RESUMO
Spermidine (SPD) is a widely recognized polyamine compound found in mammalian cells and plays a key role in various cellular processes. We propose that SPD may enhance placental vascular development in pregnant sows, leading to increased birth weight of piglets. Six hundred and nine sows at 60 days of gestation were randomly assigned into a basal diet (CON group), basal diet supplemented 10 mg/kg of SPD (SPD1 group), and basal diet supplemented 20 mg/kg of SPD (SPD2 group), respectively. Compared with the CON, SPD1 significantly increased the average number of healthy piglets per litter and the placental efficiency (P < 0.05), while the average number of mummified fetus per litter and the percentage of weak piglets significantly decreased (P < 0.05). In the plasma metabolomics, SPD content in plasma of sows (Pâ¯=â¯0.075) and umbilical cord plasma of piglets (Pâ¯=â¯0.078) had an increasing trend in response to SPD1. Furthermore, SPD1 increased the expression of the vascular endothelial cell marker protein, platelet endothelial cell adhesionmolecule-1 (PECAM-1/CD31) and the density of placental stromal vessels (P < 0.05). Moreover, as compared to CON, SPD2 significantly decreased the average number of mummified fetus per litter (P < 0.05), while the placental efficiency and the expression of amino acid transporter solute carrier (SLC) family 7, member7 (SLC7A7) and glucose transporters SLC2A2) and SLC5A4 in placental tissue significantly increased (P < 0.05). These results suggest that maternal supplementation of SPD during pregnancy increased healthy litter number, and promoted placental tissue development. Our findings provide evidence that maternal SPD has the potential to improve the production performance of sows.
RESUMO
The low resistance of boar sperm to cryopreservation dictates that addition antioxidants and energetic substances to the diluent to improve sperm quality is necessary. This study evaluated the effect of spermidine and phosphocreatine in combination on the quality, antioxidant capacity, and antiapoptotic-like changes capacity of cryopreserved boar sperm based on previous reports. The results showed that the combined application of spermidine and phosphocreatine significantly enhanced the motility, average path velocity, straight-line velocity, curvilinear velocity, beat cross frequency, acrosome integrity, plasma membrane integrity, mitochondrial activity, and DNA integrity compared with the control group (p < 0.05). In addition, the combined application of spermidine and phosphocreatine significantly enhanced the total antioxidant capacity, superoxide dismutase activity, glutathione peroxidase activity, and catalase activity while significantly decreasing malondialdehyde content and hydrogen peroxide content (p < 0.05). Western Blot analysis further showed that spermidine and phosphocreatine significantly decreased the expression of CASP3 and BAX and significantly enhanced the expression of BCL2 (p < 0.05); therefore, the combination of spermidine and phosphocreatine has potentially positive implications for improving the quality of cryopreserved boar sperm.
Assuntos
Antioxidantes , Apoptose , Criopreservação , Fosfocreatina , Preservação do Sêmen , Espermatozoides , Espermidina , Animais , Masculino , Criopreservação/métodos , Criopreservação/veterinária , Espermidina/farmacologia , Espermatozoides/efeitos dos fármacos , Espermatozoides/metabolismo , Apoptose/efeitos dos fármacos , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Preservação do Sêmen/métodos , Preservação do Sêmen/veterinária , Suínos , Fosfocreatina/metabolismo , Motilidade dos Espermatozoides/efeitos dos fármacos , Análise do Sêmen , Crioprotetores/farmacologiaRESUMO
Introduction: Osteoarthritis (OA) is a prevalent chronic degenerative disease, marked by a complex interplay of mechanical stress, inflammation, and metabolic imbalances. Recent studies have highlighted the potential of spermidine (SPD), a naturally occurring polyamine known for its anti-inflammatory and antioxidant properties, as a promising therapeutic agent for OA. This study delves into the therapeutic efficacy and mechanistic pathways of SPD in mitigating OA symptoms. Methods: Forty Sprague-Dawley rats were randomly assigned to four groups, including the CG (sham operation), model (anterior cruciate ligament transection [ACLT], and treatment (ACLT + two different doses of SPD) groups. In vivo, correlations between OA severity and different interventions were assessed by ELISA, X-rays, CT imaging, histological staining, and immunohistochemistry. In vitro, IL-1ß was used to trigger chondrocyte inflammation, and SPD's cytotoxicity was assessed in primary rat chondrocytes. Next, inflammatory markers, extracellular matrix (ECM) proteins, and pathway marker proteins were detected in chondrocytes administered IL-1ß alone, SPD, or aryl hydrocarbon receptor (AhR) silencing, by qRT-PCR, Griess reaction, ELISA, Western blot, and immunofluorescence. Morphological alterations and pyroptosis in chondrocytes were examined by transmission electron microscopy (TEM) and flow cytometry. Results: Our research reveals that SPD exerts significant anti-inflammatory and antipyroptotic effects on IL-1ß-treated chondrocytes and in anterior cruciate ligament transection (ACLT) rat models of OA, primarily through interaction with the Aryl hydrocarbon receptor (AhR). Specifically, SPD's binding to AhR plays a crucial role in modulating the inflammatory response and cellular pyroptosis by inhibiting both the AhR/NF-κB and NLRP3/caspase-1/GSDMD signaling pathways. Furthermore, the knockdown of AhR was found to negate the beneficial effects of SPD, underscoring the centrality of the AhR pathway in SPD's action mechanism. Additionally, SPD was observed to promote the preservation of cartilage integrity and suppress ECM degradation, further supporting its potential as an effective intervention for OA. Discussion: Collectively, our findings propose SPD as a novel therapeutic approach for OA treatment, targeting the AhR pathway to counteract the disease's progression and highlighting the need for further clinical evaluation to fully establish its therapeutic utility.
Assuntos
Condrócitos , Inflamação , Piroptose , Transdução de Sinais , Espermidina , Animais , Masculino , Ratos , Anti-Inflamatórios/farmacologia , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Caspase 1/metabolismo , Células Cultivadas , Condrócitos/metabolismo , Condrócitos/efeitos dos fármacos , Condrócitos/patologia , Modelos Animais de Doenças , Inflamação/metabolismo , NF-kappa B/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Osteoartrite/metabolismo , Osteoartrite/tratamento farmacológico , Osteoartrite/patologia , Proteínas de Ligação a Fosfato/metabolismo , Piroptose/efeitos dos fármacos , Ratos Sprague-Dawley , Receptores de Hidrocarboneto Arílico/metabolismo , Transdução de Sinais/efeitos dos fármacos , Espermidina/farmacologiaRESUMO
Skeletal muscle has a high regenerative ability and maintains homeostasis by rapidly regenerating from frequent damage caused by intense exercise or trauma. In sports, skeletal muscle damage occurs frequently due to intense exercise, so practical methods to promote skeletal muscle regeneration are required. Recent studies have shown that it may be possible to promote skeletal muscle regeneration through new pathways, such as promoting autophagy and improving mitochondrial function. Spermidine is a type of polyamine, and oral intake of spermidine promotes autophagy and improves mitochondrial function without inhibiting mTOR. Therefore, we evaluate the effects of spermidine intake on skeletal muscle regeneration after injury using a mouse model of cardiotoxin-induced muscle injury. Our results showed no significant change in skeletal muscle wet weight with spermidine intake at all time points. In addition, although spermidine intake significantly increased the mean fiber cross-sectional area 14 days after injury, these effects were not observed at other time points. In addition, we analyzed stem cells, autophagy, mTOR signaling, inflammation, and mitochondria, but no significant effects of spermidine intake were observed at almost all time points and protein expression levels. Therefore, spermidine intake does not affect skeletal muscle regeneration after chemical injury, and if there is any, it is very limited.
Assuntos
Autofagia , Músculo Esquelético , Regeneração , Espermidina , Serina-Treonina Quinases TOR , Animais , Masculino , Regeneração/efeitos dos fármacos , Espermidina/farmacologia , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Músculo Esquelético/lesões , Camundongos , Autofagia/efeitos dos fármacos , Serina-Treonina Quinases TOR/metabolismo , Camundongos Endogâmicos C57BLRESUMO
Polyamines (PAs) along with their conjugated forms, are important mediators of plant defense mechanisms against both biotic and abiotic stresses. Flavin-containing polyamine oxidases (PAOs) regulate PA levels through terminal oxidation. To date, the role of PAOs in plant-herbivore interaction remains poorly understood. We discovered that infestation by the brown planthopper (BPH) disrupts PA homeostasis within the leaf sheaths of rice plants, which co-occurs with the upregulation of OsPAO6, a tissue-specific inducible, apoplast-localized enzyme that regulates the terminal catabolism of spermidine (Spd) and spermine. Functional analysis using CRISPR-Cas9 genome-edited plants revealed that pao6 mutants accumulated significantly higher levels of Spd and phenylpropanoid-conjugated Spd in response to BPH infestation compared to wild-type controls. In addition, BPH feeding on pao6 mutants led to increased honeydew excretion and plant damage by female adults, consistent with in vitro experiments in which Spd enhanced BPH feeding. Furthermore, OsPAO6 transcription is regulated by jasmonate (JA) signaling, and it is dependent on MYC2, which directly binds to the G-box-like motif in the OsPAO6 promoter. Our findings reveal an important role of OsPAO6 in regulating polyamine catabolism in JA-induced responses triggered by herbivore attacks in rice.
RESUMO
Irritable bowel syndrome with diarrhea (IBS-D) is a common and chronic gastrointestinal disorder that is characterized by abdominal discomfort and occasional diarrhea. The pathogenesis of IBS-D is thought to be related to a combination of factors, including psychological stress, abnormal muscle contractions, and inflammation and disorder of the gut microbiome. However, there is still a lack of comprehensive analysis of the logical regulatory correlation among these factors. In this study, we found that stress induced hyperproduction of xanthine and altered the abundance and metabolic characteristics of Lactobacillus murinus in the gut. Lactobacillus murinus-derived spermidine suppressed the basal expression of type I interferon (IFN)-α in plasmacytoid dendritic cells by inhibiting the K63-linked polyubiquitination of TRAF3. The reduction in IFN-α unrestricted the contractile function of colonic smooth muscle cells, resulting in an increase in bowel movement. Our findings provided a theoretical basis for the pathological mechanism of, and new drug targets for, stress-exposed IBS-D.
RESUMO
Objective: Major depressive disorder (MDD) is common in childhood, but its etiopathogenesis is still unclear. Published neurochemical studies mostly focus on monoaminergic system, however, the pathophysiology of MDD cannot be explained by monoamine hypothesis only, medications that have effect on monoamines cannot have effect needed in all patients. We aimed to investigate the poliamine pathway of L-arginine metabolism which is proceeding by way of agmatine in adolescents with MDD. Methods: Our study involved 45 patients with MDD (case group), and 44 healthy controls (control group) between the ages of 13-17. Sociodemographic data form, Schedule for Affective Disorders and Schizophrenia for School Age Children-Present and Lifetime Version-DSM-5-Turkish, Beck Depression Inventory (BDI), Spielberger's State-Trait Anxiety Inventory were applied to all subjects. All subjects were evaluated in terms of the levels of serum agmatine, putrescine, spermidine, and spermine. Results: The levels of agmatine and spermine were significantly higher and putrescine and spermidine were significantly lower in case group compared with healthy controls. There was significant negative correlation with the levels of putrescine and spermidine between BDI scores, and there was significant positive correlation between the levels of spermine and BDI scores. No correlation found between the levels of agmatine and BDI scores. Conclusion: These differences that the levels of agmatine and polyamines in the MDD group seem to be a field that worth researching. In the future, the evaluation of the arginine/polyamine metabolism in MDD with larger sample and longitudinal studies is going to capable to contribute to a better understanding of the disorder.
RESUMO
BACKGROUND: Spermidine (SPD) is an intermediate compound in the polyamine metabolism which takes critical part in a variety of cellular processes. In particular, it has been reported to exert anti-aging effects, suppress the age-related diseases, and extend lifespan across species. However, whether it has the favorable influence on the quality of postovulatory aged oocytes remains elusive. METHODS: Immunostaining and fluorescence intensity measurement were used to evaluate the effects of postovulatory aging and SPD supplementation on the oocyte fragmentation, spindle/chromosome structure, actin polymerization, dynamics of cortical granules (CGs) and ovastacin, mitochondrial distribution and function, as well as autophagy levels. In addition, in vitro sperm binding assay and in vitro fertilization (IVF) experiment were applied to assess the impacts of postovulatory aging and SPD supplementation on the sperm binding ability and fertilization capacity of oocytes. RESULTS: Here, we showed that supplementation of SPD during postovulatory aging could relieve the deterioration of porcine oocytes. Specifically, we found that postovulatory aging impaired the oocyte quality by damaging the morphological integrity of oocytes, maintenance of spindle/chromosome structure, and dynamics of actin cytoskeleton. Postovulatory aging also weakened the sperm binding ability and fertilization capacity of oocytes by compromising the distribution pattern of CGs and their content ovastacin. Notably, supplementation of SPD attenuated these defects in postovulatory aged porcine oocytes via strengthening mitochondrial function, eliminating excessive reactive oxygen species (ROS), inhibiting apoptosis, and enhancing autophagy levels. CONCLUSION: Altogether, our findings demonstrate that SPD supplementation is a feasible approach to ameliorate the quality of postovulatory aged oocytes, which can be potentially applied to the human assisted reproductive technology (ART) and in vitro production of animal embryos.
Assuntos
Oócitos , Espermidina , Animais , Oócitos/efeitos dos fármacos , Oócitos/citologia , Espermidina/farmacologia , Suínos , Feminino , Ovulação/efeitos dos fármacos , Senescência Celular/efeitos dos fármacos , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Masculino , Fertilização in vitro , Espécies Reativas de Oxigênio/metabolismoRESUMO
This study represents the first investigation into the safety of a novel, high-purity spermidine trihydrochloride supplement (hpSPD) in humans. Spermidine, a natural compound found in various foods, has demonstrated potential health benefits in animal and epidemiological studies. However, evidence from clinical trials and safety evaluations of spermidine supplements is limited because pure spermidine for human administration has not been available. In this randomized, double-blind, within-subject and placebo-controlled trial, 37 healthy men (age 50-70 years; body mass index, 18.5-28 kg/m2) were administered either hpSPD or a placebo. We hypothesized that 7-day and 28-day dosing of 40 mg/day of hpSPD would have minimal effects on safety, although metabolic and polyamine homeostasis has not previously been examined at this dosage level. Consistent with our hypothesis, 40 mg/day hpSPD did not result in any significant changes in clinical, lipids, chemistry, or hematological parameters compared to placebo. Compliance was high, and no study product-related adverse events were reported. Substantial changes in serum and urine polyamine concentrations were not observed following hpSPD supplementation, suggesting effective homeostatic control of full-dose highly purified spermidine supplements with no evidence of adaptation of spermidine metabolism at 40 mg/day. These findings suggest that hpSPD at 40 mg/day for up to 28 days is safe and well-tolerated in healthy older men. The study is consistent with preclinical results and provides important evidence supporting the safety of high-purity spermidine supplementation, enabling further research with single-molecule spermidine to investigate its potential biology for improving human health. This trial was registered at clinicaltrials.gov (NCT05459961).
RESUMO
Methicillin-resistant Staphylococcus aureus (MRSA) is a major human pathogen that causes various diseases. Extensive researches highlight the significant role of gut microbiota and its metabolites, particularly spermidine, in infectious diseases. However, the immunomodulatory mechanisms of spermidine in MRSA-induced bloodstream infection remain unclear. Here, we confirmed the protective effects of spermidine in bloodstream infection in mice. Spermidine reduced the bacterial load and expression of inflammatory factors by shifting the macrophage phenotype to an anti-inflammatory phenotype, ultimately prolonging the survival of the infected mice. The protective effect against MRSA infection may rely on the elevated expression of protein tyrosine phosphatase nonreceptor 2 (PTPN2). Collectively, these findings confirm the immunoprotective effects of spermidine via binding to PTPN2 in MRSA bloodstream infection, providing new ideas for the treatment of related infectious diseases.
RESUMO
Impaired redox homeostasis is an important hallmark of aging. Among various anti-aging interventions, caloric restriction mimetics (CRMs) are the most effective in promoting health and longevity. The potential role of spermidine (SPD) as a CRM in modulating oxidative stress and redox homeostasis during aging remains unclear. This study aimed to investigate the protective effect of SPD in D-galactose (D-gal) accelerated induced senescence model and naturally aged rats. Young male rats (4 months), D-gal induced (500â¯mg/kg b. w., subcutaneously) aging model and naturally aged (22 months) rats were supplemented with SPD (10â¯mg/kg b. w., orally) for 6 weeks. The results showed that SPD supplementation suppresses the age induced increase in reactive oxygen species, lipid peroxidation and protein oxidation. Additionally, it increases the level of antioxidants, plasma membrane redox system in erythrocytes and membrane. These results also indicate that membrane transporter activity is correlated with the susceptibility of the erythrocyte towards oxidative damage. We therefore present evidence that SPD improves redox status and membrane impairments in erythrocytes in experimental and naturally aging rat models, however, more research is required to recommend a potential therapeutic role for SPD as an anti-aging intervention strategy.
RESUMO
The study investigated the causal relationships between spermidine levels and CVD risk factors using a bi-directional MR approach. Employing genetic variants from extensive GWAS datasets as IVs, the study aimed to determine whether spermidine levels can influence CVD risk factors such as blood pressure, blood glucose, and lipid profiles, and vice versa. The findings suggest a protective role of elevated spermidine levels against hypertension, elevated blood glucose, and lipid profiles (LDL-C and HDL-C). Specifically, increased spermidine levels were significantly associated with lower risk of hypertension (IVW beta = -0.0013453913, p = 0.01597648) and suppression risk of elevated blood glucose (IVW beta = -0.08061330, p = 0.02450205). Additionally, there was a notable association with lipid modulation, showing a decrease in LDL-C (IVW beta = -0.01849161, p = 0.01086728) and an increase in HDL-C (IVW beta = 0.0044608332, P = 0.01760051). Conversely, the influence of CVD risk factors on spermidine levels was minimal, with the exception that elevated blood glucose levels resulted in reduced spermidine levels. (IVW beta = -0.06714391, P = 0.01096123). These results underline the potential of spermidine as a modifiable dietary target for the prevention and management of cardiovascular diseases. Further investigations are warranted to explore the underlying biological mechanisms and the applicability of these findings in broader and diverse populations.
Assuntos
Doenças Cardiovasculares , Fatores de Risco de Doenças Cardíacas , Análise da Randomização Mendeliana , Espermidina , Espermidina/sangue , Humanos , Doenças Cardiovasculares/prevenção & controle , Doenças Cardiovasculares/sangue , Doenças Cardiovasculares/genética , Glicemia/metabolismo , Hipertensão/genética , Hipertensão/sangue , Estudo de Associação Genômica Ampla , Pressão Sanguínea , LDL-Colesterol/sangue , Causalidade , Fatores de Risco , HDL-Colesterol/sangueRESUMO
Oligoamines in cellular metabolism carry extremely diverse biological functions (i.e., regulating Ca2+-influx, neuronal nitric oxide synthase, membrane potential, Na+, K+-ATPase activity in synaptosomes, etc.). Furthermore, they also act as longevity agents and have a determinative role in autophagy, cell growth, proliferation, and death, while oligoamines dysregulation is a key in a variety of cancers. However, many of their mechanisms of actions have just begun to be understood. In addition to the numerous biosensing methods, only a very few simple small molecule-based tests are available for their selective but reversible tracking or fluorescent labeling. Motivated by this, we present herein a new fluorescent bis(acridino)-crown ether as a sensor molecule for biogenic oligoamines. The sensor molecule can selectively distinguish oligoamines from aliphatic mono- and diamino-analogues, while showing a reversible 1:2 (host:guest) complexation with a stepwise binding process accompanied by a turn-on fluorescence response. Both computational simulations on molecular docking and regression methods on titration experiments were carried out to reveal the oligoamine-recognition properties of the sensor molecule. The new fluorescent chemosensor molecule has a high potential for molecular-level functional studies on the oligoamine systems in cell processes (cellular uptake, transport, progression in cancers, etc.).
Assuntos
Éteres de Coroa , Simulação de Acoplamento Molecular , Espermina , Éteres de Coroa/química , Espermina/metabolismo , Espermina/química , Corantes Fluorescentes/química , Aminas/química , Aminas/metabolismo , Acridinas/químicaRESUMO
The biosynthesis of antibiotics and other secondary metabolites (also named special metabolites) is regulated by multiple regulatory networks and cascades that act by binding transcriptional factors to the promoter regions of different biosynthetic gene clusters. The binding affinity of transcriptional factors is frequently modulated by their interaction with specific ligand molecules. In the last decades, it was found that the biosynthesis of penicillin is induced by two different molecules, 1,3-diaminopropane and spermidine, but not by putrescine (1,4-diaminobutane) or spermine. 1,3-diaminopropane and spermidine induce the expression of penicillin biosynthetic genes in Penicillium chrysogenum. Proteomic studies clearly identified two different proteins that respond to the addition to cultures of these inducers and are involved in ß-alanine and pantothenic acid biosynthesis. These compounds are intermediates in the biosynthesis of phosphopantetheine that is required for the activation of non-ribosomal peptide synthetases, polyketide synthases, and fatty acid synthases. These large-size multidomain enzymes are inactive in the "apo" form and are activated by covalent addition of the phosphopantetheine prosthetic group by phosphopantetheinyl transferases. Both 1,3-diaminopropane and spermidine have a similar effect on the biosynthesis of cephalosporin by Acremonium chrysogenum and lovastatin by Aspergillus terreus, suggesting that this is a common regulatory mechanism in the biosynthesis of bioactive secondary metabolites/natural products.
RESUMO
Extreme longevity in humans is known to be a heritable trait. In a well-established twin erythrocyte metabolomics and proteomics database, we identified the longevity factor spermidine and a cluster of correlated molecules with high heritability estimates. Erythrocyte spermidine is 82% heritable and significantly correlated with 59 metabolites and 22 proteins. Thirty-eight metabolites and 19 proteins were >20% heritable, with a mean heritability of 61% for metabolites and 49% for proteins. Correlated metabolites are concentrated in energy metabolism, redox homeostasis, and autophagy pathways. Erythrocyte mean cell volume (MCV), an established heritable trait, was consistently negatively correlated with the top 25 biomolecules most strongly correlated with spermidine, indicating that smaller MCVs are associated with higher concentrations of spermidine and correlated molecules. Previous studies have linked larger MCVs with poorer memory, cognition, and all-cause mortality. Analysis of 432,682 unique patient records showed a linear increase in MCV with age but a significant deviation toward smaller than expected MCVs above age 86, suggesting that smaller MCVs are associated with extreme longevity. Consistent with previous reports, a subset of 78,158 unique patient records showed a significant skewing toward larger MCV values in a deceased cohort compared to an age-matched living cohort. Our study supports the existence of a complex, heritable phenotype in erythrocytes associated with health and longevity.
RESUMO
Polyamines are polycationic molecules that are crucial in a wide array of cellular functions. Their biosynthesis is mediated by aminopropyl transferases (APTs), which are promising targets for antimicrobial, antineoplastic, and antineurodegenerative therapies. A major limitation in studying APT enzymes, however, is the lack of high-throughput assays to measure their activity. We have developed the first fluorescence-based assay, diacetyl benzene (DAB)-APT, for the measurement of APT activity using 1,2-DAB, which forms fluorescent conjugates with putrescine, spermidine, and spermine, with fluorescence intensity increasing with the carbon chain length. The assay has been validated using APT enzymes from Saccharomyces cerevisiae and Plasmodium falciparum, and the data further validated by mass spectrometry and TLC. Using mass spectrometry analysis, the structures of the fluorescent putrescine, spermidine, and spermine 1,2-DAB adducts were determined to be substituted 1,3-dimethyl isoindoles. The DAB-APT assay is optimized for high-throughput screening, facilitating the evaluation of large chemical libraries. Given the critical roles of APTs in infectious diseases, oncology, and neurobiology, the DAB-APT assay offers a powerful tool with broad applicability, poised to drive advancements in research and drug discovery.
RESUMO
BACKGROUND: Rice is a staple crop for over half of the global population, but soil salinization poses a significant threat to its production. As a type of polyamine, spermidine (Spd) has been shown to reduce stress-induced damage in plants, but its specific role and mechanism in protecting rice roots under salt stress require further investigation. RESULTS: This study suggested spermidine (Spd) mitigates salt stress on rice root growth by enhancing antioxidant enzyme activity and reducing peroxide levels. Transcriptomic analysis showed that salt stress caused 333 genes to be upregulated and 1,765 to be downregulated. However, adding Spd during salt treatment significantly altered this pattern: 2,298 genes were upregulated and 844 were downregulated, which indicated Spd reverses some transcriptional changes caused by salt stress. KEGG pathway analysis suggested that Spd influenced key signaling pathways, including MAPK signaling, plant hormone signal transduction, and phenylalanine metabolism. Additionally, the bZIP transcription factor OsbZIP73 was upregulated after Spd treatment, which is confirmed by Western blot. Further insights into the interaction between OsbZIP73 and Spd were gained through fluorescence polarization experiments, showing that Spd enhances protein OsbZIP73's affinity for RNA. Functional enrichment analyses revealed that OsPYL1, OsSPARK1, and various SAUR family genes involved in Spd-affected pathways. The presence of G/A/C-box elements in these genes suggests they are potential targets for OsbZIP73. CONCLUSIONS: Our findings suggest a strategy of using spermidine as a chemical alleviator for salt stress and provide insights into the regulatory function of OsbZIP73 in mitigating salt stress in rice roots.
Assuntos
Oryza , Proteínas de Plantas , Raízes de Plantas , Estresse Salino , Espermidina , Oryza/genética , Oryza/metabolismo , Oryza/efeitos dos fármacos , Oryza/fisiologia , Espermidina/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Raízes de Plantas/efeitos dos fármacos , Estresse Salino/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismoRESUMO
Non-alcoholic fatty liver disease (NAFLD) is a prominent cause of chronic liver disease worldwide. Spermidine (SPD), a naturally occurring polyamine, has shown potential in alleviating the accumulation of hepatic lipids and reducing NAFLD symptoms in overweight mice. Nonetheless, the specific mechanisms through which SPD exerts its effects remain largely unknown. This study seeks to explore the protective effects of SPD on NAFLD and to clarify the underlying mechanisms. An in vitro model of NAFLD was established by inducing steatosis in AML-12 cells through the use of free fatty acids (FFAs). Our experimental results demonstrate that SPD significantly reduces NAFLD development induced by FFAs. This reduction is primarily achieved through the inhibition of cellular ferroptosis, as evidenced by decreased levels of Fe2+, malondialdehyde (MDA), and reactive oxygen species (ROS). Additionally, SPD was found to enhance cellular activity and ameliorate mitochondrial dysfunction and oxidative stress caused by FFA exposure. Further mechanistic studies have revealed that SPD upregulates the expression of solute transporter family 7a member 11 (SLC7A11), glutamate-cysteine ligase modifier subunit (GCLM), and glutathione peroxidase (GPX4). This upregulation is mediated by the activation of activating transcription factor 4 (ATF4). Knockdown experiments of ATF4 confirmed that its inhibition reverses the upregulation of SLC7A11, GCLM, and GPX4, thereby negating the protective effects of SPD. In conclusion, our findings suggest that SPD mitigates NAFLD by modulating the ATF4/SLC7A11/GCLM/GPX4 signaling pathway, resulting in the suppression of ferroptosis and the improvement of cellular health. These insights provide a novel molecular mechanism and identify potential therapeutic targets for the treatment of NAFLD.
Assuntos
Fator 4 Ativador da Transcrição , Sistema y+ de Transporte de Aminoácidos , Ferroptose , Fosfolipídeo Hidroperóxido Glutationa Peroxidase , Transdução de Sinais , Espermidina , Ferroptose/efeitos dos fármacos , Espermidina/farmacologia , Espermidina/metabolismo , Animais , Fator 4 Ativador da Transcrição/metabolismo , Fator 4 Ativador da Transcrição/genética , Camundongos , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/metabolismo , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/genética , Sistema y+ de Transporte de Aminoácidos/metabolismo , Sistema y+ de Transporte de Aminoácidos/genética , Transdução de Sinais/efeitos dos fármacos , Ácidos Graxos não Esterificados/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/patologia , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Glutamato-Cisteína Ligase/metabolismo , Glutamato-Cisteína Ligase/genética , Linhagem Celular , Espécies Reativas de Oxigênio/metabolismo , Estresse Oxidativo/efeitos dos fármacosRESUMO
The unique amino acid hypusine [Nε-(4-amino-2-hydroxybutyl)lysine] is exclusively formed on the translational regulator eukaryotic initiation factor 5A (eIF5A) via a process coined hypusination. Hypusination is mediated by two enzymes, deoxyhypusine synthase (DHPS) and deoxyhypusine hydroxylase (DOHH), and hypusinated eIF5A (eIF5AHyp) promotes translation elongation by alleviating ribosome pauses at amino acid motifs that cause structural constraints, and it also facilitates translation initiation and termination. Accordingly, eIF5AHyp has diverse biological functions that rely on translational control of its targets. Homozygous deletion of Eif5a, Dhps, or Dohh in mice leads to embryonic lethality, and heterozygous germline variants in EIF5A and biallelic variants in DHPS and DOHH are associated with rare inherited neurodevelopmental disorders, underscoring the importance of the hypusine circuit for embryonic and neuronal development. Given the pleiotropic effects of eIF5AHyp, a detailed understanding of the cell context-specific intrinsic roles of eIF5AHyp and of the chronic versus acute effects of eIF5AHyp inhibition is necessary to develop future strategies for eIF5AHyp-targeted therapy to treat various human health problems. Here, we review the most recent studies documenting the intrinsic roles of eIF5AHyp in different tissues/cell types under normal or pathophysiological conditions and discuss these unique aspects of eIF5AHyp-dependent translational control.
Assuntos
Fator de Iniciação de Tradução Eucariótico 5A , Lisina , Fatores de Iniciação de Peptídeos , Proteínas de Ligação a RNA , Fatores de Iniciação de Peptídeos/metabolismo , Fatores de Iniciação de Peptídeos/genética , Humanos , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética , Animais , Lisina/metabolismo , Lisina/análogos & derivados , Oxirredutases atuantes sobre Doadores de Grupo CH-NH/genética , Oxirredutases atuantes sobre Doadores de Grupo CH-NH/metabolismo , Oxigenases de Função Mista/genética , Oxigenases de Função Mista/metabolismo , Biossíntese de Proteínas , CamundongosRESUMO
The importance of synergy has been underscored in recent medical research for augmenting the efficacy of therapeutic interventions, targeting multiple biological pathways simultaneously. Our prior research elucidated that Dendrobium officinale polysaccharide (DOP) has the potential to prolong the lifespan of Caenorhabditis elegans (C. elegans) via regulating gut microbiota. Concurrently, spermidine (Spd), as a mimicking caloric restriction, facilitates autophagy and exerts a pronounced anti-aging effect. To enhance the anti-aging capabilities of DOP, we conducted a comprehensive study examining the combined effects of DOP and Spd in C. elegans, incorporating metabolomics analysis to investigate the underlying mechanisms. A combination of 250 mg/L DOP and 29.0 mg/L Spd yielded the most favorable outcomes in lifespan extension, evidencing a synergistic effect with a combination index (CI) of 0.65. In oxidative and heat stress tolerance assays, the observed CIs were 0.50 and 0.33, respectively. Metabolomic analysis highlighted significant alterations in metabolites related to lipid, nucleotide and energy metabolism, notably regulating glycerol 3-phosphate, linoleoyl glycerol, docosapentaenoic acid and ß-nicotinamide mononucleotide, nicotinamide adenine dinucleotide. The effects of DS on lipid metabolism were further validated using Oil Red O staining and triglyceride level in C. elegans. The results indicated that DS may primarily be via modulating lipid metabolism. To further confirm these findings, a high-fat diet-induced mouse model was employed. Consequently, it can be inferred that the synergistic anti-aging impact of DOP and Spd is likely mediated primarily through alterations in lipid metabolic processes.