests differentially across cortical regions, with sensorimotor and occipital regions most susceptible to age effects.


Assuntos
Envelhecimento , Ritmo alfa , Eletroencefalografia , Humanos , Masculino , Ritmo alfa/fisiologia , Feminino , Adulto , Idoso , Adulto Jovem , Envelhecimento/fisiologia , Eletroencefalografia/métodos , Encéfalo/fisiologia , Pessoa de Meia-Idade , Descanso/fisiologia
16.
Entropy (Basel) ; 26(4)2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38667856

RESUMO

Mobile robot olfaction of toxic and hazardous odor sources is of great significance in anti-terrorism, disaster prevention, and control scenarios. Aiming at the problems of low search efficiency and easily falling into a local optimum of the current odor source localization strategies, the paper proposes the adaptive space-aware Infotaxis II algorithm. To improve the tracking efficiency of robots, a new reward function is designed by considering the space information and emphasizing the exploration behavior of robots. Considering the enhancement in exploratory behavior, an adaptive navigation-updated mechanism is proposed to adjust the movement range of robots in real time through information entropy to avoid an excessive exploration behavior during the search process, which may lead the robot to fall into a local optimum. Subsequently, an improved adaptive cosine salp swarm algorithm is applied to confirm the optimal information adaptive parameter. Comparative simulation experiments between ASAInfotaxis II and the classical search strategies are carried out in 2D and 3D scenarios regarding the search efficiency and search behavior, which show that ASAInfotaxis II is competent to improve the search efficiency to a larger extent and achieves a better balance between exploration and exploitation behaviors.

17.
Food Chem ; 450: 139353, 2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-38636376

RESUMO

Understanding neural pathways and cognitive processes involved in the transformation of dietary fats into sensory experiences has profound implications for nutritional well-being. This study presents an efficient approach to comprehending the neural perception of fat taste using electroencephalogram (EEG). Through the examination of neural responses to different types of fatty acids (FAs) in 45 participants, we discerned distinct neural activation patterns associated with saturated versus unsaturated fatty acids. The spectrum analysis of averaged EEG signals revealed notable variations in δ and α-frequency bands across FA types. The topographical distribution and source localization results suggested that the brain encodes fat taste with specific activation timings in primary and secondary gustatory cortices. Saturated FAs elicited higher activation in cortical associated with emotion and reward processing. This electrophysiological evidence enhances our understanding of fundamental mechanisms behind fat perception, which is helpful for guiding strategies to manage hedonic eating and promote balanced fat consumption.


Assuntos
Encéfalo , Gorduras na Dieta , Eletroencefalografia , Percepção Gustatória , Humanos , Feminino , Adulto Jovem , Adulto , Masculino , Encéfalo/fisiologia , Gorduras na Dieta/metabolismo , Gorduras na Dieta/análise , Paladar , Ácidos Graxos/química , Ácidos Graxos/metabolismo
18.
Eur J Neurosci ; 59(10): 2778-2791, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38511229

RESUMO

Memories of painful events constitute the basis for assessing patients' pain. This study explores the brain oscillatory activity during short-term memorization of a nociceptive stimulus. High-density EEG activity (128 electrodes) was recorded in 13 healthy subjects during a match-to-sample sensory discrimination task, whereby participants compared the intensity of a thumb-located electric shock (S2) with a prior stimulus to the same location (S1) delivered 8-10 s earlier. Stimuli were above or below the individual nociceptive threshold. EEG activity with intracortical source localization via LORETA source reconstruction was analysed during the inter-stimuli period and contrasted with a non-memory-related control task. The inter-stimulus memorization phase was characterized by a focal alpha-activity enhancement, significant during the nociceptive condition only, which progressed from bilateral occipital regions (cuneus and mid-occipital gyri) during the first encoding-memorization phase towards the right-superior and right mid-temporal gyri during the 2-4 s immediately preceding S2. Initial alpha enhancement in occipital areas/cuneus is consistent with rapid non-specific inhibition of task-irrelevant visual processing during initial stimulus encoding. Its transfer to the right-temporal regions was concomitant to the temporary upholding of the stimulus perceptual representation, previous to receiving S2, and suggests an active and local blockade of external interferences while these regions actively maintain internal information. These results add to a growing field indicating that alpha oscillations, while indicating local inhibitory processes, can also indirectly reveal active stimulus handling, including maintenance in short-term memory buffers, by objectivizing the filtering out of irrelevant and potentially disrupting inputs in brain regions engaged in internally driven operations.


Assuntos
Ritmo alfa , Memória de Curto Prazo , Humanos , Masculino , Feminino , Adulto , Ritmo alfa/fisiologia , Memória de Curto Prazo/fisiologia , Eletroencefalografia/métodos , Dor/fisiopatologia , Adulto Jovem , Encéfalo/fisiologia
19.
Brain Topogr ; 37(4): 496-513, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38430283

RESUMO

Microstate analysis of resting-state EEG is a unique data-driven method for identifying patterns of scalp potential topographies, or microstates, that reflect stable but transient periods of synchronized neural activity evolving dynamically over time. During infancy - a critical period of rapid brain development and plasticity - microstate analysis offers a unique opportunity for characterizing the spatial and temporal dynamics of brain activity. However, whether measurements derived from this approach (e.g., temporal properties, transition probabilities, neural sources) show strong psychometric properties (i.e., reliability) during infancy is unknown and key information for advancing our understanding of how microstates are shaped by early life experiences and whether they relate to individual differences in infant abilities. A lack of methodological resources for performing microstate analysis of infant EEG has further hindered adoption of this cutting-edge approach by infant researchers. As a result, in the current study, we systematically addressed these knowledge gaps and report that most microstate-based measurements of brain organization and functioning except for transition probabilities were stable with four minutes of video-watching resting-state data and highly internally consistent with just one minute. In addition to these results, we provide a step-by-step tutorial, accompanying website, and open-access data for performing microstate analysis using a free, user-friendly software called Cartool. Taken together, the current study supports the reliability and feasibility of using EEG microstate analysis to study infant brain development and increases the accessibility of this approach for the field of developmental neuroscience.


Assuntos
Encéfalo , Eletroencefalografia , Humanos , Eletroencefalografia/métodos , Lactente , Encéfalo/fisiologia , Encéfalo/crescimento & desenvolvimento , Reprodutibilidade dos Testes , Feminino , Masculino , Mapeamento Encefálico/métodos
20.
Sensors (Basel) ; 24(5)2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38475163

RESUMO

Angle-of-arrival (AOA) measurements are often used in underwater acoustical localization. Different from the traditional AOA model based on azimuth and elevation measurements, the AOA model studied in this paper uses bearing measurements. It is also often used in the Ultra-Short Baseline system (USBL). However, traditional acoustical localization needs additional range information. If the range information is unavailable, the closed-form solution is difficult to obtain only with bearing measurements. Thus, a localization closed-form solution using only bearing measurements is explored in this article. A pseudo-linear measurement model between the source position and the bearing measurements is derived, and considering the nonlinear relationship of the parameters, a weighted least-squares optimization equation based on multiple constraints is established. Different from the traditional two-step least-squares method, the semidefinite programming (SDP) method is designed to obtain the initial solution, and then a bias compensation method is proposed to further minimize localization errors based on the SDP result. Numerical simulations show that the performance of the proposed method can achieve Cramer-Rao lower bound (CRLB) accuracy. The field test also proves that the proposed method can locate the source position without range measurements and obtain the highest positioning accuracy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA