Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros








Intervalo de ano de publicação
1.
Pathol Res Pract ; 262: 155503, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39128411

RESUMO

Gastric cancer (GC), a globally prevalent and lethal malignancy, continues to be a key research focus. However, due to its considerable heterogeneity and complex pathogenesis, the treatment and diagnosis of gastric cancer still face significant challenges. With the rapid development of spatial omics technology, which provides insights into the spatial information within tumor tissues, it has emerged as a significant tool in gastric cancer research. This technology affords new insights into the pathology and molecular biology of gastric cancer for scientists. This review discusses recent advances in spatial omics technology for gastric cancer research, highlighting its applications in the tumor microenvironment (TME), tumor heterogeneity, tumor genesis and development mechanisms, and the identification of potential biomarkers and therapeutic targets. Moreover, this article highlights spatial omics' potential in precision medicine and summarizes existing challenges and future directions. It anticipates spatial omics' continuing impact on gastric cancer research, aiming to improve diagnostic and therapeutic approaches for patients. With this review, we aim to offer a comprehensive overview to scientists and clinicians in gastric cancer research, motivating further exploration and utilization of spatial omics technology. Our goal is to improve patient outcomes, including survival rates and quality of life.

2.
Clin Transl Immunology ; 13(7): e1522, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39026528

RESUMO

Objectives: Non-small-cell lung carcinoma (NSCLC) is the most prevalent and lethal form of lung cancer. The need for biomarker-informed stratification of targeted therapies has underpinned the need to uncover the underlying properties of the tumor microenvironment (TME) through high-plex quantitative assays. Methods: In this study, we profiled resected NSCLC tissues from 102 patients by targeted spatial proteomics of 78 proteins across tumor, immune activation, immune cell typing, immune-oncology, drug targets, cell death and PI3K/AKT modules to identify the tumor and stromal signatures associated with overall survival (OS). Results: Survival analysis revealed that stromal CD56 (HR = 0.384, P = 0.06) and tumoral TIM3 (HR = 0.703, P = 0.05) were associated with better survival in univariate Cox models. In contrast, after adjusting for stage, BCLXL (HR = 2.093, P = 0.02) and cleaved caspase 9 (HR = 1.575, P = 0.1) negatively influenced survival. Delta testing indicated the protective effect of TIM-3 (HR = 0.614, P = 0.04) on OS. In multivariate analysis, CD56 (HR = 0.172, P = 0.001) was associated with better survival in the stroma, while B7.H3 (HR = 1.72, P = 0.008) was linked to poorer survival in the tumor. Conclusions: Deciphering the TME using high-plex spatially resolved methods is giving us new insights into compartmentalised tumor and stromal protein signatures associated with clinical endpoints in NSCLC.

3.
Front Immunol ; 15: 1309916, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38983848

RESUMO

Advances in spatial proteomics and protein colocalization are a driving force in the understanding of cellular mechanisms and their influence on biological processes. New methods in the field of spatial proteomics call for the development of algorithms and open up new avenues of research. The newly introduced Molecular Pixelation (MPX) provides spatial information on surface proteins and their relationship with each other in single cells. This allows for in silico representation of neighborhoods of membrane proteins as graphs. In order to analyze this new data modality, we adapted local assortativity in networks of MPX single-cell graphs and created a method that is able to capture detailed information on the spatial relationships of proteins. The introduced method can evaluate the pairwise colocalization of proteins and access higher-order similarity to investigate the colocalization of multiple proteins at the same time. We evaluated the method using publicly available MPX datasets where T cells were treated with a chemokine to study uropod formation. We demonstrate that adjusted local assortativity detects the effects of the stimuli at both single- and multiple-marker levels, which enhances our understanding of the uropod formation. We also applied our method to treating cancerous B-cell lines using a therapeutic antibody. With the adjusted local assortativity, we recapitulated the effect of rituximab on the polarity of CD20. Our computational method together with MPX improves our understanding of not only the formation of cell polarity and protein colocalization under stimuli but also advancing the overall insight into immune reaction and reorganization of cell surface proteins, which in turn allows the design of novel therapies. We foresee its applicability to other types of biological spatial data when represented as undirected graphs.


Assuntos
Proteínas de Membrana , Humanos , Proteínas de Membrana/metabolismo , Linfócitos B/imunologia , Linfócitos B/metabolismo , Proteômica/métodos , Algoritmos , Rituximab/farmacologia , Linfócitos T/imunologia , Linfócitos T/metabolismo , Análise de Célula Única/métodos
4.
Immunol Cell Biol ; 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39048134

RESUMO

Head and neck cancer (HNC) is the seventh most common cancer globally, resulting in 440 000 deaths per year. While there have been advancements in chemoradiotherapy and surgery, relapse occurs in more than half of HNCs, and these patients have a median survival of 10 months and a 2-year survival of < 20%. Only a subset of patients displays durable benefits from immunotherapies in metastatic and recurrent HNC, making it critical to understand the tumor microenvironment (TME) underpinning therapy responses in HNC. To recognize biological differences within the TME that may be predictive of immunotherapy response, we applied cutting-edge geospatial whole-transcriptome profiling (NanoString GeoMx Digital Spatial Profiler) and spatial proteomics profiling (Akoya PhenoCycler-Fusion) on a tumor microarray consisting of 25 cores from 12 patients that included 4 immunotherapy-unresponsive (8 cores) and 2 immunotherapy-responsive patients (5 cores), as well as 6 immunotherapy naïve patients (12 cores). Through high-plex, regional-based transcriptomic mapping of the tumor and TME, pathways involved with the complement system and hypoxia were identified to be differentially expressed in patients who went on to experience a poor immunotherapy response. Single-cell, targeted proteomic analysis found that immune cell infiltration of the cancer cell mass and interactions of CD8 T cells with tumor and other immune cells were associated with positive immunotherapy response. The relative abundance of specific tumor phenotypes and their interactions with various immune cells was identified to be different between response groups. This study demonstrates how spatial transcriptomics and proteomics can resolve novel alterations in the TME of HNC that may contribute to therapy sensitivity and resistance.

5.
Mol Cell Proteomics ; 23(8): 100811, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38996918

RESUMO

Highly specialized cells are fundamental for the proper functioning of complex organs. Variations in cell-type-specific gene expression and protein composition have been linked to a variety of diseases. Investigation of the distinctive molecular makeup of these cells within tissues is therefore critical in biomedical research. Although several technologies have emerged as valuable tools to address this cellular heterogeneity, most workflows lack sufficient in situ resolution and are associated with high costs and extremely long analysis times. Here, we present a combination of experimental and computational approaches that allows a more comprehensive investigation of molecular heterogeneity within tissues than by either shotgun LC-MS/MS or MALDI imaging alone. We applied our pipeline to the mouse brain, which contains a wide variety of cell types that not only perform unique functions but also exhibit varying sensitivities to insults. We explored the distinct neuronal populations within the hippocampus, a brain region crucial for learning and memory that is involved in various neurological disorders. As an example, we identified the groups of proteins distinguishing the neuronal populations of the dentate gyrus (DG) and the cornu ammonis (CA) in the same brain section. Most of the annotated proteins matched the regional enrichment of their transcripts, thereby validating the method. As the method is highly reproducible, the identification of individual masses through the combination of MALDI-IMS and LC-MS/MS methods can be used for the much faster and more precise interpretation of MALDI-IMS measurements only. This greatly speeds up spatial proteomic analyses and allows the detection of local protein variations within the same population of cells. The method's general applicability has the potential to be used to investigate different biological conditions and tissues and a much higher throughput than other techniques making it a promising approach for clinical routine applications.

6.
Methods Mol Biol ; 2817: 97-113, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38907150

RESUMO

Spatially resolved mass spectrometry-based proteomics at single-cell resolution promises to provide insights into biological heterogeneity. We describe a protocol based on multiplexed data-independent acquisition (mDIA) with dimethyl labeling to enhance proteome depth, accuracy, and throughput while minimizing costs. It enables high-quality proteome analysis of single isolated hepatocytes and utilizes liver zonation for single-cell proteomics benchmarking. This adaptable, modular protocol will promote the use of single-cell proteomics in spatial biology.


Assuntos
Hepatócitos , Proteoma , Proteômica , Análise de Célula Única , Hepatócitos/metabolismo , Hepatócitos/citologia , Proteômica/métodos , Análise de Célula Única/métodos , Animais , Proteoma/análise , Espectrometria de Massas/métodos , Camundongos , Fígado/metabolismo , Fígado/citologia
7.
Cell Rep ; 43(7): 114374, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-38900641

RESUMO

Morphological studies of skeletal muscle tissue provide insights into the architecture of muscle fibers, the surrounding cells, and the extracellular matrix (ECM). However, a spatial proteomics analysis of the skeletal muscle including the muscle-tendon transition zone is lacking. Here, we prepare cryotome muscle sections of the mouse soleus muscle and measure each slice using short liquid chromatography-mass spectrometry (LC-MS) gradients. We generate 3,000 high-resolution protein profiles that serve as the basis for a network analysis to reveal the complex architecture of the muscle-tendon junction. Among the protein profiles that increase from muscle to tendon, we find proteins related to neuronal activity, fatty acid biosynthesis, and the renin-angiotensin system (RAS). Blocking the RAS in cultured mouse tenocytes using losartan reduces the ECM synthesis. Overall, our analysis of thin cryotome sections provides a spatial proteome of skeletal muscle and reveals that the RAS acts as an additional regulator of the matrix within muscle-tendon junctions.


Assuntos
Músculo Esquelético , Proteômica , Tendões , Animais , Proteômica/métodos , Músculo Esquelético/metabolismo , Tendões/metabolismo , Camundongos , Matriz Extracelular/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Sistema Renina-Angiotensina/fisiologia , Adaptação Fisiológica , Proteoma/metabolismo , Losartan/farmacologia
8.
Methods Cell Biol ; 186: 213-231, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38705600

RESUMO

Advancements in multiplexed tissue imaging technologies are vital in shaping our understanding of tissue microenvironmental influences in disease contexts. These technologies now allow us to relate the phenotype of individual cells to their higher-order roles in tissue organization and function. Multiplexed Ion Beam Imaging (MIBI) is one of such technologies, which uses metal isotope-labeled antibodies and secondary ion mass spectrometry (SIMS) to image more than 40 protein markers simultaneously within a single tissue section. Here, we describe an optimized MIBI workflow for high-plex analysis of Formalin-Fixed Paraffin-Embedded (FFPE) tissues following antigen retrieval, metal isotope-conjugated antibody staining, imaging using the MIBI instrument, and subsequent data processing and analysis. While this workflow is focused on imaging human FFPE samples using the MIBI, this workflow can be easily extended to model systems, biological questions, and multiplexed imaging modalities.


Assuntos
Inclusão em Parafina , Humanos , Inclusão em Parafina/métodos , Espectrometria de Massa de Íon Secundário/métodos , Fixação de Tecidos/métodos , Processamento de Imagem Assistida por Computador/métodos , Formaldeído/química
9.
Cancers (Basel) ; 16(9)2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38730568

RESUMO

While RNA sequencing and multi-omic approaches have significantly advanced cancer diagnosis and treatment, their limitation in preserving critical spatial information has been a notable drawback. This spatial context is essential for understanding cellular interactions and tissue dynamics. Multiplex digital spatial profiling (MDSP) technologies overcome this limitation by enabling the simultaneous analysis of transcriptome and proteome data within the intact spatial architecture of tissues. In breast cancer research, MDSP has emerged as a promising tool, revealing complex biological questions related to disease evolution, identifying biomarkers, and discovering drug targets. This review highlights the potential of MDSP to revolutionize clinical applications, ranging from risk assessment and diagnostics to prognostics, patient monitoring, and the customization of treatment strategies, including clinical trial guidance. We discuss the major MDSP techniques, their applications in breast cancer research, and their integration in clinical practice, addressing both their potential and current limitations. Emphasizing the strategic use of MDSP in risk stratification for women with benign breast disease, we also highlight its transformative potential in reshaping the landscape of breast cancer research and treatment.

10.
Clin Proteomics ; 21(1): 32, 2024 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-38735925

RESUMO

BACKGROUND: Traumatic brain injury (TBI) often results in diverse molecular responses, challenging traditional proteomic studies that measure average changes at tissue levels and fail to capture the complexity and heterogeneity of the affected tissues. Spatial proteomics offers a solution by providing insights into sub-region-specific alterations within tissues. This study focuses on the hippocampal sub-regions, analyzing proteomic expression profiles in mice at the acute (1 day) and subacute (7 days) phases of post-TBI to understand subregion-specific vulnerabilities and long-term consequences. METHODS: Three mice brains were collected from each group, including Sham, 1-day post-TBI and 7-day post-TBI. Hippocampal subregions were extracted using Laser Microdissection (LMD) and subsequently analyzed by label-free quantitative proteomics. RESULTS: The spatial analysis reveals region-specific protein abundance changes, highlighting the elevation of FN1, LGALS3BP, HP, and MUG-1 in the stratum moleculare (SM), suggesting potential immune cell enrichment post-TBI. Notably, established markers of chronic traumatic encephalopathy, IGHM and B2M, exhibit specific upregulation in the dentate gyrus bottom (DG2) independent of direct mechanical injury. Metabolic pathway analysis identifies disturbances in glucose and lipid metabolism, coupled with activated cholesterol synthesis pathways enriched in SM at 7-Day post-TBI and subsequently in deeper DG1 and DG2 suggesting a role in neurogenesis and the onset of recovery. Coordinated activation of neuroglia and microtubule dynamics in DG2 suggest recovery mechanisms in less affected regions. Cluster analysis revealed spatial variations post-TBI, indicative of dysregulated neuronal plasticity and neurogenesis and further predisposition to neurological disorders. TBI-induced protein upregulation (MUG-1, PZP, GFAP, TJP, STAT-1, and CD44) across hippocampal sub-regions indicates shared molecular responses and links to neurological disorders. Spatial variations were demonstrated by proteins dysregulated in both or either of the time-points exclusively in each subregion (ELAVL2, CLIC1 in PL, CD44 and MUG-1 in SM, and SHOC2, LGALS3 in DG). CONCLUSIONS: Utilizing advanced spatial proteomics techniques, the study unveils the dynamic molecular responses in distinct hippocampal subregions post-TBI. It uncovers region-specific vulnerabilities and dysregulated neuronal processes, and potential recovery-related pathways that contribute to our understanding of TBI's neurological consequences and provides valuable insights for biomarker discovery and therapeutic targets.

11.
Stress ; 27(1): 2351394, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38752853

RESUMO

Exposure to significant levels of stress and trauma throughout life is a leading risk factor for the development of major psychiatric disorders. Despite this, we do not have a comprehensive understanding of the mechanisms that explain how stress raises psychiatric disorder risk. Stress in humans is complex and produces variable molecular outcomes depending on the stress type, timing, and duration. Deciphering how stress increases disorder risk has consequently been challenging to address with the traditional single-target experimental approaches primarily utilized to date. Importantly, the molecular processes that occur following stress are not fully understood but are needed to find novel treatment targets. Sequencing-based omics technologies, allowing for an unbiased investigation of physiological changes induced by stress, are rapidly accelerating our knowledge of the molecular sequelae of stress at a single-cell resolution. Spatial multi-omics technologies are now also emerging, allowing for simultaneous analysis of functional molecular layers, from epigenome to proteome, with anatomical context. The technology has immense potential to transform our understanding of how disorders develop, which we believe will significantly propel our understanding of how specific risk factors, such as stress, contribute to disease course. Here, we provide our perspective of how we believe these technologies will transform our understanding of the neurobiology of stress, and also provided a technical guide to assist molecular psychiatry and stress researchers who wish to implement spatial omics approaches in their own research. Finally, we identify potential future directions using multi-omics technology in stress research.


Assuntos
Transtornos Mentais , Estresse Psicológico , Humanos , Proteômica , Genômica
12.
ACS Nano ; 18(23): 15084-15095, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38815170

RESUMO

Antibodies and their conjugates of fluorescent labels are widely applied in life sciences research and clinical pathology. Among diverse label types, compact quantum dots (QDs) provide advantages of multispectral multiplexing, bright signals in the deep red and infrared, and low steric hindrance. However, QD-antibody conjugates have random orientation of the antigen-binding domain which may interfere with labeling and are large (20-30 nm) and heterogeneous, which limits penetration into biospecimens. Here, we develop conjugates of compact QDs and Fab' antibody fragments as primary immunolabels. Fab' fragments are conjugated site-specifically through sulfhydryl groups distal to antigen-binding domains, and the multivalent conjugates have small and homogeneous sizes (∼12 nm) near those of full-sized antibodies. Their performance as immunolabels for intracellular antigens is evaluated quantitatively by metrics of microtubule labeling density and connectivity in fixed cells and for cytological identification in fixed brain specimens, comparing results with probes based on spectrally-matched dyes. QD-Fab' conjugates outperformed QD conjugates of full-sized antibodies and could be imaged with bright signals with 1-photon and 2-photon excitation. The results demonstrate a requirement for smaller bioaffinity agents and site-specific orientation for the success of nanomaterial-based labels to enhance penetration in biospecimens and minimize nonspecific staining.


Assuntos
Fragmentos Fab das Imunoglobulinas , Microtúbulos , Pontos Quânticos , Pontos Quânticos/química , Fragmentos Fab das Imunoglobulinas/química , Fragmentos Fab das Imunoglobulinas/imunologia , Microtúbulos/química , Microtúbulos/metabolismo , Humanos , Animais , Camundongos , Corantes Fluorescentes/química
13.
bioRxiv ; 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38559093

RESUMO

Background: Cell segmentation is crucial in bioimage informatics, as its accuracy directly impacts conclusions drawn from cellular analyses. While many approaches to 2D cell segmentation have been described, 3D cell segmentation has received much less attention. 3D segmentation faces significant challenges, including limited training data availability due to the difficulty of the task for human annotators, and inherent three-dimensional complexity. As a result, existing 3D cell segmentation methods often lack broad applicability across different imaging modalities. Results: To address this, we developed a generalizable approach for using 2D cell segmentation methods to produce accurate 3D cell segmentations. We implemented this approach in 3DCellComposer, a versatile, open-source package that allows users to choose any existing 2D segmentation model appropriate for their tissue or cell type(s) without requiring any additional training. Importantly, we have enhanced our open source CellSegmentationEvaluator quality evaluation tool to support 3D images. It provides metrics that allow selection of the best approach for a given imaging source and modality, without the need for human annotations to assess performance. Using these metrics, we demonstrated that our approach produced high-quality 3D segmentations of tissue images, and that it could outperform an existing 3D segmentation method on the cell culture images with which it was trained. Conclusions: 3DCellComposer, when paired with well-trained 2D segmentation models, provides an important alternative to acquiring human-annotated 3D images for new sample types or imaging modalities and then training 3D segmentation models using them. It is expected to be of significant value for large scale projects such as the Human BioMolecular Atlas Program.

14.
Cell ; 187(10): 2485-2501.e26, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38653236

RESUMO

Glioma contains malignant cells in diverse states. Here, we combine spatial transcriptomics, spatial proteomics, and computational approaches to define glioma cellular states and uncover their organization. We find three prominent modes of organization. First, gliomas are composed of small local environments, each typically enriched with one major cellular state. Second, specific pairs of states preferentially reside in proximity across multiple scales. This pairing of states is consistent across tumors. Third, these pairwise interactions collectively define a global architecture composed of five layers. Hypoxia appears to drive the layers, as it is associated with a long-range organization that includes all cancer cell states. Accordingly, tumor regions distant from any hypoxic/necrotic foci and tumors that lack hypoxia such as low-grade IDH-mutant glioma are less organized. In summary, we provide a conceptual framework for the organization of cellular states in glioma, highlighting hypoxia as a long-range tissue organizer.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Glioblastoma/patologia , Glioblastoma/genética , Glioblastoma/metabolismo , Humanos , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Análise Espacial , Transcriptoma/genética , Microambiente Tumoral , Proteômica , Isocitrato Desidrogenase/genética , Isocitrato Desidrogenase/metabolismo , Regulação Neoplásica da Expressão Gênica
15.
bioRxiv ; 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38659763

RESUMO

Nucleotide-binding domain and leucine-rich repeat pyrin-domain containing protein 3 (NLRP3) is an innate immune sensor that forms an inflammasome in response to various cellular stressors. Gain-of-function mutations in NLRP3 cause autoinflammatory diseases and NLRP3 signalling itself exacerbates the pathogenesis of many other human diseases. Despite considerable therapeutic interest, the primary drivers of NLRP3 activation remain controversial due to the diverse array of signals that are integrated through NLRP3. Here, we mapped subcellular proteome changes to lysosomes, mitochondrion, EEA1-positive endosomes, and Golgi caused by the NLRP3 inflammasome agonists nigericin and CL097. We identified several common disruptions to retrograde trafficking pathways, including COPI and Shiga toxin-related transport, in line with recent studies. We further characterized mouse NLRP3 trafficking throughout its activation using temporal proximity proteomics, which supports a recent model of NLRP3 recruitment to endosomes during inflammasome activation. Collectively, these findings provide additional granularity to our understanding of the molecular events driving NLRP3 activation and serve as a valuable resource for cell biological research. We have made our proteomics data accessible through an open-access Shiny browser to facilitate future research within the community, available at: https://harperlab.connect.hms.harvard.edu/inflame/. We will display anonymous peer review for this manuscript on pubpub.org (https://harperlab.pubpub.org/pub/nlrp3/) rather than a traditional journal. Moreover, we invite community feedback on the pubpub version of this manuscript, and we will address criticisms accordingly.

16.
Chembiochem ; 25(8): e202400005, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38511872

RESUMO

Borrowing some quotes from Harper Lee's novel "To Kill A Mockingbird" to help frame our manuscript, we discuss methods to profile local proteomes. We initially focus on chemical biology regimens that function in live organisms and use reactive biotin species for this purpose. We then consider ways to add new dimensions to these experimental regimens, principally by releasing less reactive (i. e., more selective) (preter)natural electrophiles. Although electrophile release methods may have lower resolution and label fewer proteins than biotinylation methods, their ability to probe simultaneously protein function and locale raises new and interesting possibilities for the field.


Assuntos
Biotina , Proteoma , Biotinilação
17.
Cancer Cell ; 42(3): 444-463.e10, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38428410

RESUMO

Follicular lymphoma (FL) is a generally incurable malignancy that evolves from developmentally blocked germinal center (GC) B cells. To promote survival and immune escape, tumor B cells undergo significant genetic changes and extensively remodel the lymphoid microenvironment. Dynamic interactions between tumor B cells and the tumor microenvironment (TME) are hypothesized to contribute to the broad spectrum of clinical behaviors observed among FL patients. Despite the urgent need, existing clinical tools do not reliably predict disease behavior. Using a multi-modal strategy, we examined cell-intrinsic and -extrinsic factors governing progression and therapeutic outcomes in FL patients enrolled onto a prospective clinical trial. By leveraging the strengths of each platform, we identify several tumor-specific features and microenvironmental patterns enriched in individuals who experience early relapse, the most high-risk FL patients. These features include stromal desmoplasia and changes to the follicular growth pattern present 20 months before first progression and first relapse.


Assuntos
Linfoma Folicular , Humanos , Linfócitos B , Linfoma Folicular/genética , Multiômica , Estudos Prospectivos , Recidiva , Microambiente Tumoral , Ensaios Clínicos como Assunto
18.
bioRxiv ; 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38496402

RESUMO

The intricate and dynamic interactions between the host immune system and its microbiome constituents undergo dynamic shifts in response to perturbations to the intestinal tissue environment. Our ability to study these events on the systems level is significantly limited by in situ approaches capable of generating simultaneous insights from both host and microbial communities. Here, we introduce Microbiome Cartography (MicroCart), a framework for simultaneous in situ probing of host features and its microbiome across multiple spatial modalities. We demonstrate MicroCart by comprehensively investigating the alterations in both gut host and microbiome components in a murine model of colitis by coupling MicroCart with spatial proteomics, transcriptomics, and glycomics platforms. Our findings reveal a global but systematic transformation in tissue immune responses, encompassing tissue-level remodeling in response to host immune and epithelial cell state perturbations, and bacterial population shifts, localized inflammatory responses, and metabolic process alterations during colitis. MicroCart enables a deep investigation of the intricate interplay between the host tissue and its microbiome with spatial multiomics.

19.
Mol Cell Proteomics ; 23(5): 100750, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38513891

RESUMO

Spatial tissue proteomics integrating whole-slide imaging, laser microdissection, and ultrasensitive mass spectrometry is a powerful approach to link cellular phenotypes to functional proteome states in (patho)physiology. To be applicable to large patient cohorts and low sample input amounts, including single-cell applications, loss-minimized and streamlined end-to-end workflows are key. We here introduce an automated sample preparation protocol for laser microdissected samples utilizing the cellenONE robotic system, which has the capacity to process 192 samples in 3 h. Following laser microdissection collection directly into the proteoCHIP LF 48 or EVO 96 chip, our optimized protocol facilitates lysis, formalin de-crosslinking, and tryptic digest of low-input archival tissue samples. The seamless integration with the Evosep ONE LC system by centrifugation allows 'on-the-fly' sample clean-up, particularly pertinent for laser microdissection workflows. We validate our method in human tonsil archival tissue, where we profile proteomes of spatially-defined B-cell, T-cell, and epithelial microregions of 4000 µm2 to a depth of ∼2000 proteins and with high cell type specificity. We finally provide detailed equipment templates and experimental guidelines for broad accessibility.


Assuntos
Microdissecção e Captura a Laser , Proteômica , Fluxo de Trabalho , Humanos , Proteômica/métodos , Microdissecção e Captura a Laser/métodos , Tonsila Palatina/citologia , Tonsila Palatina/metabolismo , Automação , Proteoma , Linfócitos B/metabolismo , Linfócitos B/citologia , Espectrometria de Massas/métodos , Linfócitos T/metabolismo , Linfócitos T/citologia
20.
J Transl Med ; 22(1): 291, 2024 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-38500108

RESUMO

BACKGROUND: Biologic TNF-α inhibitors (bTNFIs) can block cerebral TNF-α in Alzheimer's disease (AD) if these macromolecules can cross the blood-brain barrier (BBB). Thus, a model bTNFI, the extracellular domain of type II TNF-α receptor (TNFR), which can bind to and sequester TNF-α, was fused with a mouse transferrin receptor antibody (TfRMAb) to enable brain delivery via BBB TfR-mediated transcytosis. Previously, we found TfRMAb-TNFR to be protective in a mouse model of amyloidosis (APP/PS1) and tauopathy (PS19), and herein we investigated its effects in mice that combine both amyloidosis and tauopathy (3xTg-AD). METHODS: Eight-month-old female 3xTg-AD mice were injected intraperitoneally with saline (n = 11) or TfRMAb-TNFR (3 mg/kg; n = 11) three days per week for 12 weeks. Age-matched wild-type (WT) mice (n = 9) were treated similarly with saline. Brains were processed for immunostaining and high-resolution multiplex NanoString GeoMx spatial proteomics. RESULTS: We observed regional differences in proteins relevant to Aß, tau, and neuroinflammation in the hippocampus of 3xTg-AD mice compared with WT mice. From 64 target proteins studied using spatial proteomics, a comparison of the Aß-plaque bearing vs. plaque-free regions in the 3xTg-AD mice yielded 39 differentially expressed proteins (DEP) largely related to neuroinflammation (39% of DEP) and Aß and tau pathology combined (31% of DEP). Hippocampal spatial proteomics revealed that the majority of the proteins modulated by TfRMAb-TNFR in the 3xTg-AD mice were relevant to microglial function (⁓ 33%). TfRMAb-TNFR significantly reduced mature Aß plaques and increased Aß-associated microglia around larger Aß deposits in the 3xTg-AD mice. Further, TfRMAb-TNFR increased mature Aß plaque-associated microglial TREM2 in 3xTg-AD mice. CONCLUSION: Overall, despite the low visual Aß load in the 11-month-old female 3xTg-AD mice, our results highlight region-specific AD-relevant DEP in the hippocampus of these mice. Chronic TfRMAb-TNFR dosing modulated several DEP involved in AD pathology and showed a largely microglia-centric mechanism of action in the 3xTg-AD mice.


Assuntos
Doença de Alzheimer , Amiloidose , Produtos Biológicos , Camundongos , Feminino , Animais , Doença de Alzheimer/tratamento farmacológico , Fator de Necrose Tumoral alfa/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Doenças Neuroinflamatórias , Camundongos Transgênicos , Encéfalo/patologia , Hipocampo/metabolismo , Hipocampo/patologia , Amiloidose/metabolismo , Amiloidose/patologia , Placa Amiloide/metabolismo , Placa Amiloide/patologia , Anticorpos/metabolismo , Produtos Biológicos/metabolismo , Modelos Animais de Doenças
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA