RESUMO
Fish sauce, derived from fermented fish, exhibits a notable antioxidant effect after a six-month fermentation process, and we propose that potential antioxidant peptides were present in the fish sauce. We isolated, purified, and identified potential bioactive antioxidant peptides by using fish sauce fermented for 6 months. Additionally, molecular simulation was employed to investigate the antioxidant action mechanism of these bioactive peptides. The molecular docking results revealed that FS4-1 (MHQLSKK), FS4-2 (VLDNSPER), FS4-3 (MNPPAASIK), FS6-1(VLKQAAAGR), and FS6-2 (SPDVSPRR), could dock with the Keap1 receptor. The primary force (Van der Waals' force and hydrogen bonds) and key sites (GLY509 and ALA510) of Keap1 binding to peptides were determined. The active center was located in the side chain of amino acid Met at positions C7H78 and C7H79. We here identified antioxidant peptides in fish sauce and revealed the antioxidant mechanism through molecular simulations.
Assuntos
Antioxidantes , Produtos Pesqueiros , Peixes , Simulação de Acoplamento Molecular , Peptídeos , Antioxidantes/química , Peptídeos/química , Animais , Produtos Pesqueiros/análise , Proteína 1 Associada a ECH Semelhante a Kelch/química , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch/genética , Teoria Quântica , Fermentação , Sequência de AminoácidosRESUMO
Diabetes mellitus, characterized as a chronic metabolic disorder or a polygenic syndrome; is increasing at a very fast pace among every group of the population worldwide. It arises due to the inability of the body to produce enough insulin (the hormone responsible for controlling blood sugar levels) or inability to utilize the insulin, leading to hyperglycaemic condition, which, if left uncontrolled gives rise to chronic microvascular and macrovascular complications like retinopathy, neuropathy, nephropathy, coronary artery disease, cognitive impairment, etc. Several therapeutic approaches are available for the treatment of diabetes; among which dipeptidyl peptidase (DPP-IV) inhibitors (gliptins) hold a significant place. DPP-IV is a multifunctional enzyme or a serine exopeptidase that plays an imperative role in cleaving bioactive molecules. DPP-IV causes the breakdown of incretin hormone (GLP-1: Glucagon-like peptide 1 and GIP: Glucose-dependent insulinotropic peptide) that is essential for controlling glycaemic levels in the body. Inhibition of DPP-IV enzyme (DPP-IV inhibitors: Sitagliptin, Saxagliptin, Linagliptin, Alogliptin) prevents this breakdown, thereby controlling blood glucose levels and saving the patients from deleterious effects of prolonged hyperglycaemic conditions. Triazole-based DPP-IV inhibitors are a significant class of drugs used to treat Type 2 diabetes mellitus in a dose-dependent manner. Clinical trials have demonstrated their efficacy as monotherapy or in combination with other antidiabetic agents. This review highlights the molecular docking studies and structure-activity relationship of potential synthetic derivatives that may act as lead molecules for future drug discovery and yield drug molecules with enhanced efficacy, potency and reduced toxicity profile.
RESUMO
Microbial lipopeptides are synthesized by nonribosomal peptide synthetases and are composed of a hydrophobic fatty acid chain and a hydrophilic peptide moiety. These structurally diverse amphiphilic molecules can interact with biological membranes and possess various biological activities, including antiviral properties. This study aimed to evaluate the cytotoxicity and antiviral activity against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) of 15 diverse lipopeptides to understand their structure-activity relationships. Non-ionic lipopeptides were generally more cytotoxic than charged ones, with cationic lipopeptides being less cytotoxic than anionic and non-ionic variants. At 100 µg/mL, six lipopeptides reduced SARS-CoV-2 RNA to undetectable levels in infected Vero E6 cells, while six others achieved a 2.5- to 4.1-log reduction, and three had no significant effect. Surfactin, white line-inducing principle (WLIP), fengycin, and caspofungin emerged as the most promising anti-SARS-CoV-2 agents. Detailed analysis revealed that these four lipopeptides affected various stages of the viral life cycle involving the viral envelope. Surfactin and WLIP significantly reduced viral RNA levels in replication assays, comparable to neutralizing serum. Surfactin uniquely inhibited viral budding, while fengycin impacted viral binding after pre-infection treatment of the cells. Caspofungin demonstrated a lower antiviral effect compared to the others. Key structural traits of lipopeptides influencing their cytotoxic and antiviral activities were identified. Lipopeptides with a high number of amino acids, especially charged (preferentially anionic) amino acids, showed potent anti-SARS-CoV-2 activity. This research paves the way for designing new lipopeptides with low cytotoxicity and high antiviral efficacy, potentially leading to effective treatments. IMPORTANCE: This study advances our understanding of how lipopeptides, which are molecules mostly produced by bacteria, with both fat and protein components, can be used to fight viruses like severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). By analyzing 15 different lipopeptides, researchers identified key structural features that make some of these molecules particularly effective at reducing viral levels while being less harmful to cells. Specifically, lipopeptides with certain charged amino acids were found to have the strongest antiviral effects. This research lays the groundwork for developing new antiviral treatments that are both potent against viruses and safe for human cells, offering hope for better therapeutic options in the future.
RESUMO
Splicing modulation by a small compound offers therapeutic potential for diseases caused by splicing abnormality. However, only a few classes of compounds that can modulate splicing have been identified. We previously identified BAY61-3606, a multiple kinase inhibitor, as a compound that relaxes the splicing fidelity at the 3' splice site recognition. We have also reported the synthesis of derivatives of BAY61-3606. In this study, we tested those compounds for their splicing modulation capabilities and identified two contrasting compounds. These compounds were further investigated for their effects on the whole transcriptome, and analysis of changes in transcription and splicing revealed that the highly active derivative in the splicing reporter assay also showed significantly higher activity in modulating the splicing of endogenously expressed genes. Particularly, cassette exon inclusion was highly upregulated by this compound, and clustering analysis revealed that these effects resembled those in splicing factor 3b subunit 1 (SF3B1) K700E mutant cells but contrasted with those of the splicing inhibitor H3B-8800. Additionally, a group of serine/arginine-rich (SR) protein genes was identified as representatively affected, likely via modulation of poison exon inclusion. This finding could guide further analysis of the mode of action of these compounds on splicing, which could be valuable for developing drugs for diseases associated with splicing abnormalities.
Assuntos
Éxons , Mutação , Fatores de Processamento de RNA , Splicing de RNA , Humanos , Fatores de Processamento de RNA/metabolismo , Fatores de Processamento de RNA/genética , Splicing de RNA/efeitos dos fármacos , Fosfoproteínas/metabolismo , Fosfoproteínas/genética , Células HEK293 , Fatores de Processamento de Serina-Arginina/metabolismo , Fatores de Processamento de Serina-Arginina/genética , Processamento Alternativo/efeitos dos fármacosRESUMO
Recently, the comprehension of odor perception has advanced, unveiling the mysteries of the molecular receptors within the nasal passages and the intricate mechanisms governing signal transmission between these receptors, the olfactory bulb, and the brain. This review provides a comprehensive panorama of odors, encompassing various topics ranging from the structural and molecular underpinnings of odorous substances to the physiological intricacies of olfactory perception. It extends to elucidate the analytical methods used for their identification and explores the frontiers of computational methodologies.
RESUMO
Irinotecan (CPT-11) is a commonly prescribed chemotherapeutic for the treatment of colon cancer. Unfortunately, acute and delayed diarrhea are prominent side effects of CPT-11 use, and this limits its therapeutic potential. The curative effect of Huangqin decoction (HQD) on chemotherapy-induced diarrhea has been proven. This study investigated the efficacy of the components of HQD (baicalein, baicalin, and paeoniflorin) on CPT-11-induced diarrhea and their underlying mechanisms. Baicalein was found to be the most effective component in improving CPT-11-induced enterotoxicity by intestinal permeability test, ELISA, fluorescence co-localization, and IHC. The combination of baicalin, baicalin and paeoniflorin can obtain similar therapeutic effect to that of HQD. Mendelian randomization analysis, 16 s rRNA sequencing, and fluorescence imaging revealed that baicalein and baicalin significantly inhibited ß-glucuronidase (ß-GUS) activity. Bacterial abundance analysis and scanning electron microscopy showed that baicalein inhibited the proliferation of Escherichia coli by destroying its cell wall. The molecular dynamics and site-directed mutagenesis results revealed the structural basis for the inhibition of ß-GUS by baicalein and baicalin. The results above provide a new idea for the development of drug therapy for adjuvant chemotherapy and theoretical guidance for the optimization of molecular structure targeting ß-GUS.
Assuntos
Diarreia , Medicamentos de Ervas Chinesas , Escherichia coli , Glucuronidase , Irinotecano , Escherichia coli/efeitos dos fármacos , Irinotecano/farmacologia , Diarreia/induzido quimicamente , Diarreia/tratamento farmacológico , Animais , Medicamentos de Ervas Chinesas/farmacologia , Glucuronidase/metabolismo , Flavanonas/farmacologia , Humanos , Flavonoides/farmacologia , MasculinoRESUMO
The sodium-coupled neutral amino acid transporter SNAT2 (SLC38A2) has been shown to have important physiological functions and is implicated in various diseases like cancer. However, few compounds targeting this transporter have been identified and little is known about the structural requirements for SNAT2 binding. In this study, the aim was to establish the basic structure-activity relationship for SNAT2 using amino acid analogs. These analogs were first studied for their ability to inhibit SNAT2-mediated 3H-glycine uptake in hyperosmotically treated PC-3 cells. Then to identify substrates a FLIPR membrane potential assay and o-phthalaldehyde derivatization of intracellular amino with subsequent quantification using HPLC-Fl was used. The results showed that ester derivatives of the C-terminus maintained SNAT2 affinity, suggesting that the negative charge was less important. On the other hand, the positive charge at the N-terminus of the substrate and the ability to donate at least two hydrogen bonds to the binding site appeared important for SNAT2 recognition of the amine. Side chain charged amino acids generally had no affinity for SNAT2, but their non-charged derivatives were able to inhibit SNAT2-mediated 3H-glycine uptake, while also showing that amino acids of a notable length still had affinity for SNAT2. Several amino acid analogs appeared to be novel substrates of SNAT2, while γ-benzyl L-glutamate seemed to be inefficiently translocated by SNAT2. Elaborating on this structure could lead to the discovery of non-translocated inhibitors of SNAT2. Thus, the present study provides valuable insights into the basic structural binding requirements for SNAT2 and can aid the future discovery of compounds that target SNAT2.
Assuntos
Aminoácidos , Relação Estrutura-Atividade , Humanos , Aminoácidos/química , Aminoácidos/metabolismo , Sítios de Ligação , Sistema A de Transporte de Aminoácidos/metabolismo , Sistema A de Transporte de Aminoácidos/química , Linhagem Celular Tumoral , Ligação ProteicaRESUMO
We have discovered lysosomotropic autophagy inhibitors from our compound library of sp3-rich diazatricycloundecane skeletons. Compound 1u was identified as the most potent biological activity for LC3-II protein accumulation through the structure-activity relationships (SARs) for LC3-II protein accumulation and anti-proliferative activity at the three freely available substituents (R1-R3) in the diazatricycloundecane skeleton. Compound 1u inhibited lysosome-dependent degradation without affecting autophagosome formation. Furthermore, compound 1u enlarged lysosomes and raised lysosomal pH similar to lysosomotropic agents such as chloroquine, resulting in inhibiting late-stage autophagy by inducing lysosomal dysfunction. Moreover, compound 1u exhibits excellent drug-like chemical properties, not previously reported for lysosomotropic agents.
RESUMO
Pyrrolo[2,3-d]pyrimidine-based kinase inhibitors have emerged as an important class of targeted therapeutics to combat various types of cancer. The distinctive structural feature of pyrrolopyrimidine ring system offers an adaptable platform for designing potent inhibitors of various kinases, crucial in regulating cellular processes. The deazapurine framework inherent to pyrrolopyrimidines bears a conspicuous resemblance to adenine, the natural ligand ATP. The structural mimicry enhances their appeal as potent inhibitors of key kinases. This review reconnoitres the intricate process of designing and developing pyrrolopyrimidine based derivatives, accentuating their structural diversity and the strategic modifications employed to enhance selectivity, potency, and pharmacokinetic properties. The discussion delves into medicinal chemistry strategies, highlighting successful examples that have been progressed to clinical evaluation. Furthermore, the review highlights the promise of pyrrolopyrimidine scaffolds in revolutionizing targeted cancer therapy and provides a pioneering perspective on future directions.
RESUMO
Introduction: S-layer anchoring in Paenibacillus alvei is enabled by a non-covalent interaction between an S-layer homology domain trimer and a secondary cell wall polymer (SCWP), ensuring the structural integrity of the bacterial cell wall. Within the SCWP repeat, pyruvylated ManNAc serves as the ligand and the UDP-GlcNAc-2-epimerase MnaA supplies UDP-ManNAc to SCWP biosynthesis. Methods: To better understand SCWP biosynthesis and identify strategies for inhibiting pathogens with comparable cell wall architecture, like Bacillus anthracis, MnaA and rational variants were produced in E. coli and their kinetic constants determined. The effect of UDP-GlcNAc as a predicted allosteric activator and tunicamycin as a potential inhibitor of MnaA was tested in vitro supported by molecular docking experiments. Additionally, wild-type MnaA was crystallized. Results: We present the crystal structure of unliganded P. alvei MnaA resolved at 2.20 Å. It adopts a GT-B fold consistent with other bacterial non-hydrolyzing UDP-GlcNAc 2-epimerases. A comparison of amino acid sequences reveals conservation of putative and known catalytic and allosteric-site residues in MnaA, which was confirmed through analysis of Q42A, Q69A, E135A and H241A MnaA variants. The kinetic parameters K M and k cat of MnaA were determined to be 3.91 mM and 33.44 s-1 for the forward, and 2.41 mM and 6.02 s-1 for the reverse reaction. While allosteric regulation by UDP-GlcNAc has been proposed as a mechanism for enzyme activation, UDP-GlcNAc was not found to be essential for UDP-ManNAc epimerization by P. alvei MnaA. However, the reaction rate doubled upon addition of 5% UDP-GlcNAc. Unexpectedly, the UDP-GlcNAc analog tunicamycin did not inhibit MnaA. Molecular docking experiments comparing tunicamycin binding of P. alvei MnaA and Staphylococcus aureus MnaA, which is inhibited by tunicamycin, revealed different residues exposed to the antibiotic excluding, those at the predicted allosteric site of P. alvei MnaA, corroborating tunicamycin resistance. Conclusion: The unliganded crystal structure of P. alvei MnaA reveals an open conformation characterized by an accessible cleft between the N- and C-terminal domains. Despite the conservation of residues involved in binding the allosteric activator UDP-GlcNAc, the enzyme is not strictly regulated by the substrate. Unlike S. aureus MnaA, the activity of P. alvei MnaA remains unaffected by tunicamycin.
RESUMO
A new set of compounds known as sulfonyl benzoyl hydrazide derivatives were synthesized and tested using cellular assays. Through systematic optimization starting from general structure S-1, compound 10e emerged as highly promising. It exhibited potent inhibitory activity with an IC50 value of 0.8 nM and possessed moderate clogP. Compounds 10e significantly inhibited solid tumor cells proliferation. Additionally, 10e induced apoptosis and arrested the cell cycle. Furthermore, in vivo studies using an HCT116 xenograft model showed substantial growth inhibition of tumors, accompanied by a favorable safety profile. These findings underscored compound 10e as a novel LSD1 inhibitor with robust efficacy both in vitro and in vivo, establishing it as a promising lead compound for further anticancer drug development.
RESUMO
The sustainable control of weed populations, particularly resistant species, is a significant challenge in agriculture around the world. The α-aryl-keto-enol (aryl-KTE) class of acetyl-CoA carboxylase (ACCase)-inhibiting herbicides represent a possible solution for the control of resistant grasses even though achieving crop selectivity remains a challenge. Herein, we present some of our investigations into identifying the most promising structural features within the aryl-KTE class that give the highest chance of achieving soybean crop selectivity, whilst also maintaining strong and broad efficacy against problematic weed species. We further examined our results by preparing new aryl-KTE molecules which were evaluated in glasshouse screening assays for their herbicidal efficacy as well as their soybean selectivity. We consider that uniting this approach with other optimization criteria, such as toxicological and environmental safety profiles, will enable the streamlining of crop protection optimizations programmes, ultimately delivering safer and more sustainable solutions to farmers and consumers. © 2024 The Author(s). Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
RESUMO
Hydrazinecarboxamides (semicarbazides) are increasingly recognized as a versatile scaffold in developing potential antimicrobial agents. In addition to a brief overview of the synthetic methods to prepare them, this review comprehensively analyses their antimicrobial properties. These derivatives have demonstrated potent activity against a broad spectrum of mycobacteria, bacterial and fungal pathogens, highlighting their potential to address critical human health challenges, including neglected diseases, and to combat growing antimicrobial resistance. They have also been investigated for their antiviral and antiparasitic properties. The review also summarizes structure-activity relationships, known mechanisms of action and emphasizes the crucial role of the hydrazinecarboxamide moiety in facilitating interactions with biological targets. The combination of hydrazinecarboxamides with other bioactive scaffolds (primaquine, isoniazid, etc.) has led to an identification of promising drug candidates, including those active against resistant strains, offering a promising approach for future innovations in the field of antimicrobial therapy. Attention is also drawn to limitations of hydrazinecarboxamides (poor physicochemical properties, cytotoxicity to human cells, and insufficient target selectivity), which may hinder their clinical application.
RESUMO
Small molecule mitochondrial uncouplers have gained traction for their potential therapeutic use against metabolic dysfunction-associated steatohepatitis (MASH). Herein, we report a novel imidazo[4,5-b]pyridine scaffold derived from iterative modifications of the potent uncoupler BAM15. Our structure-activity relationship (SAR) study demonstrated that this promising scaffold has a range of tolerated substitutions that allows for the modulation of uncoupling activity and in vivo pharmacokinetic properties. Specifically, compound SHS206 displayed an EC50 of 830 nM in L6 myoblasts and, importantly, showed no cytotoxicity in vitro or adverse effects in mice up to 1000 mg/kg. SHS206 was administered orally at 100 and 300 mg/kg in a GAN mouse model of MASH and was observed to lower liver triglyceride levels while food intake, body weight, temperature, organ weights, and cholesterol levels remained unaltered. Together, these findings illuminate imidazo[4,5-b]pyridine as a promising scaffold for the future development of mitochondrial uncouplers.
RESUMO
Pulmonary arterial hypertension (PAH) is a progressive and fatal cardiovascular disorder that is characterized by pulmonary vascular remodeling. Our previous results demonstrated that heat shock protein (Hsp110) was significantly activated to induce vascular remodeling by enhancing the Hsp110-STAT3 interaction. The development of inhibitors that disrupt this association represents a novel strategy for the treatment of PAH. This study is committed to finding new inhibitors targeting the Hsp110-STAT3 interaction based on the structure of the lead compound 2h. A fusion design principle was employed in conjunction with structural optimization in the identification of the compound 10b. In vitro data indicates that 10b exhibited greater potency in the inhibition of pulmonary vascular cells malignant phenotypes via impeding the chaperone function of Hsp110 and the Hsp110-STAT3 interaction. In hypoxia-induced PAH rats, administration of 10b significantly attenuated vascular remodeling and right ventricular hypertrophy by inhibiting the Hsp110-STAT3 association. In short, this work identified a novel and promising lead compound for the development of anti-PAH drugs targeting the Hsp110-STAT3 interaction.
RESUMO
BACKGROUND: Chitin synthase (CHS) is an important target for pesticide development as chitin biosynthesis is essential for the survival and reproduction of various organisms, such as oomycetes, fungi and insects. Small-molecule inhibitors of CHS have potential applications for the control of agricultural pests and diseases. RESULTS: In this study, exploiting the cryo-EM structures of PsChs1, the CHS indispensable to the sporangial production and virulence of soybean root rot pathogenic oomycete Phytophthora sojae, a virtual screening method combining by molecular docking, inhibitory activity measurement and biological activity determination was conducted, to identify novel small-molecule inhibitors of CHS. A chemical library containing ≈1.8 million compounds was screened, and four potent inhibitors (HS-20, HS-24, HS-36 and HS-40) were identified. Amongst these compounds, HS-20 showed the most potent inhibitory activity with a Ki value of 4.2 ± 0.2 µM. Besides inhibitory activities towards PsChs1, these compounds were effective in decreasing sporangial production and preventing zoospore infection. When inoculated with zoospores, HS-20 and HS-24 completely inhibited the growth of P. sojae, suggesting their potential in its prevention and control. CONCLUSION: This study identified four new compounds with potent chitin synthase (CHS) inhibitory activity, all of which significantly reduce sporangia production and zoospore infection. It also presents promising in silico techniques and small molecule candidates for the design and development of novel CHS inhibitors. © 2024 Society of Chemical Industry. Published by John Wiley & Sons Ltd.
RESUMO
Cancer is one of the biggest medical challenges we face today. It is characterized by abnormal, uncontrolled growth of cells that can spread to different parts of the body. Cancer is extremely complex, with genetic variations and the ability to adapt and evolve. This means we must continuously pursue innovative approaches to developing new cancer drugs. While traditional drug discovery methods have led to important breakthroughs, they also have significant limitations that make it difficult to efficiently create new, cost-effective cancer therapies. Integrating computational tools into the cancer drug discovery process is a major step forward. By harnessing computing power, we can overcome some of the inherent barriers of traditional methods. This review examines the range of computational techniques now being used, such as molecular docking, QSAR models, virtual screening, and pharmacophore modeling. It looks at recent advances in areas like machine learning and molecular simulations. The review also discusses the current challenges with these technologies and envisions future directions, underscoring how transformative these computational tools can be for creating targeted, new cancer treatments.
RESUMO
Background/Objectives: At present, a large number of bioactive peptides have been found from plant sources with potential applications for the prevention of chronic diseases. By promoting plant-derived bioactive peptides (PDBPs), we can reduce dependence on animals, reduce greenhouse gas emissions, and protect the ecological environment. Methods: In this review, we summarize recent advances in sustainably sourced PDBPs in terms of preparation methods, biological activity, structure-activity relationships, and their use in chronic diseases. Results: Firstly, the current preparation methods of PDBPs were summarized, and the advantages and disadvantages of enzymatic method and microbial fermentation method were introduced. Secondly, the biological activities of PDBPs that have been explored are summarized, including antioxidant, antibacterial, anticancer and antihypertensive activities. Finally, based on the biological activity, the structure-activity relationship of PDBPs and its application in chronic diseases were discussed. All these provide the foundation for the development of PDBPs. However, the study of PDBPs still has some limitations. Conclusions: Overall, PDBPs is a good candidate for the prevention and treatment of chronic diseases in humans. This work provides important information for exploring the source of PDBPs, optimizing its biological activity, and accurately designing functional foods or drugs.
Assuntos
Peptídeos , Humanos , Doença Crônica , Relação Estrutura-Atividade , Peptídeos/farmacologia , Peptídeos/química , Animais , Antioxidantes/farmacologia , Antioxidantes/química , Proteínas de Plantas/farmacologia , Proteínas de Plantas/química , Anti-Hipertensivos/farmacologia , Anti-Hipertensivos/químicaRESUMO
BACKGROUND: Catecholaminergic polymorphic ventricular tachycardia (CPVT) is an inherited arrhythmia disorder associated with lethal arrhythmias. Most CPVT cases are caused by inherited variants in the gene encoding ryanodine receptor type 2 (RYR2). OBJECTIVE: The goal of this study was to investigate the structure-activity relationship of tetracaine derivatives and to test a lead compound in a mouse model of CPVT. METHODS: We synthesized >200 tetracaine derivatives and characterized 11 of those. The effects of these compounds on Ca2+ handling in cardiomyocytes from R176Q/+ mice was tested with confocal microscopy. The effects of lead compound MSV1302 on arrhythmia inducibility and cardiac contractility were tested by programmed electrical stimulation and echocardiography, respectively. Plasma and microsomal stability and cytotoxicity assays were also performed. RESULTS: Ca2+ imaging revealed that 3 of 11 compounds suppressed sarcoplasmic reticulum Ca2+ leak through mutant RyR2. Two compounds selected for further testing exhibited a half-maximal effective concentration of 146 nM (MSV1302) and 49 nM (MSV1406). Whereas neither compound altered baseline electrocardiogram intervals, only MSV1302 suppressed stress- and pacing-induced ventricular tachycardia in vivo in R176Q/+ mice. Echocardiography revealed that the lead compound MSV1302 did not negatively affect cardiac inotropy and chronotropy. Finally, compound MSV1302 did not block INa, ICa,L, or IKr; it exhibited excellent stability in plasma and microsomes, and it was not cytotoxic. CONCLUSION: Structure-activity relationship studies of second-generation tetracaine derivatives identified lead compound MSV1302 with a favorable pharmacokinetic profile. MSV1302 normalized aberrant RyR2 activity in vitro and in vivo, without altering cardiac inotropy, chronotropy, or off-target effects on other ion channels. This compound may be a strong candidate for future clinical studies to determine its efficacy in CPVT patients.
RESUMO
Background: Nowadays, with the increasing prevalence of cancer mortality, finding the best cancer inhibitors is vital. Angiogenesis, which refers to the formation of new blood vessels from existing ones, undergoes abnormal changes in the physiological process of solid tumors. Vascular endothelial growth factor receptor (VEGFR) plays a crucial role in angiogenesis. Hence, one of the suggestions in cancer treatment has been inhibiting VEGFR signaling to prevent angiogenesis. The computational approach as an in vitro alternative method is crucial to reduce time and cost. This study aimed to use classification algorithm to separate potent inhibitors from inactive ones. Materials and Methods: In order to apply the machine learning model, biological compounds were extracted from the BindingDB database. Due to the large number of molecular features, the classification model was susceptible to overfitting. To address this issue, a correlation-based feature selection algorithm was proposed as a means of feature reduction. Subsequently, for the classification step, a support vector machine model that utilizes both linear and non-linear kernels was employed. Results: The implementation of the support vector machine model with the radial basis function kernel, along with the correlation-based feature selection method, resulted in a higher accuracy (81.8%, P value = 0.008) compared to other feature selection methods used in this study. Finally, two structures were introduced with the highest binding affinity to inhibit the second VEGFR. Conclusion: According to the results, the correlation-based feature selection method is more accurate than other methods.