Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.012
Filtrar
1.
Trends Plant Sci ; 2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39097426

RESUMO

Hybrid vigor in plants confers better agronomically significant traits in offspring compared with either parent. Recently, Wang et al. reported a mitosis instead of meiosis (MiMe) system in tomato for clonal gamete production, showing the potential to exploit autopolyploid progressive heterosis by stacking genomes from four grandparents in tetraploid hybrids, developed from crossing MiMe hybrids.

2.
Adv Mater ; : e2407586, 2024 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-39126129

RESUMO

Transition-metal dichalcogenide (TMDs) nanoplates exhibit unique properties different from their monolayer counterparts. Controllable nucleation and growth are prerequisite and highly desirable for their practical applications. Here, a self-anchored van-der-Waals stacking growth method is developed, by which the substrate pit induced by precursor etching anchors the source material, impedes the lateral spreading of source droplets and facilitates the in situ stacking growth of high-quality TMD nanoplates with a thickness of tens to hundreds of nanometers at well-defined locations. As such, an array of TMD nanoplates with controlled lateral dimensions are produced and applied in arrayed photodetectors. This study solves the problem of controllable preparation of TMD nanoplates, holding promise for applications in electronics and optoelectronics.

3.
ACS Chem Neurosci ; 2024 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-39126645

RESUMO

Alzheimer's disease (AD) stands as one of the most prevalent neurodegenerative conditions, leading to cognitive impairment, with no cure and preventive measures. Misfolding and aberrant aggregation of amyloid-ß (Aß) peptides are believed to be the underlying cause of AD. These amyloid aggregates culminate in the development of toxic Aß oligomers and subsequent accumulation of ß-amyloid plaques amidst neuronal cells in the brain, marking the hallmarks of AD. Drug development for the potentially curative treatment of Alzheimer's is, therefore, a tremendous challenge for the scientific community. In this study, we investigate the potency of Whitlock's caffeine-armed molecular tweezer in combating the deleterious effects of Aß aggregation, with special emphasis on the seven residue Aß16-22 fragment. Extensive all-atom molecular dynamics simulations are conducted to probe the various structural and conformational transitions of the peptides in an aqueous medium in both the presence and absence of tweezers. To explore the specifics of peptide-tweezer interactions, radial distribution functions, contact number calculations, binding free energies, and 2-D kernel density plots depicting the variation of distance-angle between the aromatic planes of the peptide-tweezer pair are computed. The central hydrophobic core, particularly the aromatic Phe residues, is crucial in the development of harmful amyloid oligomers. Notably, all analyses indicate reduced interpeptide interactions in the presence of the tweezer, which is attributed to the tweezer-Phe aromatic interaction. Upon increasing the tweezer concentration, the residues of the peptide are further encased in a hydrophobic environment created by the self-aggregating tweezer cluster, leading to the segregation of the peptide residues. This is further aided by the weakening of interstrand hydrogen bonding between the peptides, thereby impeding their self-aggregation and preventing the formation of neurotoxic ß-amyloid. Furthermore, the study also highlights the efficacy of the molecular tweezer in destabilizing preformed amyloid fibrils as well as hindering the aggregation of the full-length Aß1-42 peptide.

4.
J Med Imaging Radiat Sci ; 55(4): 101729, 2024 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-39128321

RESUMO

PURPOSE: To construct a tumor motion monitoring model for stereotactic body radiation therapy (SBRT) of lung cancer from a feasibility perspective. METHODS: A total of 32 treatment plans for 22 patients were collected, whose planning CT and the centroid position of the planning target volume (PTV) were used as the reference. Images of different respiratory phases in 4DCT were acquired to redefine the targets and obtain the floating PTV centroid positions. In accordance with the planning CT and CBCT registration parameters, data augmentation was accomplished, yielding 2130 experimental recordings for analysis. We employed a stacking multi-learning ensemble approach to fit the 3D point cloud variations of body surface and the change of target position to construct the tumor motion monitoring model, and the prediction accuracy was assess using root mean squared error (RMSE) and R-Square (R2). RESULTS: The prediction displacement of the stacking ensemble model shows a high degree of agreement with the reference value in each direction. In the first layer of model, the X direction (RMSE =0.019 ∼ 0.145mm, R2 =0.9793∼0.9996) and the Z direction (RMSE = 0.051 ∼ 0.168 mm, R2 = 0.9736∼0.9976) show the best results, while the Y direction ranked behind (RMSE = 0.088 ∼ 0.224 mm, R2 = 0.9553∼ 0.9933). The second layer model summarizes the advantages of unit models of first layer, and RMSE of 0.015 mm, 0.083 mm, 0.041 mm, and R2 of 0.9998, 0.9931, 0.9984 respectively for X, Y, Z were obtained. CONCLUSIONS: The tumor motion monitoring method for SBRT of lung cancer has potential application of non-ionization, non-invasive, markerless, and real-time.

5.
J Chromatogr A ; 1731: 465174, 2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-39111195

RESUMO

The present work describes a quick, simple, and efficient method based on the use of layered double hydroxides (LDH) coupled to dispersive solid phase micro-extraction (DSPME) to remove α-naphthol (α-NAP) and ß-naphthol (ß-NAP) isomers from water samples. Three different LDHs (MgAl-LDH, NiAl-LDH, and CoAl-LDH) were used to study how the interlayer anion and molar ratio affected the removal performance. The critical factors in the DSPME procedure (pH, LDH amount, contact time) were optimized by the univariate method under the optimal conditions: pH, 4-8; LDH amount, 5 mg; and contact time, 2.5 min. The method can be successfully applied in real sample waters, removing NAP isomers even in ultra-trace concentrations. The large volume sample stacking (LVSS-CE) technique provides limits of detections (LODs) of 5.52 µg/L and 6.36 µg/L for α-naphthol and ß-naphthol, respectively. The methodology's precision was evaluated on intra- and inter-day repeatability, with %RSD less than 10% in all cases. The MgAl/Cl--LDH selectivity was tested in the presence of phenol and bisphenol A, with a removal rate of >92.80%. The elution tests suggest that the LDH MgAl/Cl--LDH could be suitable for pre-concentration of α-naphthol and ß-naphthol in future works.


Assuntos
Eletroforese Capilar , Limite de Detecção , Naftóis , Microextração em Fase Sólida , Poluentes Químicos da Água , Naftóis/química , Naftóis/análise , Naftóis/isolamento & purificação , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/isolamento & purificação , Poluentes Químicos da Água/química , Eletroforese Capilar/métodos , Microextração em Fase Sólida/métodos , Hidróxidos/química , Isomerismo , Reprodutibilidade dos Testes , Concentração de Íons de Hidrogênio
6.
Anal Chim Acta ; 1320: 342990, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-39142768

RESUMO

BACKGROUND: N-Glycosylation is one of the most important post-translational modifications in proteins. As the N-glycan profiles in biological samples are diverse and change according to the pathological condition, various profiling methods have been developed, such as liquid chromatography (LC), capillary electrophoresis (CE), and mass spectrometry. However, conventional analytical methods have limitations in sensitivity and/or resolution, hindering the discovery of minor but specific N-glycans that are important both in the basic glycobiology research and in the medical application as biomarkers. Therefore, a highly sensitive and high-resolution N-glycan profiling method is required. RESULTS: In this study, we developed a novel two-dimensional (2D) separation system, which couples hydrophilic interaction liquid chromatography (HILIC) with capillary gel electrophoresis (CGE) via large-volume dual preconcentration by isotachophoresis and stacking (LDIS). Owing to the efficient preconcentration efficiency of LDIS, limit of detection reached 12 pM (60 amol, S/N = 3) with good calibration curve linearity (R2 > 0.999) in the 2D analysis of maltoheptaose. Finally, 2D profiling of N-glycans obtained from standard glycoproteins and cell lysates were demonstrated. High-resolution 2D profiles were successfully obtained by data alignment using triple internal standards. N-glycans were well distributed on the HILIC/CGE 2D plane based on the glycan size, number of sialic acids, linkage type, and so on. As a result, specific minor glycans were successfully identified in HepG2 and HeLa cell lysates. SIGNIFICANCE AND NOVELTY: In conclusion, the HILIC/CGE 2D analysis method showed sufficient sensitivity and resolution for identifying minor but specific N-glycans from complicated cellular samples, indicating the potential as a next-generation N-glycomics tool. Our novel approach for coupling LC and CE can also dramatically improve the sensitivity in other separation modes, which can be a new standard of 2D bioanalysis applicable not only to glycans, but also to other diverse biomolecules such as metabolites, proteins, and nucleic acids.


Assuntos
Eletroforese Capilar , Interações Hidrofóbicas e Hidrofílicas , Polissacarídeos , Polissacarídeos/análise , Polissacarídeos/química , Eletroforese Capilar/métodos , Humanos , Cromatografia Líquida/métodos
7.
Sensors (Basel) ; 24(15)2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39123855

RESUMO

The detection performance of radar is significantly impaired by active jamming and mutual interference from other radars. This paper proposes a radio signal modulation recognition method to accurately recognize these signals, which helps in the jamming cancellation decisions. Based on the ensemble learning stacking algorithm improved by meta-feature enhancement, the proposed method adopts random forests, K-nearest neighbors, and Gaussian naive Bayes as the base-learners, with logistic regression serving as the meta-learner. It takes the multi-domain features of signals as input, which include time-domain features including fuzzy entropy, slope entropy, and Hjorth parameters; frequency-domain features, including spectral entropy; and fractal-domain features, including fractal dimension. The simulation experiment, including seven common signal types of radar and active jamming, was performed for the effectiveness validation and performance evaluation. Results proved the proposed method's performance superiority to other classification methods, as well as its ability to meet the requirements of low signal-to-noise ratio and few-shot learning.

8.
Int J Mol Sci ; 25(15)2024 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-39125845

RESUMO

The benzene dimer (BD) is an archetypal model of π∙∙∙π and C-H∙∙∙π noncovalent interactions as they occur in its cofacial and perpendicular arrangements, respectively. The enthalpic stabilization of the related BD structures has been debated for a long time and is revisited here. The revisit is based on results of computations that apply the coupled-cluster theory with singles, doubles and perturbative triples [CCSD(T)] together with large basis sets and extrapolate results to the complete basis set (CBS) limit in order to accurately characterize the three most important stationary points of the intermolecular interaction energy (ΔE) surface of the BD, which correspond to the tilted T-shaped (TT), fully symmetric T-shaped (FT) and slipped-parallel (SP) structures. In the optimal geometries obtained by searching extensive sets of the CCSD(T)/CBS ΔE data of the TT, FT and SP arrangements, the resulting ΔE values were -11.84, -11.34 and -11.21 kJ/mol, respectively. The intrinsic strength of the intermolecular bonding in these configurations was evaluated by analyzing the distance dependence of the CCSD(T)/CBS ΔE data over wide ranges of intermonomer separations. In this way, regions of the relative distances that favor BD structures with either π∙∙∙π or C-H∙∙∙π interactions were found and discussed in a broader context.


Assuntos
Benzeno , Dimerização , Benzeno/química , Termodinâmica , Modelos Moleculares , Teoria Quântica , Ligação de Hidrogênio
9.
JMIR Public Health Surveill ; 10: e53322, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39146534

RESUMO

BACKGROUND: Postacute sequelae of COVID-19 (PASC), also known as long COVID, is a broad grouping of a range of long-term symptoms following acute COVID-19. These symptoms can occur across a range of biological systems, leading to challenges in determining risk factors for PASC and the causal etiology of this disorder. An understanding of characteristics that are predictive of future PASC is valuable, as this can inform the identification of high-risk individuals and future preventative efforts. However, current knowledge regarding PASC risk factors is limited. OBJECTIVE: Using a sample of 55,257 patients (at a ratio of 1 patient with PASC to 4 matched controls) from the National COVID Cohort Collaborative, as part of the National Institutes of Health Long COVID Computational Challenge, we sought to predict individual risk of PASC diagnosis from a curated set of clinically informed covariates. The National COVID Cohort Collaborative includes electronic health records for more than 22 million patients from 84 sites across the United States. METHODS: We predicted individual PASC status, given covariate information, using Super Learner (an ensemble machine learning algorithm also known as stacking) to learn the optimal combination of gradient boosting and random forest algorithms to maximize the area under the receiver operator curve. We evaluated variable importance (Shapley values) based on 3 levels: individual features, temporal windows, and clinical domains. We externally validated these findings using a holdout set of randomly selected study sites. RESULTS: We were able to predict individual PASC diagnoses accurately (area under the curve 0.874). The individual features of the length of observation period, number of health care interactions during acute COVID-19, and viral lower respiratory infection were the most predictive of subsequent PASC diagnosis. Temporally, we found that baseline characteristics were the most predictive of future PASC diagnosis, compared with characteristics immediately before, during, or after acute COVID-19. We found that the clinical domains of health care use, demographics or anthropometry, and respiratory factors were the most predictive of PASC diagnosis. CONCLUSIONS: The methods outlined here provide an open-source, applied example of using Super Learner to predict PASC status using electronic health record data, which can be replicated across a variety of settings. Across individual predictors and clinical domains, we consistently found that factors related to health care use were the strongest predictors of PASC diagnosis. This indicates that any observational studies using PASC diagnosis as a primary outcome must rigorously account for heterogeneous health care use. Our temporal findings support the hypothesis that clinicians may be able to accurately assess the risk of PASC in patients before acute COVID-19 diagnosis, which could improve early interventions and preventive care. Our findings also highlight the importance of respiratory characteristics in PASC risk assessment. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID): RR2-10.1101/2023.07.27.23293272.


Assuntos
COVID-19 , Síndrome de COVID-19 Pós-Aguda , Humanos , COVID-19/epidemiologia , Estudos de Coortes , Feminino , Masculino , Estados Unidos/epidemiologia , Pessoa de Meia-Idade , Idoso , Adulto , Fatores de Risco , Aprendizado de Máquina
10.
Small ; : e2405974, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39148200

RESUMO

2D conjugated covalent organic frameworks (c-COFs) provide an attractive foundation as organic electrodes in energy storage devices, but their storage capability is long hindered by limited ion accessibility within densely π-π stacked interlayers. Herein, two kinds of 2D c-COFs based on dioxin and dithiine linkages are reported, which exhibit distinct in-plane configurations-fully planar and undulated layers. X-ray diffraction analysis reveals wavy square-planar networks in dithiine-bridged COF (COF-S), attributed to curved C─S─C bonds in the dithiine linkage, whereas dioxin-bridged COF (COF-O) features densely packed fully planar layers. Theoretical and experimental results elucidate that the undulated stacking within COF-S possesses an expanded layer distance of 3.8 Å and facilitates effective and rapid Li+ storage, yielding a superior specific capacity of 1305 mAh g-1 at 0.5 A g-1, surpassing that of COF-O (1180 mAh g-1 at 0.5 A g-1). COF-S also demonstrates an admirable cycle life with 80.4% capacity retention after 5000 cycles. As determined, self-expanded wavy-stacking geometry, S-enriched dithiine in COF-S enhances the accessibility and redox activity of Li storage, allowing each phthalocyanine core to store 12 Li+ compared to 8 Li+ in COF-O. These findings underscore the elements and stacking modes of 2D c-COFs, enabling tunable layer distance and modulation of accessible ions.

11.
Acta Crystallogr E Crystallogr Commun ; 80(Pt 8): 873-877, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39108777

RESUMO

In the title mol-ecule, C11H11BrO3, the di-hydro-indene moiety is essentially planar but with a slight twist in the saturated portion of the five-membered ring. The meth-oxy groups lie close to the above plane. In the crystal, π-stacking inter-actions between six-membered rings form stacks of mol-ecules extending along the a-axis direction, which are linked by weak C-H⋯O and C-H⋯Br hydrogen bonds. A Hirshfeld surface analysis was performed showing H⋯H, O⋯H/H⋯O and Br⋯H/H⋯Br contacts make the largest contributions to inter-molecular inter-actions in the crystal.

12.
Front Endocrinol (Lausanne) ; 15: 1390352, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39109079

RESUMO

Background: Carotid atherosclerosis (CAS) is a significant risk factor for cardio-cerebrovascular events. The objective of this study is to employ stacking ensemble machine learning techniques to enhance the prediction of CAS occurrence, incorporating a wide range of predictors, including endocrine-related markers. Methods: Based on data from a routine health check-up cohort, five individual prediction models for CAS were established based on logistic regression (LR), random forest (RF), support vector machine (SVM), extreme gradient boosting (XGBoost) and gradient boosting decision tree (GBDT) methods. Then, a stacking ensemble algorithm was used to integrate the base models to improve the prediction ability and address overfitting problems. Finally, the SHAP value method was applied for an in-depth analysis of variable importance at both the overall and individual levels, with a focus on elucidating the impact of endocrine-related variables. Results: A total of 441 of the 1669 subjects in the cohort were finally diagnosed with CAS. Seventeen variables were selected as predictors. The ensemble model outperformed the individual models, with AUCs of 0.893 in the testing set and 0.861 in the validation set. The ensemble model has the optimal accuracy, precision, recall and F1 score in the validation set, with considerable performance in the testing set. Carotid stenosis and age emerged as the most significant predictors, alongside notable contributions from endocrine-related factors. Conclusion: The ensemble model shows enhanced accuracy and generalizability in predicting CAS risk, underscoring its utility in identifying individuals at high risk. This approach integrates a comprehensive analysis of predictors, including endocrine markers, affirming the critical role of endocrine dysfunctions in CAS development. It represents a promising tool in identifying high-risk individuals for the prevention of CAS and cardio-cerebrovascular diseases.


Assuntos
Doenças das Artérias Carótidas , Aprendizado de Máquina , Humanos , Masculino , Doenças das Artérias Carótidas/epidemiologia , Feminino , Pessoa de Meia-Idade , Fatores de Risco , Idoso , Máquina de Vetores de Suporte , Algoritmos , Prognóstico , Medição de Risco/métodos , Estudos de Coortes
13.
Angew Chem Int Ed Engl ; : e202412777, 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39113321

RESUMO

Unlike many studies that regulate transport and separation behaviour of photogenerated charge carriers through controlling the chemical composite, our work demonstrates this goal can be achieved through simply tuning the molecular π-π packing from short-range to long-range within hydrogen-bonded organic frameworks (HOFs) without altering the building blocks or network topology. Further investigations reveal that the long-range π-π stacking significantly promotes electron delocalization and enhances electron density, thereby effectively suppressing electron-hole recombination and augmenting the charge transfer rate. Simultaneously, acting as a porous substrate, it boosts electron density of Pd nanoparticle loaded on its surfaces, resulting in remarkable CO2 photoreduction catalytic activity (CO generation rate: 48.1 µmol/g/h) without the need for hole scavengers. Our study provide insight into regulating the charge carrier behaviours in molecular assemblies based on hydrogen bonds, offering a new clue for efficient photocatalyst design.

14.
Artigo em Inglês | MEDLINE | ID: mdl-39103587

RESUMO

To date, land use structure information has been employed extensively for ecological risk assessment (ERA) purpose in regional/landscape scales; in contrast, land use function (LUF) information-based ERA research is still scarce. Therefore, it is necessary to carry out more ERA case studies in macroscale with the help of pertinent LUF indicators. As an important way to construct production-living-ecology LUF indexes, this study employs the weighted stacking method and related economic statistical data for regional ecological risk assessment (RERA) purpose within Yellow River Delta High-efficiency Eco-economic Zone (YRDHEZ), China. This YRDHEZ-RERA research pointed out that (1) it was rational to use a series of economic statistical data to more comprehensively and precisely characterize regional production and living function grades in YRDHEZ. (2) The Yellow River Delta had lower agriculture and non-agriculture production functions, whereas the rest of the zone had higher production functions. (3) Most people lived in the south part, whereas north coastal zone had very low population density; the east part had higher per capita disposable income of urban/rural households than that of west. (4) The south part of the zone had higher production/living functions and integrated ecological risk source intensity than those of north coastal zone, whereas the coastal zone had higher ecology function, eco-environmental vulnerability, and final integrated ecological risk than those of inland region. As for regional ecological risk management, establishing nature reserve with strict spatial governance for coastal/estuarine wetlands and coordinating production/ecology functions of coastal salterns/breeding ponds are relevant feasible measures.

15.
ACS Nano ; 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39116003

RESUMO

Covalent organic frameworks (COFs) are crystalline networks with extended backbones cross-linked by covalent bonds. Due to the semiconductive properties and variable metal coordinating sites, along with the rapid development in linkage chemistry, the utilization of COFs in photocatalytic CO2RR has attracted many scientists' interests. In this Review, we summarize the latest research progress on variable COFs for photocatalytic CO2 reduction. In the first part, we present the development of COF linkages that have been used in CO2RR, and we discuss four mechanisms including COFs as intrinsic photocatalysts, COFs with photosensitive motifs as photocatalysts, metalated COF photocatalysts, and COFs with semiconductors as heterojunction photocatalysts. Then, we summarize the principles of structural designs including functional building units and stacking mode exchange. Finally, the outlook and challenges have been provided. This Review is intended to give some guidance on the design and synthesis of diverse COFs with different linkages, various structures, and divergent stacking modes for the efficient photoreduction of CO2.

16.
Angew Chem Int Ed Engl ; : e202412056, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39041859

RESUMO

Solvent competition for London dispersion attenuates its energetic significance in molecular recognition processes. By varying both the stacked contact area and the solvent, here we experimentally deconvolute solvent attenuation using molecular balances. Experimental stacking energies (phenyl to pyrene) correlated strongly with calculations only when dispersion was considered. Such calculations favoured stacking by up to -27 kJ mol-1 in the gas phase, but it was weakly disfavoured in our solution-phase experiments (+0.5 to +4.6 kJ mol-1). Nonetheless, the propensity for stacking increased with contact area and in solvents with lower bulk polarisabilities that compete less for dispersion. Experimental stacking energies ranged from -0.02 kJ mol-1 Å-2 in CS2, to -0.05 kJ mol-1 Å-2 in CD2Cl2, but were dwarfed by the calculated gas-phase energy of -0.6 kJ mol-1 Å-2. The results underscore the challenge facing the exploitation of dispersion in solution. Solvent competition strongly but imperfectly cancels dispersion at molecular recognition interfaces, making the energetic benefits difficult to realise.

17.
Chemistry ; : e202402227, 2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-39052856

RESUMO

This work conducts the comprehensive theoretical study on the non-covalent complexation between cyclocarbons and C60 fullerene for the first time. The binding energy between cyclocarbons and C60 fullerene is significantly stronger than that between two C18 or two C60 fullerenes, indicating a particularly strong affinity. The cyclocarbons and C60 fullerene can spontaneously assemble into complexes in the gas phase at room temperature, and the hydrophobic effect caused by the solvent environment can promote this binding. The binding strength with C60 fullerene increases almost linearly with the increase of cyclocarbon size, and the C34@C60 dimer exhibits a perfect nano-Saturn structure. As the ring size increases, the angle between the two cyclocarbons of the 2:1 trimers formed by cyclocarbons and C60 fullerene gradually decreases. In C60@2C34 trimer, the fullerene is symmetrically surrounded by two cyclocarbons. The results on the trimers formed by cyclocarbon and C60 fullerenes in a 1:2 ratio showed when the cyclocarbon sandwiched between two fullerenes is not quite large, the trimers exhibit an ideal dumbbell-like structure, and the presence of the first fullerene has a significant synergistic effect on the binding of the second one. The cyclocarbon greatly promotes the dimerization of fullerenes, which acted as a "molecular glue".

18.
Angew Chem Int Ed Engl ; : e202409763, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38954763

RESUMO

Developing non-platinum group metal catalysts for the sluggish hydrogen oxidation reaction (HOR) is critical for alkaline fuel cells. To date, Ni-based materials are the most promising candidates but still suffer from insufficient performance. Herein, we report an unconventional hcp/fcc Ni (u-hcp/fcc Ni) heteronanocrystal with multiple epitaxial hcp/fcc heterointerfaces and coherent twin boundaries, generating rugged surfaces with plenty of asymmetric convex sites. Systematic analyses discover that such convex sites enable the adsorption of *H in unusual bridge positions with weakened binding energy, circumventing the over-strong *H adsorption on traditional hollow positions, and simultaneously stabilizing interfacial *H2O. It thus synergistically optimizes the HOR thermodynamic process as well as reduces the kinetic barrier of the rate-determining Volmer step. Consequently, the developed u-hcp/fcc Ni exhibits the top-rank alkaline HOR activity with a mass activity of 40.6 mA mgNi-1 (6.3 times higher than fcc Ni control) together with superior stability and high CO-tolerance. These results provide a paradigm for designing high-performance catalysts by shifting the adsorption state of intermediates through configuring surface sites.

19.
J Colloid Interface Sci ; 675: 379-390, 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38972125

RESUMO

Nowadays, the inherent re-stacking nature and weak d-p hybridization orbital interactions within MXene remains significant challenges in the field of electrocatalytic water splitting, leading to unsatisfactory electrocatalytic activity and cycling stability. Herein, this work aims to address these challenges and improve electrocatalytic performance by utilizing cobalt nanoparticles intercalation coupled with enhanced π-donation effect. Specifically, cobalt nanoparticles are integrated into V2C MXene nanosheets to mitigate the re-stacking issue. Meanwhile, a notable charge redistribution from cobalt to vanadium elevates orbital levels, reduces π*-antibonding orbital occupancy and alleviates Jahn-Teller distortion. Doping with tellurium induces localized electric field rearrangement resulting from the changes in electron cloud density. As a result, Co-V2C MXene-Te acquires desirable activity for hydrogen evolution reaction and oxygen evolution reaction with the overpotential of 80.8 mV and 287.7 mV, respectively, at the current density of -10 mA cm-2 and 10 mA cm-2. The overall water splitting device achieves an impressive low cell voltage requirement of 1.51 V to obtain 10 mA cm-2. Overall, this work could offer a promising solution when facing the re-stacking issue and weak d-p hybridization orbital interactions of MXene, furnishing a high-performance electrocatalyst with favorable electrocatalytic activity and cycling stability.

20.
Small ; : e2402236, 2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-38970543

RESUMO

A new methodological design is proposed for carbon dots (CDs)-based crystallization-induced phosphorescence (CIP) materials via one-step self-assembled packaging controlled by NH4 +. O-phenylenediamine (o-PD) as a nitrogen/carbon source and the ammonium salts as oxidants are used to obtain CDs supramolecular crystals with a well-defined staircase-like morphology, pink fluorescence and ultralong green room-temperature phosphorescence (RTP) (733.56 ms) that is the first highest value for CDs-based CIP materials using pure nitrogen/carbon source by one-step packaging. Wherein, NH4 + and o-PD-derived oxidative polymers are prerequisites for self-assembled crystallization so as to receive the ultralong RTP. Density functional theory calculation indicates that NH4 + tends to anchor to the dimer on the surface state of CDs and guides CDs to cross-arrange in an X-type stacking mode, leading to the spatially separated frontier orbitals and the through-space charge transfer (TSCT) excited state in turn. Such a self-assembled mode contributes to both the small singlet-triplet energy gap (ΔEST) and the fast inter-system crossing (ISC) process that is directly related to ultralong RTP. This work not only proposes a new strategy to prepare CDs-based CIP materials in one step but also reveals the potential for the self-assembled behavior controlled by NH4 +.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA