Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Biomol Struct Dyn ; : 1-13, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38315452

RESUMO

According to WHO, in 2021, there was an estimation of 247 million malaria cases from 84 malaria-endemic countries. Globally an estimated count of 2 billion malaria cases and 11.7 million deaths due to malaria were recorded in the past two decades. Further, the emergence of drug-resistant mosquitos threatens mankind. Therefore, the development of newer larvicidal agents is the need of the hour. This research identifies a new series of variably substituted indolizines for their effectiveness in controlling Anopheles arabiensis larvae through larvicidal activity. The series of Ethyl 3-benzoyl-7-(piperidin-1-yl)indolizine-1-carboxylate analogues (4a-j) were synthesized by reacting 4-(piperidin-1-yl)pyridine, phenacyl bromides with ethyl propiolate via 1, 3-dipolar cycloaddition and the green metrics of the process are reported. All the newly synthesized compounds were characterized by spectroscopic techniques such as 1H NMR,13C NMR, FT-IR, and HRMS. The larvicidal effectiveness of the newly synthesized compounds was assessed against Anopheles arabiensis. Among the compounds studied, namely 4c, 4d, 4e, and 4f, displayed the most notable larval mortality rates within the series, reaching 73%, 81%, 76%, and 71% respectively, in contrast with the negative control acetone. In comparison, the standard Temephos exhibited a mortality rate of 99% at the same concentration. Furthermore, computational approaches including molecular docking and molecular dynamics simulations identified the potential targets of the series compounds as the larval Acetylcholinesterase (AChE) enzyme and the Sterol Carrier Protein-2 (SCP-2) protein. However, it is essential for these computational predictions to undergo experimental validation.Communicated by Ramaswamy H. Sarma.

2.
Nanomaterials (Basel) ; 13(2)2023 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-36677998

RESUMO

Helicoverpa armigera is a polyphagous destructive lepidopteran pest with strong Bacillus thuringiensis (Bt) resistance. Cholesterol, a vital component for insect growth, can only be obtained from food, and its transfer and metabolism are regulated by sterol carrier protein-2 (SCP-2). This study examined whether H. armigera SCP-2 (HaSCP-2) gene expression, involved in cholesterol absorption, can be silenced by nanocarrier fluorescent nanoparticle-RNA interference (FNP-RNAi) by larval feeding and whether the silencing affected H. armigera development. Fluorescence microscopy showed that nanoparticle-siRNA was distributed in Ha cells and the larval midgut. FNP-HaSCP-2 siRNA suppressed HaSCP-2 expression by 52.5% in H.armigera Ha cells. FNP can effectively help deliver siRNA into cells, protect siRNA, and is not affected by serum. FNP-siRNA in vivo biological assays showed that HaSCP-2 transcript levels were inhibited by 70.19%, 68.16%, and 67.66% in 3rd, 4th, and 5th instar larvae, leading to a decrease in the cholesterol level in the larval and prepupal fatbodies. The pupation rate and adult emergence were reduced to 26.0% and 56.52%, respectively. This study demonstrated that FNP could deliver siRNA to cells and improve siRNA knockdown efficiency. HaSCP-2 knockdown by FNP-siRNA in vivo hindered H. armigera growth and development. FNP could enhance RNAi efficiency to achieve pest control by SCP-2-targeted FNP-RNAi.

3.
Turkiye Parazitol Derg ; 46(4): 312-321, 2022 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-36444407

RESUMO

Objective: It was aimed to characterize the sterol carrier protein-2 (SCP-2) gene in Anopheles sacharovi using molecular methods for the first time, and to reveal the expression levels of An. sacharovi in the developmental stages and female generation in different tissues such as salivary gland, midgut and adipose tissue. Methods: The adult female An. sacharovi collected from the Sultan Sazligi region and the development stages in the insectarium constituted the study material. cDNA isolation was performed following total RNA extraction from An. sacharovi strains. The 216 bp fragment of the SCP-2 gene was amplified with optimized primers in cDNA templates and was sequenced. Genetic characterization of the sequences was provided in silico analysis. Results: Twelve of the SCP-2 nucleotide sequences of 14 isolates included in the sequence analysis were 100% identical and the SCP-2 sequences of the other two isolates that were homologous to each other showed a single nucleotide change at base 183. The 216 bp fragment of the SCP-2 gene region was found encoding the 72 amino acid chain. SCP-2 gene sequences clustered the isolates monophyletically on the basis of mosquito species and strains, and that Anopheles sacharovi isolates formed a subcluster together with Anopheles stephensi and Anopheles funestus within the Anopheles cluster in phylogenetic analysis. Because of q-polymerase chain reaction-mediated expression analysis, SCP-2 gene was expressed highest in adult males, followed by an adult female, ss L4, L3, L2, L1, and pupal stages, respectively. In adult female tissues, the SCP-2 gene was expressed the highest in the fat body, followed by the midgut and salivary glands, respectively. Conclusion: SCP2, which is an important vaccine candidate or target drug site for Anopheles sacharovi with high vector potential, was firstly characterized in this study and the developmental stages and expression differences in the tissues of the mosquito were revealed.


Assuntos
Anopheles , Animais , Masculino , Feminino , Anopheles/genética , DNA Complementar , Filogenia , Mosquitos Vetores , Proteínas de Transporte , Esteróis
4.
Int J Mol Sci ; 23(20)2022 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-36292972

RESUMO

Cholesterol is a lipid molecule essential for several key cellular processes including steroidogenesis. As such, the trafficking and distribution of cholesterol is tightly regulated by various pathways that include vesicular and non-vesicular mechanisms. One non-vesicular mechanism is the binding of cholesterol to cholesterol transport proteins, which facilitate the movement of cholesterol between cellular membranes. Classic examples of cholesterol transport proteins are the steroidogenic acute regulatory protein (STAR; STARD1), which facilitates cholesterol transport for acute steroidogenesis in mitochondria, and sterol carrier protein 2/sterol carrier protein-x (SCP2/SCPx), which are non-specific lipid transfer proteins involved in the transport and metabolism of many lipids including cholesterol between several cellular compartments. This review discusses the roles of STAR and SCP2/SCPx in cholesterol transport as model cholesterol transport proteins, as well as more recent findings that support the role of these proteins in the transport and/or metabolism of other lipids.


Assuntos
Proteínas de Transporte , Colesterol , Proteínas de Transporte/metabolismo , Colesterol/metabolismo , Transporte Biológico , Mitocôndrias/metabolismo
5.
Molecules ; 27(9)2022 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-35566029

RESUMO

Alteration of insect growth regulators by the action of inhibitors is becoming an attractive strategy to combat disease-transmitting insects. In the present study, we investigated the larvicidal effect of 1,2,3-triazolyl-pyrimidinone derivatives against the larvae of the mosquito Anopheles arabiensis, a vector of malaria. All compounds demonstrated insecticidal activity against mosquito larvae in a dose-dependent fashion. A preliminary study of the structure-activity relationship indicated that the electron-withdrawing substituent in the para position of the 4-phenyl-pyrimidinone moiety enhanced the molecules' potency. A docking study of these derivatives revealed favorable binding affinity for the sterol carrier protein-2 receptor, a protein present in the intestine of the mosquito larvae. Being effective insecticides against the malaria-transmitting Anopheles arabiensis, 1,2,3-triazole-based pyrimidinones represent a starting point to develop novel inhibitors of insect growth regulators.


Assuntos
Anopheles , Inseticidas , Malária , Animais , Proteínas de Transporte , Inseticidas/química , Inseticidas/farmacologia , Hormônios Juvenis/farmacologia , Larva , Simulação de Acoplamento Molecular , Controle de Mosquitos , Mosquitos Vetores , Pirimidinonas/farmacologia
6.
J Cell Mol Med ; 25(20): 9826-9836, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34541823

RESUMO

Long non-coding RNAs (lncRNAs) biological functions and molecular mechanisms associated with pancreatic cancer (PC) remain to be poorly elucidated. We aimed to clarify the role of lncRNA LINC00261 (LINC00261) in PC and confirm its regulatory mechanisms. Bioinformatics analysis, RNA pull-down and RIP assays were performed to investigate relationship between LINC00261 and forkhead box P3 (FOXP3). Further, dual-luciferase reporter gene and ChIP assays were employed to confirm the relationship among LINC00261, FOXP3 and sterol carrier protein-2 (SCP2). PC cells were introduced with a series of vectors to verify the effects of LINC00261 and SCP2 on the viability, cell cycle progression, migration and angiogenesis of PC cells. Nude mice with the xenograft tumour were used to evaluate the effects LINC00261 on the tumourigenicity. LINC00261 was lowly expressed in PC tissues and cells. SCP2 was inhibited by LINC00261 through FOXP3. Functionally, upregulated LINC00261 or downregulated SCP2 led to reduced cell viability, migration, angiogenesis and tumourigenicity potentials. This study demonstrated the inhibitory role of LINC00261 in the angiogenesis and cell cycle progression of PC cells. It acts through the negative regulation of SCP2 via targeting FOXP3. Findings in this study highlight a potentially biomarker for PC treatment.


Assuntos
Proteínas de Transporte/genética , Ciclo Celular/genética , Fatores de Transcrição Forkhead/genética , Neovascularização Patológica/genética , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , RNA Longo não Codificante/genética , Animais , Linhagem Celular Tumoral , Biologia Computacional/métodos , Modelos Animais de Doenças , Fatores de Transcrição Forkhead/metabolismo , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Xenoenxertos , Humanos , Imuno-Histoquímica , Camundongos , Neoplasias Pancreáticas/metabolismo , Interferência de RNA
7.
Curr Mol Med ; 19(10): 719-730, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31526349

RESUMO

Cholesterol is an important substrate for the synthesis of ovarian sex hormones and has an important influence on follicular development. The cholesterol in follicular fluid is mainly derived from plasma. High-density lipoprotein (HDL) and lowdensity lipoprotein (LDL) play important roles in ovarian cholesterol transport. The knockout of related receptors in the mammalian HDL and LDL pathways results in the reduction or absence of fertility, leading us to support the importance of cholesterol homeostasis in the ovary. However, little is known about ovarian cholesterol metabolism and the complex regulation of its homeostasis. Here, we reviewed the cholesterol metabolism in the ovary and speculated that regardless of the functioning of cholesterol metabolism in the system or the ovarian microenvironment, an imbalance in cholesterol homeostasis is likely to have an adverse effect on ovarian structure and function.


Assuntos
Colesterol/metabolismo , Lipoproteínas/metabolismo , Folículo Ovariano/patologia , Ovário/patologia , Animais , Feminino , Humanos , Folículo Ovariano/metabolismo , Ovário/metabolismo
9.
Cytometry A ; 93(11): 1157-1164, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30253046

RESUMO

NKT cells are defined as T cells that recognize hydrophobic antigens presented by class I MHC-like molecules, including CD1d. Among CD1d-restricted NKT cells, type I and type II subsets have been noted. CD1d-restricted type I NKT cells are regarded as pro-inflammatory cells in general. On the contrary, accumulated evidence has demonstrated an anti-inflammatory property of CD1d-restricted type II NKT cells. In our earlier study using a rat model with vasculitis, we demonstrated the pro-inflammatory function of CD1d-restricted type II NKT cells and identified that one such cell recognized P518-532 of rat sterol carrier protein 2 (rSCP2518-532 ), which appeared on vascular endothelial cells presented by CD1d. Based on this evidence, we attempted to detect human CD1d-restricted type II NKT cells in peripheral blood using hSCP2518-532 , the human counterpart of rSCP2518-532, together with a CD1d tetramer in flow cytometry. First, we determined the binding of hSCP2518-532 to CD1d. Next, we detected CD3-positive hSCP2518-532 -loaded CD1d (hSCP2518-532 /CD1d) tetramer-binding cells in peripheral blood of healthy donors. The abundance of TGF-ß-producing cells rather than TNF-α-producing cells in CD3-positive hSCP2518-532 /CD1d tetramer-binding cells suggests the anti-inflammatory property of SCP2-loaded CD1d (SCP2/CD1d) tetramer-binding type II NKT cells in healthy individuals. Furthermore, we compared cytokine profile between healthy individuals and patients with vasculitis in a pilot study. Interestingly, the percentage of TGF-ß-producing cells in SCP2/CD1d tetramer-binding type II NKT cells in vasculitic patients was significantly lower than that in healthy controls despite the greater number of these cells. Although further studies to clarify the mechanism and significance of this phenomenon are needed, SCP2/CD1d tetramer-binding type II NKT cells in peripheral blood should be examined in more detail to understand the pathophysiology of vasculitides in humans. © 2018 International Society for Advancement of Cytometry.


Assuntos
Células T Matadoras Naturais/imunologia , Vasculite/imunologia , Adulto , Idoso , Antígenos CD1d/imunologia , Complexo CD3/imunologia , Proteínas de Transporte/imunologia , Feminino , Voluntários Saudáveis , Humanos , Inflamação/imunologia , Masculino , Pessoa de Meia-Idade , Projetos Piloto , Fator de Crescimento Transformador beta/imunologia , Adulto Jovem
10.
Br J Nutr ; 120(6): 628-644, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30058990

RESUMO

Dietary phosphoglycerides and n-3 long-chain PUFA (LC-PUFA) play important functions in the development of pikeperch (Sander lucioperca) larvae. This study aimed to determine optimal dietary levels of soyabean lecithin (SBL)-derived phospholipids (PL) in starter feeds for pikeperch larvae 10-30 d post-hatch (DPH) and examine performance and ontogeny by additional supplementation of n-3 LC-PUFA in the form of Algatrium DHA 70 (glyceride product; 660-700 mg/g DHA; EPA 60-75 mg/g). In total, six isoproteic and isoenergetic extruded diets were formulated with increasing levels of PL (3·7, 8·3 or 14·5 % wet weight (w.w.), respectively); however, three of the diets were supplemented with three levels of Algatrium DHA 70 (0·6, 2·0 or 3·4 %, respectively). Liver proteomic analyses of larvae at 30 DPH were included for effects of PL and primarily DHA on performance, physiological expression and interactions in larval proteins. In addition, bone anomalies, digestive enzymatic activity, candidate gene expression and skeleton morphogenesis were examined. Results confirmed the importance of dietary PL levels of at least 8·2 % w.w., and an additional beneficiary effect of supplementation with DHA plus EPA. Thus, combined supplementation of SBL (up to 14·51 % w.w. PL) and n-3 LC-PUFA (1·004 % DM DHA and 0·169 % DM EPA) in the form of TAG resulted in highest growth and lowest incidence of anomalies, improved digestive enzyme activity and had differential effect on liver proteomics. The results denote that essential fatty acids can be supplemented as TAG to have beneficial effects in pikeperch larvae development.


Assuntos
Ração Animal , Dieta , Suplementos Nutricionais , Ácidos Graxos Ômega-3/farmacologia , Larva/efeitos dos fármacos , Percas/crescimento & desenvolvimento , Fosfolipídeos/farmacologia , Fenômenos Fisiológicos da Nutrição Animal , Animais , Osso e Ossos/efeitos dos fármacos , Digestão , Ácidos Docosa-Hexaenoicos/farmacologia , Ácido Eicosapentaenoico/farmacologia , Alimentos Formulados , Larva/crescimento & desenvolvimento , Lecitinas/química , Fígado/efeitos dos fármacos , Fígado/metabolismo , Proteínas/metabolismo , Glycine max/química , Triglicerídeos/farmacologia
11.
New Phytol ; 220(2): 553-566, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29897130

RESUMO

The peroxisomal sterol carrier protein 2 (Scp2) of the biotrophic maize pathogen Ustilago maydis was detected in apoplastic fluid, suggesting that it might function as a secreted effector protein. Here we analyze the role of the scp2 gene during plant colonization. We used reverse genetics approaches to delete the scp2 gene, determined stress sensitivity and fatty acid utilization of mutants, demonstrated secretion of Scp2, used quantitative reverse transcription polymerase chain reaction for expression analysis and expressed GFP-Scp2 fusion proteins for protein localization. scp2 mutants were strongly attenuated in virulence and this defect manifested itself during penetration. Scp2 localized to peroxisomes and peroxisomal targeting was necessary for its virulence function. Deletion of scp2 in U. maydis interfered neither with growth nor with peroxisomal ß-oxidation. Conventionally secreted Scp2 protein could not rescue the virulence defect. scp2 mutants displayed an altered localization of peroxisomes. Our results show a virulence function for Scp2 during penetration that is probably carried out by Scp2 in peroxisomes. We speculate that Scp2 affects the lipid composition of membranes and in this way ensures the even cellular distribution of peroxisomes.


Assuntos
Proteínas Fúngicas/metabolismo , Ustilago/patogenicidade , Endossomos/metabolismo , Ácidos Graxos/metabolismo , Regulação Fúngica da Expressão Gênica , Proteínas de Fluorescência Verde/metabolismo , Oxirredução , Peroxissomos/metabolismo , Deleção de Sequência , Ustilago/genética , Ustilago/crescimento & desenvolvimento , Ustilago/metabolismo , Virulência
12.
Chem Cent J ; 12(1): 53, 2018 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-29748726

RESUMO

BACKGROUND: In order to develop new larvicidal agents derived from phytochemicals, the larvicidal activity of fifty molecules that are constituent of essential oils was evaluated against Culex quinquefasciatus Say. Terpenes, terpenoids and phenylpropanoids molecules were included in the in vitro evaluation, and QSAR models using genetic algorithms were built to identify molecular and structural properties of biological interest. Further, to obtain structural details on the possible mechanism of action, selected compounds were submitted to docking studies on sterol carrier protein-2 (SCP-2) as possible target. RESULTS: Results showed high larvicidal activity of carvacrol and thymol on the third and fourth larval stage with a median lethal concentration (LC50) of 5.5 and 11.1 µg/mL respectively. Myrcene and carvacrol were highly toxic for pupae, with LC50 values of 31.8 and 53.2 µg/mL. Structure-activity models showed that the structural property π-bonds is the largest contributor of larvicidal activity while ketone groups should be avoided. Similarly, property-activity models attributed to the molecular descriptor LogP the most contribution to larvicidal activity, followed by the absolute total charge (Qtot) and molar refractivity (AMR). The models were statistically significant; thus the information contributes to the design of new larvicidal agents. Docking studies show that all molecules tested have the ability to interact with the SCP-2 protein, wherein α-humulene and ß-caryophyllene were the compounds with higher binding energy. CONCLUSIONS: The description of the molecular properties and the structural characteristics responsible for larvicidal activity of the tested compounds were used for the development of mathematical models of structure-activity relationship. The identification of molecular and structural descriptors, as well as studies of molecular docking on the SCP-2 protein, provide insight on the mechanism of action of the active molecules, and the information can be used for the design of new structures for synthesis as potential new larvicidal agents.

13.
J Econ Entomol ; 110(4): 1779-1784, 2017 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-28605511

RESUMO

Helicoverpa armigera sterol carrier protein-2 (HaSCP-2) is a validated target for development of novel insecticides due to its divergent protein structure and function from the vertebrate SCP-2. HaSCP-2 is important for normal development and fertility in Helicoverpa armigera (Hübner). The discovery of chemical inhibitors of HaSCP-2 through a structure-based virtual screening is reported here. Bioassay indicated that H1 and H14 had inhibitory effect on the growth of H. armigera larvae. The results suggest that H1 and H14 are promising as useful lead compounds for further optimization and development of novel SCP-2-specific pesticides.


Assuntos
Proteínas de Transporte/genética , Proteínas de Insetos/genética , Mariposas/genética , Animais , Proteínas de Transporte/antagonistas & inibidores , Ensaios de Triagem em Larga Escala , Proteínas de Insetos/antagonistas & inibidores , Larva/genética , Larva/crescimento & desenvolvimento , Simulação de Acoplamento Molecular , Mariposas/crescimento & desenvolvimento
14.
J Lipid Res ; 58(6): 1153-1165, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28411199

RESUMO

Studies in vitro have suggested that both sterol carrier protein-2/sterol carrier protein-x (Scp-2/Scp-x) and liver fatty acid binding protein [Fabp1 (L-FABP)] gene products facilitate hepatic uptake and metabolism of lipotoxic dietary phytol. However, interpretation of physiological function in mice singly gene ablated in the Scp-2/Scp-x has been complicated by concomitant upregulation of FABP1. The work presented herein provides several novel insights: i) An 8-anilino-1-naphthalenesulfonic acid displacement assay showed that neither SCP-2 nor L-FABP bound phytol, but both had high affinity for its metabolite, phytanic acid; ii) GC-MS studies with phytol-fed WT and Fabp1/Scp-2/SCP-x gene ablated [triple KO (TKO)] mice showed that TKO exacerbated hepatic accumulation of phytol metabolites in vivo in females and less so in males. Concomitantly, dietary phytol increased hepatic levels of total long-chain fatty acids (LCFAs) in both male and female WT and TKO mice. Moreover, in both WT and TKO female mice, dietary phytol increased hepatic ratios of saturated/unsaturated and polyunsaturated/monounsaturated LCFAs, while decreasing the peroxidizability index. However, in male mice, dietary phytol selectively increased the saturated/unsaturated ratio only in TKO mice, while decreasing the peroxidizability index in both WT and TKO mice. These findings suggested that: 1) SCP-2 and FABP1 both facilitated phytol metabolism after its conversion to phytanic acid; and 2) SCP-2/SCP-x had a greater impact on hepatic phytol metabolism than FABP1.


Assuntos
Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Proteínas de Ligação a Ácido Graxo/deficiência , Proteínas de Ligação a Ácido Graxo/genética , Técnicas de Inativação de Genes , Fígado/metabolismo , Fitol/metabolismo , Animais , Retículo Endoplasmático/metabolismo , Feminino , Masculino , Camundongos , Peroxissomos/metabolismo , Ácido Fitânico/metabolismo , Especificidade por Substrato
15.
Biochim Biophys Acta Proteins Proteom ; 1865(5): 565-577, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28284963

RESUMO

Sterol Carrier Protein 2 (SCP2) has been associated with lipid binding and transfer activities. However, genomic, proteomic, and structural studies revealed that it is an ubiquitous domain of complex proteins with a variety functions in all forms of life. High-resolution structures of representative SCP2 domains are available, encouraging a comprehensive review of the structural basis for its success. Most SCP2 domains pertain to three major families and are frequently found as stand-alone or at the C-termini of lipid related peroxisomal enzymes, acetyltransferases causing bacterial resistance, and bacterial environmentally important sulfatases. We (1) analyzed the structural basis of the fold and the classification of SCP2 domains; (2) identified structure-determined sequence features; (3) compared the lipid binding cavity of SCP2 and other lipid binding proteins; (4) surveyed proposed mechanisms of SCP2 mediated lipid transfer between membranes; and (5) uncovered a possible new function of the SCP2 domain as a protein-protein recognition device.


Assuntos
Proteínas de Transporte/química , Lipídeos/química , Esteróis/química , Proteínas de Transporte/metabolismo , Humanos , Peroxissomos/enzimologia , Ligação Proteica , Domínios Proteicos , Dobramento de Proteína , Mapas de Interação de Proteínas , Proteômica
16.
J Lipid Res ; 57(9): 1712-9, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27381048

RESUMO

While HDL-associated unesterified or free cholesterol (FC) is thought to be rapidly secreted into the bile, the fate of HDL-associated cholesteryl esters (HDL-CEs) that represent >80% of HDL-cholesterol, is only beginning to be understood. In the present study, we examined the hypothesis that intracellular cholesterol transport proteins [sterol carrier protein 2 (SCP2) and fatty acid binding protein-1 (FABP1)] not only facilitate CE hydrolase-mediated hydrolysis of HDL-CEs, but also enhance elimination of cholesterol into bile. Adenovirus-mediated overexpression of FABP1 or SCP2 in primary hepatocytes significantly increased hydrolysis of HDL-[(3)H]CE, reduced resecretion of HDL-CE-derived FC as nascent HDL, and increased its secretion as bile acids. Consistently, the flux of [(3)H]cholesterol from HDL-[(3)H]CE to biliary bile acids was increased by overexpression of SCP2 or FABP1 in vivo and reduced in SCP2(-/-) mice. Increased flux of HDL-[(3)H]CE to biliary FC was noted with FABP1 overexpression and in SCP2(-/-) mice that have increased FABP1 expression. Lack of a significant decrease in the flux of HDL-[(3)H]CE to biliary FC or bile acids in FABP1(-/-) mice indicates the likely compensation of its function by an as yet unidentified mechanism. Taken together, these studies demonstrate that FABP1 and SCP2 facilitate the preferential movement of HDL-CEs to bile for final elimination.


Assuntos
Proteínas de Transporte/genética , Ésteres do Colesterol/metabolismo , Colesterol/metabolismo , Proteínas de Ligação a Ácido Graxo/genética , Lipoproteínas HDL/metabolismo , Adenoviridae/genética , Animais , Bile/metabolismo , Ácidos e Sais Biliares/metabolismo , Proteínas de Transporte/metabolismo , Colesterol/genética , HDL-Colesterol/genética , HDL-Colesterol/metabolismo , Proteínas de Ligação a Ácido Graxo/metabolismo , Regulação da Expressão Gênica , Hidrólise , Fígado/metabolismo , Camundongos
17.
Eur J Med Chem ; 100: 162-75, 2015 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-26087027

RESUMO

A set of aryl- and phenoxymethyl-(thio)semicarbazones were synthetized, characterized and biologically evaluated against the larvae of Aedes aegypti (A. aegypti), the vector responsible for diseases like Dengue and Yellow Fever. (Q)SAR studies were useful for predicting the activities of the compounds not included to create the QSAR model as well as to predict the features of a new compound with improved activity. Docking studies corroborated experimental evidence of AeSCP-2 as a potential target able to explain the larvicidal properties of its compounds. The trend observed between the in silico Docking scores and the in vitro pLC50 (equals -log LC50, at molar concentration) data indicated that the highest larvicidal compounds, or the compounds with the highest values for pLC50, are usually those with the higher docking scores (i.e., greater in silico affinity for the AeSCP-2 target). Determination of cytotoxicity for these compounds in mammal cells demonstrated that the top larvicide compounds are non-toxic.


Assuntos
Aedes/efeitos dos fármacos , Proteínas de Transporte/antagonistas & inibidores , Tiossemicarbazonas/farmacologia , Animais , Relação Dose-Resposta a Droga , Larva/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos BALB C , Estrutura Molecular , Relação Quantitativa Estrutura-Atividade , Baço/citologia , Tiossemicarbazonas/síntese química , Tiossemicarbazonas/química
18.
Dev Biol ; 394(1): 54-64, 2014 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-25127994

RESUMO

The kidney is a homeostatic organ required for waste excretion and reabsorption of water, salts and other macromolecules. To this end, a complex series of developmental steps ensures the formation of a correctly patterned and properly proportioned organ. While previous studies have mainly focused on the individual signaling pathways, the formation of higher order receptor complexes in lipid rafts is an equally important aspect. These membrane platforms are characterized by differences in local lipid and protein compositions. Indeed, the cells in the Xenopus pronephric kidney were positive for the lipid raft markers ganglioside GM1 and Caveolin-1. To specifically interfere with lipid raft function in vivo, we focused on the Sterol Carrier Protein 2 (scp2), a multifunctional protein that is an important player in remodeling lipid raft composition. In Xenopus, scp2 mRNA was strongly expressed in differentiated epithelial structures of the pronephric kidney. Knockdown of scp2 did not interfere with the patterning of the kidney along its proximo-distal axis, but dramatically decreased the size of the kidney, in particular the proximal tubules. This phenotype was accompanied by a reduction of lipid rafts, but was independent of the peroxisomal or transcriptional activities of scp2. Finally, disrupting lipid micro-domains by inhibiting cholesterol synthesis using Mevinolin phenocopied the defects seen in scp2 morphants. Together these data underscore the importance for localized signaling platforms in the proper formation of the Xenopus kidney.


Assuntos
Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Túbulos Renais Proximais/embriologia , Microdomínios da Membrana/genética , Proteínas de Xenopus/genética , Proteínas de Xenopus/metabolismo , Xenopus laevis/embriologia , Animais , Anticolesterolemiantes/farmacologia , Padronização Corporal/genética , Linhagem Celular , Colesterol/biossíntese , Técnicas de Silenciamento de Genes , Células HEK293 , Humanos , Túbulos Renais Proximais/fisiologia , Lovastatina/farmacologia , Microdomínios da Membrana/fisiologia , Morfolinos , RNA Mensageiro/biossíntese , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA