Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 128
Filtrar
1.
BMC Pulm Med ; 24(1): 266, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38835000

RESUMO

BACKGROUND: sphingosine-1-phosphate (S1P), a naturally occurring sphingolipid, has been involved in pulmonary interstitial remodeling signaling. However, no study has examined its clinical merits for interstitial lung disease (ILD). This study aimed to investigate the serum level of S1P in ILD patients and its clinical correlation with the severity of disease in the two main types of ILDs: the IPF and the CTD-ILD patients. METHODS: This retrospective observational pilot study included 67 ILD patients and 26 healthy controls. These patients were stratified into the IPF group (35) and the CTD-ILD group (32). The severity of ILD was evaluated through pulmonary function indicators and the length of hospital stay. RESULTS: Serum S1P level was statistically higher in ILD patients than in health control (p = 0.002), while the Serum S1P levels in CTD-ILD and IPF patients were comparable. Serum S1P level further showed statistically negative correlation with pulmonary function indexes (TLC% pred, FVC% pred and FEV1% pred) and positive correlation with length of hospital stay (r = -0.38, p = 0.04; r = -0.41, p = 0.02, r = -0.37, p = 0.04; r = 0.42, p = 0.02, respectively) in CTD-ILD patients, although serum S1P level was not significantly correlated with inflammatory indexes. The IPF patients failed to exhibit a significant correlation of serum S1P level with pulmonary function and length of hospital stay. CONCLUSIONS: Serum S1P level might be a clinically useful biomarker in evaluating the severity of CTD-ILD patients rather than IPF patients.


Assuntos
Biomarcadores , Doenças Pulmonares Intersticiais , Lisofosfolipídeos , Índice de Gravidade de Doença , Esfingosina , Humanos , Masculino , Feminino , Doenças Pulmonares Intersticiais/sangue , Doenças Pulmonares Intersticiais/fisiopatologia , Doenças Pulmonares Intersticiais/diagnóstico , Esfingosina/análogos & derivados , Esfingosina/sangue , Biomarcadores/sangue , Lisofosfolipídeos/sangue , Pessoa de Meia-Idade , Estudos Retrospectivos , Idoso , Projetos Piloto , Testes de Função Respiratória , Pulmão/fisiopatologia , Estudos de Casos e Controles , Tempo de Internação/estatística & dados numéricos
2.
Int J Mol Sci ; 25(10)2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38791156

RESUMO

The deterioration of osteoblast-led bone formation and the upregulation of osteoclast-regulated bone resorption are the primary causes of bone diseases, including osteoporosis. Numerous circulating factors play a role in bone homeostasis by regulating osteoblast and osteoclast activity, including the sphingolipid-sphingosine-1-phosphate (S1P). However, to date no comprehensive studies have investigated the impact of S1P activity on human and murine osteoblasts and osteoclasts. We observed species-specific responses to S1P in both osteoblasts and osteoclasts, where S1P stimulated human osteoblast mineralisation and reduced human pre-osteoclast differentiation and mineral resorption, thereby favouring bone formation. The opposite was true for murine osteoblasts and osteoclasts, resulting in more mineral resorption and less mineral deposition. Species-specific differences in osteoblast responses to S1P were potentially explained by differential expression of S1P receptor 1. By contrast, human and murine osteoclasts expressed comparable levels of S1P receptors but showed differential expression patterns of the two sphingosine kinase enzymes responsible for S1P production. Ultimately, we reveal that murine models may not accurately represent how human bone cells will respond to S1P, and thus are not a suitable model for exploring S1P physiology or potential therapeutic agents.


Assuntos
Diferenciação Celular , Lisofosfolipídeos , Osteoblastos , Osteoclastos , Especificidade da Espécie , Esfingosina , Esfingosina/análogos & derivados , Esfingosina/metabolismo , Lisofosfolipídeos/metabolismo , Humanos , Animais , Camundongos , Osteoclastos/metabolismo , Osteoclastos/citologia , Osteoblastos/metabolismo , Osteoblastos/efeitos dos fármacos , Osteogênese/efeitos dos fármacos , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Receptores de Esfingosina-1-Fosfato/metabolismo , Osso e Ossos/metabolismo , Reabsorção Óssea/metabolismo , Células Cultivadas
3.
Cell Physiol Biochem ; 58(2): 156-171, 2024 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-38639213

RESUMO

BACKGROUND/AIMS: The physiological phenotype of individuals can influence and shape real-life phenomena in that it can contribute to the development of specific characteristics that can affect the immune response to specific stimuli. In this study we aimed to understand whether the sphingosine/sphingosine-1-phoshate (S1P) axis can modulate the immunotype of circulating cells. METHODS: To pursue this goal, we performed bioinformatic analyses of public datasets. RESULTS: The transcriptomic profile of healthy subjects of GSE192829 dataset identified two clusters with different transcriptional repertoire. Cluster 1 expressed higher levels of enzymes for S1P formation than cluster 0 which was characterized by enzymes that lead to ceramide formation, which represent the opposite metabolic direction. Inference analysis showed that cluster 1 was higher populated by monocytes, CD4+ T and B cells than cluster 0. Of particular interest was the phenotype of the monocytes in cluster 1 which showed an immunosuppressive nature compared to those in cluster 0. The role of S1P signature in healthy PBMCs was confirmed with other dataset analyses, supporting that circulating monocytes positive to the ceramidase, unlike the negative ones, had an immunosuppressive phenotype characterized by hub immunosuppressive markers (i.e. TYROBP, FCER1G, SYK, SIRPA, CSF1R, AIF1, FCGR2A, CLEC7A, LYN, PLCG2, LILRs, HCK, GAB2). This hub genes well discriminated the immunotype of healthy subjects. CONCLUSION: In conclusion this study highlights that S1P-associated hub markers can be useful to discriminate subjects with pronounced immunosuppression.


Assuntos
Monócitos , Esfingosina , Esfingosina/análogos & derivados , Humanos , Esfingosina/metabolismo , Monócitos/metabolismo , Lisofosfolipídeos/metabolismo , Imunossupressores , Fenótipo
5.
J Pathol ; 263(1): 22-31, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38332723

RESUMO

Idiopathic pulmonary fibrosis (IPF) is a progressive scarring disease of the lung that leads rapidly to respiratory failure. Novel approaches to treatment are urgently needed. The bioactive lipid sphingosine-1-phosphate (S1P) is increased in IPF lungs and promotes proinflammatory and profibrotic TGF-ß signaling. Hence, decreasing lung S1P represents a potential therapeutic strategy for IPF. S1P is degraded by the intracellular enzyme S1P lyase (SPL). Here we find that a knock-in mouse with a missense SPL mutation mimicking human disease resulted in reduced SPL activity, increased S1P, increased TGF-ß signaling, increased lung fibrosis, and higher mortality after injury compared to wild type (WT). We then tested adeno-associated virus 9 (AAV9)-mediated overexpression of human SGPL1 (AAV-SPL) in mice as a therapeutic modality. Intravenous treatment with AAV-SPL augmented lung SPL activity, attenuated S1P levels within the lungs, and decreased injury-induced fibrosis compared to controls treated with saline or only AAV. We confirmed that AAV-SPL treatment led to higher expression of SPL in the epithelial and fibroblast compartments during bleomycin-induced lung injury. Additionally, AAV-SPL decreased expression of the profibrotic cytokines TNFα and IL1ß as well as markers of fibroblast activation, such as fibronectin (Fn1), Tgfb1, Acta2, and collagen genes in the lung. Taken together, our results provide proof of concept for the use of AAV-SPL as a therapeutic strategy for the treatment of IPF. © 2024 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.


Assuntos
Dependovirus , Fibrose Pulmonar Idiopática , Lisofosfolipídeos , Esfingosina/análogos & derivados , Humanos , Camundongos , Animais , Dependovirus/genética , Pulmão/metabolismo , Fibrose Pulmonar Idiopática/genética , Fibrose Pulmonar Idiopática/terapia , Fibrose Pulmonar Idiopática/metabolismo , Bleomicina , Modelos Animais , Terapia Genética , Aldeído Liases/genética , Aldeído Liases/metabolismo
6.
Cells ; 13(2)2024 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-38275815

RESUMO

The disruption of endothelial heparan sulfate (HS) is an early event in tumor cell metastasis across vascular barriers, and the reinforcement of endothelial HS reduces tumor cell adhesion to endothelium. Our recent study showed that while vascular endothelial growth factor (VEGF) greatly reduces HS at an in vitro blood-brain barrier (BBB) formed by human cerebral microvascular endothelial cells (hCMECs), it significantly enhances HS on a breast cancer cell, MDA-MB-231 (MB231). Here, we tested that this differential effect of VEGF on the HS favors MB231 adhesion and transmigration. We also tested if agents that enhance endothelial HS may affect the HS of MB231 and reduce its adhesion and transmigration. To test these hypotheses, we generated an in vitro BBB by culturing hCMECs on either a glass-bottom dish or a Transwell filter. We first quantified the HS of the BBB and MB231 after treatment with VEGF and endothelial HS-enhancing agents and then quantified the adhesion and transmigration of MB231 across the BBB after pretreatment with these agents. Our results demonstrated that the reduced/enhanced BBB HS and enhanced/reduced MB231 HS increase/decrease MB231 adhesion to and transmigration across the BBB. Our findings suggest a therapeutic intervention by targeting the HS-mediated breast cancer brain metastasis.


Assuntos
Barreira Hematoencefálica , Neoplasias da Mama , Humanos , Feminino , Barreira Hematoencefálica/patologia , Fator A de Crescimento do Endotélio Vascular/metabolismo , Células Endoteliais/metabolismo , Neoplasias da Mama/patologia , Adesão Celular , Fatores de Crescimento do Endotélio Vascular/metabolismo
7.
Expert Opin Ther Targets ; 27(12): 1247-1256, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37997278

RESUMO

INTRODUCTION: Psoriasis is a chronic, inflammatory, non-communicable skin disorder that affects a patient's social and emotional well-being. It is characterized by hyperproliferation of keratinocytes, irregular shedding of skin cells, and abnormal invasion of inflammatory mediators. The treatment strategy is designed based on the severity of the disease condition starting from topical, phototherapy, systemic, and biologics. In recent years, extensive research into the underlying mechanisms of psoriasis has led to significant advancement in treatment options from small molecules to biologics. AREA COVERED: This review focuses on intracellular and molecular mechanisms such as AhR, A3AR, RIP1, CGRP, and S1P that serve as novel pharmacological targets for psoriasis. Moreover, new molecules are approved or are under clinical investigation to interfere with these target mechanisms. EXPERT OPINION: A detailed understanding of signaling pathways provides potential targets and molecular mechanisms for the inflammatory cascade in psoriasis. This has led to the development of small molecules targeting specific pathways. Further, the combination of nanotechnology can assist in dose reduction leading to reduced adverse effects in the management of psoriasis.


Assuntos
Produtos Biológicos , Psoríase , Humanos , Psoríase/tratamento farmacológico , Psoríase/metabolismo , Pele/metabolismo , Produtos Biológicos/metabolismo , Produtos Biológicos/farmacologia , Produtos Biológicos/uso terapêutico
8.
Int J Mol Sci ; 24(13)2023 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-37446018

RESUMO

Sex is a biological variable that can reflect clinical outcomes in terms of quality of life, therapy effectiveness, responsiveness and/or toxicity. Sphingosine-1-phosphate (S1P) is a lipidic mediator whose activity can be influenced by sex. To evaluate whether the S1P axis underlies sex 'instructions' in the lung during physiological and oncological lung conditions, sphingosine and S1P were quantified in the blood of healthy (H) volunteers, lung adenocarcinoma (ADK) and squamous cell carcinoma (SCC) patients of both sexes. S1P receptors and their metabolic enzymes were evaluated in the tissues. Circulating levels of S1P were similar among H female and male subjects and female SCC patients. Instead, male and female ADK patients had lower circulating S1P levels. S1P receptor 3 (S1PR3) was physiologically expressed in the lung, but it was overexpressed in male SCC, and female and male ADK, but not in female SCC patients, who showed a significantly reduced ceramide synthase 1 (CERS1) mRNA and an overexpression of the ceramidase (ASAH1) precursor in lung tumor tissues, compared to male SCC and both male and female ADK patients. These findings highlighted sex differences in S1P rheostat in pathological conditions, but not in physiological conditions, identifying S1P as a prognostic mediator depending on lung cancer histotype.


Assuntos
Neoplasias Pulmonares , Esfingosina , Humanos , Masculino , Feminino , Esfingosina/metabolismo , Ceramidases/metabolismo , Caracteres Sexuais , Qualidade de Vida , Lisofosfolipídeos/metabolismo , Pulmão/metabolismo , Neoplasias Pulmonares/metabolismo
9.
Trends Cancer ; 9(10): 782-787, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37507302

RESUMO

Cancer treatment options are limited due to therapeutic resistance; thus, understanding the tumor microenvironment (TME) is crucial. Sphingolipid metabolism and complement activation products have essential roles in promoting tumor survival. Emerging evidence shows that sphingolipid signaling can regulate intracellular complement activation to induce inflammasome-mediated metastasis, offering a promising strategy for cancer therapy.


Assuntos
Neoplasias , Esfingosina , Humanos , Esfingosina/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Neoplasias/patologia , Transdução de Sinais , Esfingolipídeos/metabolismo , Microambiente Tumoral
10.
Cells ; 12(14)2023 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-37508508

RESUMO

Astrocytes are critical players in brain health and disease. Brain pathologies and lesions are usually accompanied by astroglial alterations known as reactive astrogliosis. Sphingosine 1-phosphate lyase (SGPL1) catalysis, the final step in sphingolipid catabolism, irreversibly cleaves its substrate sphingosine 1-phosphate (S1P). We have shown that neural ablation of SGPL1 causes accumulation of S1P and hence neuronal damage, cognitive deficits, as well as microglial activation. Moreover, the S1P/S1P-receptor signaling axis enhances ATP production in SGPL1-deficient astrocytes. Using immunohistochemical methods as well as RNA Seq and CUT&Tag we show how S1P signaling causes activation of the astrocytic purinoreceptor P2Y1 (P2Y1R). With specific pharmacological agonists and antagonists, we uncover the P2Y1R as the key player in S1P-induced astrogliosis, and DDX3X mediated the activation of the NLRP3 inflammasome, including caspase-1 and henceforward generation of interleukin-1ß (IL-1ß) and of other proinflammatory cytokines. Our results provide a novel route connecting S1P metabolism and signaling with astrogliosis and the activation of the NLRP3 inflammasome, a central player in neuroinflammation, known to be crucial for the pathogenesis of numerous brain illnesses. Thus, our study opens the door for new therapeutic strategies surrounding S1P metabolism and signaling in the brain.


Assuntos
Inflamassomos , Liases , Encéfalo , Gliose , Proteína 3 que Contém Domínio de Pirina da Família NLR , Animais , Camundongos
11.
Int J Mol Sci ; 24(9)2023 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-37176007

RESUMO

The stimulator of interferon genes (STING) is a master regulator of innate immunity, involved in several inflammatory diseases. Our previous data showed that sphingosine-1-phosphate (S1P) is released during inflammatory conditions in the lung. The aim of this study was to understand the interplay between S1P and STING during both physiological and pathological conditions. The mRNA levels of ceramidase (ASAH1), S1P precursor enzyme, and STING were inversely correlated in healthy lung tissues, but positively correlated in tumor tissues. The activation of STING induced higher expression of ASAH1 and was accompanied by IFN-ß and IL-6 release. ASAH1 and sphingosine kinases (SPHK I/II) blockade significantly reduced IL-6, but not IFNß, after STING activation. In support of this, taking advantage of a mouse model, we found that inflamed lungs had higher levels of inactive ASAH1 when STING was inhibited. This confirmed the human data, where higher levels of STING promoted the activation of ASAH1. Lung cancer patients positive to STING and ASAH1 mRNA levels had a dismal prognosis in that the overall survival was reduced compared to STING/ASAH1 negative patients. These data highlight that during physiological conditions, STING and the S1P axis do not interfere, whereas in lung cancer patients their interplay is associated to poor prognosis.


Assuntos
Neoplasias Pulmonares , Esfingosina , Animais , Humanos , Camundongos , Inflamação , Interleucina-6/genética , Pulmão/metabolismo , Neoplasias Pulmonares/genética , Lisofosfolipídeos/metabolismo , Esfingosina/metabolismo
12.
J Biol Chem ; 299(7): 104851, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37220855

RESUMO

Sphingosine 1-phosphate receptor 1 (S1PR1) is a G protein-coupled receptor essential for vascular development and postnatal vascular homeostasis. When exposed to sphingosine 1-phosphate (S1P) in the blood of ∼1 µM, S1PR1 in endothelial cells retains cell-surface localization, while lymphocyte S1PR1 shows almost complete internalization, suggesting the cell-surface retention of S1PR1 is endothelial cell specific. To identify regulating factors that function to retain S1PR1 on the endothelial cell surface, here we utilized an enzyme-catalyzed proximity labeling technique followed by proteomic analyses. We identified Filamin B (FLNB), an actin-binding protein involved in F-actin cross-linking, as a candidate regulating protein. We show FLNB knockdown by RNA interference induced massive internalization of S1PR1 into early endosomes, which was partially ligand dependent and required receptor phosphorylation. Further investigation showed FLNB was also important for the recycling of internalized S1PR1 back to the cell surface. FLNB knockdown did not affect the localization of S1PR3, another S1P receptor subtype expressed in endothelial cells, nor did it affect localization of ectopically expressed ß2-adrenergic receptor. Functionally, we show FLNB knockdown in endothelial cells impaired S1P-induced intracellular phosphorylation events and directed cell migration and enhancement of the vascular barrier. Taken together, our results demonstrate that FLNB is a novel regulator critical for S1PR1 cell-surface localization and thereby proper endothelial cell function.


Assuntos
Filaminas , Receptores de Esfingosina-1-Fosfato , Células Endoteliais/metabolismo , Filaminas/genética , Filaminas/metabolismo , Lisofosfolipídeos/metabolismo , Proteômica , Esfingosina/metabolismo , Receptores de Esfingosina-1-Fosfato/metabolismo , Humanos , Técnicas de Silenciamento de Genes , Células Cultivadas , Transporte Proteico
13.
EMBO Mol Med ; 15(5): e16645, 2023 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-36912000

RESUMO

Sphingosine-1-phosphate (S1P), the circulating HDL-bound lipid mediator that acts via S1P receptors (S1PR), is required for normal vascular development. The role of this signaling axis in vascular retinopathies is unclear. Here, we show in a mouse model of oxygen-induced retinopathy (OIR) that endothelial overexpression of S1pr1 suppresses while endothelial knockout of S1pr1 worsens neovascular tuft formation. Furthermore, neovascular tufts are increased in Apom-/- mice which lack HDL-bound S1P while they are suppressed in ApomTG mice which have more circulating HDL-S1P. These results suggest that circulating HDL-S1P activation of endothelial S1PR1 suppresses neovascular pathology in OIR. Additionally, systemic administration of ApoM-Fc-bound S1P or a small-molecule Gi-biased S1PR1 agonist suppressed neovascular tuft formation. Circulating HDL-S1P activation of endothelial S1PR1 may be a key protective mechanism to guard against neovascular retinopathies that occur not only in premature infants but also in diabetic patients and aging people.


Assuntos
Neovascularização Retiniana , Camundongos , Animais , Receptores de Esfingosina-1-Fosfato , Receptores de Lisoesfingolipídeo/genética , Receptores de Lisoesfingolipídeo/agonistas , Lipoproteínas HDL , Esfingosina , Lisofosfolipídeos
14.
Pharmacol Ther ; 244: 108381, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36907249

RESUMO

Lipids are essential structural and functional components of the central nervous system (CNS). Sphingolipids are ubiquitous membrane components which were discovered in the brain in the late 19th century. In mammals, the brain contains the highest concentration of sphingolipids in the body. Sphingosine 1-phosphate (S1P) derived from membrane sphingolipids evokes multiple cellular responses which, depending on its concentration and localization, make S1P a double-edged sword in the brain. In the present review we highlight the role of S1P in brain development and focus on the often contrasting findings regarding its contributions to the initiation, progression and potential recovery of different brain pathologies, including neurodegeneration, multiple sclerosis (MS), brain cancers, and psychiatric illnesses. A detailed understanding of the critical implications of S1P in brain health and disease may open the door for new therapeutic options. Thus, targeting S1P-metabolizing enzymes and/or signaling pathways might help overcome, or at least ameliorate, several brain illnesses.


Assuntos
Cloridrato de Fingolimode , Esfingosina , Animais , Humanos , Esfingosina/metabolismo , Encéfalo/metabolismo , Lisofosfolipídeos/metabolismo , Esfingolipídeos , Receptores de Lisoesfingolipídeo/metabolismo , Mamíferos/metabolismo
15.
Int J Mol Sci ; 24(5)2023 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-36902011

RESUMO

Astrocytes are critical players in brain health and disease. Sphingosine-1-phosphate (S1P), a bioactive signaling lipid, is involved in several vital processes, including cellular proliferation, survival, and migration. It was shown to be crucial for brain development. Its absence is embryonically lethal, affecting, inter alia, the anterior neural tube closure. However, an excess of S1P due to mutations in S1P-lyase (SGPL1), the enzyme responsible for its constitutive removal, is also harmful. Of note, the gene SGPL1 maps to a region prone to mutations in several human cancers and also in S1P-lyase insufficiency syndrome (SPLIS) characterized by several symptoms, including peripheral and central neurological defects. Here, we investigated the impact of S1P on astrocytes in a mouse model with the neural-targeted ablation of SGPL1. We found that SGPL1 deficiency, and hence the accumulation of its substrate, S1P, causes the elevated expression of glycolytic enzymes and preferentially directs pyruvate into the tricarboxylic acid (TCA) cycle through its receptors (S1PR2,4). In addition, the activity of TCA regulatory enzymes was increased, and consequently, so was the cellular ATP content. The high energy load activates the mammalian target of rapamycin (mTOR), thus keeping astrocytic autophagy in check. Possible consequences for the viability of neurons are discussed.


Assuntos
Astrócitos , Esfingosina , Camundongos , Animais , Humanos , Astrócitos/metabolismo , Esfingosina/metabolismo , Encéfalo/metabolismo , Lisofosfolipídeos/metabolismo , Aldeído Liases/genética , Autofagia/fisiologia , Trifosfato de Adenosina/metabolismo , Mamíferos/metabolismo
16.
Ann Transl Med ; 11(2): 73, 2023 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-36819566

RESUMO

Background: Ischemia/reperfusion (I/R) induced liver injury is a severe pathological process which frequently occurs during clinical hepatic operations. The current study investigated the protective function and underlying mechanisms of hydrogen sulfide (H2S) in I/R induced liver injury. Methods: The effects of H2S were examined using the fibroblast-like rat liver cell line BRL-3A (the name of normal hepatocytes in rats) cultured under hypoxic conditions and an I/R rat model. The viability of BRL-3A cells was assessed using the methylthiazolyldiphenyl-tetrazolium (MTT) assay and Hoechst analysis. The expression of C/EBP homologous protein (CHOP), sphingosine kinase 1 (SPHK1), and sphingosine 1-phosphate (S1P) were determined in hypoxic BRL-3A cells with or without H2S treatment. CHOP was overexpressed in hypoxic BRL-3A cells to further evaluate whether H2S protected the liver against I/R injury by decreasing endoplasmic reticulum (ER) stress. Finally, the inflammation levels in the serum and the histopathological changes of liver were examined in the I/R rat model to evaluate the therapeutic function of H2S on I/R induced liver injury in vivo. Results: H2S alleviated hypoxic damage in BRL-3A cells. In addition, hypoxia increased the expression of CHOP, SPHK1, and S1P in BRL-3A cells, and this was abolished by H2S pretreatment. Notably, overexpression of CHOP significantly inhibited the effect of H2S on the viability of BRL-3A cells during hypoxia. Overall, H2S effectively protected against I/R induced liver injury, decreased the inflammatory responses, and attenuated apoptosis of hepatocyte via inhibiting the ER stress response. Conclusions: These findings demonstrated that pre-treatment of H2S protected against I/R induced liver injury by repressing the SPHK1/S1P pathway via inhibition of ER stress, suggesting an effective therapeutic method for the treatment of I/R induced liver injury.

17.
Int J Mol Sci ; 24(4)2023 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-36835432

RESUMO

The endothelial cells (EC) of established blood vessels in adults remain extraordinarily quiescent in the sense that they are not actively proliferating, but they fulfill the necessary role to control the permeability of their monolayer that lines the interior of blood vessels. The cell-cell junctions between ECs in the endothelium comprise tight junctions and adherens homotypic junctions, which are ubiquitous along the vascular tree. Adherens junctions are adhesive intercellular contacts that are crucial for the organization of the EC monolayer and its maintenance and regulation of normal microvascular function. The molecular components and underlying signaling pathways that control the association of adherens junctions have been described in the last few years. In contrast, the role that dysfunction of these adherens junctions has in contributing to human vascular disease remains an important open issue. Sphingosine-1-phosphate (S1P) is a bioactive sphingolipid mediator found at high concentrations in blood which has important roles in the control of the vascular permeability, cell recruitment, and clotting that follow inflammatory processes. This role of S1P is achieved through a signaling pathway mediated through a family of G protein-coupled receptors designated as S1PR1. This review highlights novel evidence for a direct linkage between S1PR1 signaling and the mediation of EC cohesive properties that are controlled by VE-cadherin.


Assuntos
Caderinas , Células Endoteliais , Endotélio Vascular , Receptores de Esfingosina-1-Fosfato , Humanos , Junções Aderentes/metabolismo , Caderinas/metabolismo , Permeabilidade Capilar/fisiologia , Células Endoteliais/metabolismo , Endotélio Vascular/metabolismo , Esfingosina/metabolismo , Receptores de Esfingosina-1-Fosfato/metabolismo
18.
Methods Mol Biol ; 2625: 337-345, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36653655

RESUMO

Since its discovery, the bioactive sphingolipid sphingosine 1-phosphate (S1P) has been shown to involve in a myriad of cellular and physiological processes. In the process of tissue healing, S1P plays an important role in both normal and pathological healing, leading to fibrosis in multiple tissues including the cornea. Cornea covers the anterior portion of the eye and is responsible for the refraction of light. Corneal transparency is essential to obtain a clear vision, and a proper wound healing process is necessary for a clear cornea. Even though S1P is indicated to be a critical player in corneal fibrosis, we lack a detailed understanding of the role of S1P signaling in corneal wound healing and fibrosis. Herein, we describe a methodology to characterize the in-vivo wound healing process of the cornea using an easy and affordable imaging-based assay. This gives a consistent and easy way to characterize the wound and also the longitudinal healing process.


Assuntos
Lesões da Córnea , Esfingosina , Humanos , Lisofosfolipídeos , Córnea , Fibrose
19.
Am J Physiol Cell Physiol ; 324(2): C565-C572, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36622069

RESUMO

Intestinal epithelial barrier defects occur commonly during a variety of pathological conditions, though their underlying mechanisms are not completely understood. Sphingosine-1-phosphate (S1P) has been shown to be a critical regulator of proliferation and of maintenance of an intact intestinal epithelial barrier, as is also sphingosine kinase 1 (SphK1), the rate-limiting enzyme for S1P synthesis. SphK1 has been shown to modulate its effect on intestinal epithelial proliferation through increased levels of c-myc. We conducted genome-wide profile analysis to search for differential microRNA expression related to overexpressed SphK1 demonstrating adjusted expression of microRNA 542-5p (miR-542-5p). Here, we show that miR-542-5p is regulated by SphK1 activity and is an effector of c-myc translation that ultimately serves as a critical regulator of the intestinal epithelial barrier. miR-542-5p directly regulates c-myc translation through direct binding to the c-myc mRNA. Exogenous S1P analogs administered in vivo protect murine intestinal barrier from damage due to mesenteric ischemia reperfusion, and damaged intestinal tissue had increased levels of miR-542-5p. These results indicate that miR-542-5p plays a critical role in the regulation of S1P-mediated intestinal barrier function, and may highlight a novel role in potential therapies.


Assuntos
Intestinos , MicroRNAs , Animais , Camundongos , Proliferação de Células/genética , Células Epiteliais/metabolismo , Lisofosfolipídeos/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Esfingosina
20.
Brain Res ; 1799: 148171, 2023 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-36410428

RESUMO

Sphingolipid-1-phosphate (S1P) signaling through the activation S1P receptors (S1PRs) plays critical roles in cellular events in the brain. Aberrant S1P metabolism has been identified in the brains of Alzheimer's disease (AD) patients. Our recent studies have shown that treatment with fingolimod, an analog of sphingosine, provides neuroprotective effects in five familiar Alzheimer disease (5xFAD) transgenic mice, resulting in the reduction of amyloid-ß (Aß) neurotoxicity, inhibition of activation of microglia and astrocytes, increased hippocampal neurogenesis, and improved learning and memory. However, the pathways by which dysfunctional S1P and S1PR signaling may associate with the development of AD-like pathology remain unknown. In this study, we investigated the alteration of signaling of S1P/S1P receptor 1 (S1PR1), the most abundant S1PR subtype in the brain, in the cortex of 5xFAD transgenic mice at 3, 8, and 14 months of age. Compared to non-transgenic wildtype (WT) littermates, we found significant decreased levels of sphingosine kinases (SphKs), increased S1P lyase (S1PL), and increased S1PR1 in 8- and 14-month-old, but not in 3-month-old 5xFAD mice. Furthermore, we detected increased activation of the S1PR1 downstream pathway of Akt/mTor/Tau signaling in aging 5xFAD mice. Treatment with fingolimod from 1 to 8 months of age reversed the levels of SphKs, S1PL, and furthermore, those of S1PR1 and its downstream pathway of Akt/mTor/Tau signaling. Together the data reveal that dysregulation of S1P and S1PR signaling may associate with the development of AD-like pathology through Akt/mTor/Tau signaling.


Assuntos
Doença de Alzheimer , Esfingosina , Camundongos , Animais , Cloridrato de Fingolimode/farmacologia , Doença de Alzheimer/metabolismo , Receptores de Esfingosina-1-Fosfato , Proteínas Proto-Oncogênicas c-akt , Lisofosfolipídeos/metabolismo , Modelos Animais de Doenças , Camundongos Transgênicos , Serina-Treonina Quinases TOR
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA