Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Water Res ; 257: 121701, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38733962

RESUMO

Nitrate or nitrite-dependent anaerobic methane oxidation (n-DAMO) is a microbial process that links carbon and nitrogen cycles as a methane sink in many natural environments. This study demonstrates, for the first time, that the nitrite-dependent anaerobic methane oxidation (nitrite-DAMO) process can be stimulated in sewer systems under continuous nitrate dosing for sulfide control. In a laboratory sewer system, continuous nitrate dosing not only achieved complete sulfide removal, but also significantly decreased dissolved methane concentration by ∼50 %. Independent batch tests confirmed the coupling of methane oxidation with nitrate and nitrite reduction, revealing similar methane oxidation rates of 3.68 ± 0.5 mg CH4 L-1 h-1 (with nitrate as electron acceptor) and 3.57 ± 0.4 mg CH4 L-1 h-1 (with nitrite as electron acceptor). Comprehensive microbial analysis unveiled the presence of a subgroup of the NC10 phylum, namely Candidatus Methylomirabilis (n-DAMO bacteria that couples nitrite reduction with methane oxidation), growing in sewer biofilms and surface sediments with relative abundances of 1.9 % and 1.6 %, respectively. In contrast, n-DAMO archaea that couple methane oxidation solely to nitrate reduction were not detected. Together these results indicated the successful enrichment of n-DAMO bacteria in sewerage systems, contributing to approx. 64 % of nitrite reduction and around 50 % of dissolved methane removal through the nitrite-DAMO process, as estimated by mass balance analysis. The occurrence of the nitrite-DAMO process in sewer systems opens a new path to sewer methane emissions.


Assuntos
Metano , Nitratos , Nitritos , Oxirredução , Esgotos , Metano/metabolismo , Anaerobiose
2.
Water Res ; 240: 120077, 2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-37247440

RESUMO

Sulfide control is a significant problem in urban sewer management. Although in-sewer dosing of chemicals has been widely applied, it is prone to high chemical consumption and cost. A new approach is proposed in this study for effective sulfide control in sewers. It involves advanced oxidation of ferrous sulfide (FeS) in sewer sediment, to produce hydroxyl radical (·OH) in-situ, leading to simultaneous sulfide oxidation and reduction of microbial sulfate-reducing activity. Long-term operation of three laboratory sewer sediment reactors was used to test the effectiveness of sulfide control. The experimental reactor with the proposed in-situ advanced FeS oxidation substantially reduced sulfide concentration to 3.1 ± 1.8 mg S/L. This compares to 9.2 ± 2.7 mg S/L in a control reactor with sole oxygen supply, and 14.1 ± 4.2 mg S/L in the other control reactor without either iron or oxygen. Mechanistic investigations illustrated the critical role of ·OH, produced from the oxidation of sediment iron, in regulating microbial communities and the chemical sulfide oxidation reaction. Together these results demonstrate that incorporating the advanced FeS oxidation process in sewer sediment enable superior performance of sulfide control at a much lower iron dosage, thereby largely saving chemical use.


Assuntos
Sulfeto de Hidrogênio , Ferro , Esgotos , Sulfetos , Compostos Ferrosos
3.
Sci Total Environ ; 875: 162628, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-36889383

RESUMO

Anaerobic treatment of domestic wastewater has the advantages of lower biomass yield, lower energy demand and higher energy recover over the conventional aerobic treatment process. However, the anaerobic process has the inherent issues of excessive phosphate and sulfide in effluent and superfluous H2S and CO2 in biogas. An electrochemical method allowing for in-situ generation of Fe2+ in the anode and hydroxide ion (OH-) and H2 in the cathode was proposed to overcome the challenges simultaneously. The effect of electrochemically generated iron (e­iron) on the performance of anaerobic wastewater treatment process was explored with four different dosages in this work. The results showed that compared to control, the experimental system displayed an increase of 13.4-28.4 % in COD removal efficiency, 12.0-21.3 % in CH4 production rate, 79.8-98.5 % in dissolved sulfide reduction, 26.0-96.0 % in phosphate removal efficiency, depending on the e­iron dosage between 40 and 200 mg Fe/L. Dosing of the e­iron significantly upgraded the quality of produced biogas, showing a much lower CO2 and H2S contents in biogas in experimental reactor than that in control reactor. The results thus demonstrated that e­iron can significantly improve the performance of anaerobic wastewater treatment process, bringing multiple benefits with the increase of its dosage regarding effluent and biogas quality.

4.
J Environ Sci (China) ; 125: 630-640, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36375945

RESUMO

Biogenic hydrogen sulfide is an odorous, toxic and corrosive gas released from sewage in sewers. To control sulfide generation and emission, nitrate is extensively applied in sewer systems for decades. However, the unexpected sulfide rebound after nitrate addition is being questioned in recent studies. Possible reasons for the sulfide rebounds have been studied, but the mechanism is still unclear, so the countermeasure is not yet proposed. In this study, a lab-scale sewer system was developed for investigating the unexpected sulfide rebounds via the traditional strategy of nitrate addition during 195-days of operation. It was observed that the sulfide pollution was even severe in a sewer receiving nitrate addition. The mechanism for the sulfide rebound can be differentiated into short-term and long-term effects based on the dominant contribution. The accumulation of intermediate elemental sulfur in biofilm resulted in a rapid sulfide rebound via the high-rate sulfur reduction after the depletion of nitrate in a short period. The presence of nitrate in sewer promoted the microorganism proliferation in biofilm, increased the biofilm thickness, re-shaped the microbial community and enhanced biological denitrification and sulfur production, which further weakened the effect of nitrate on sulfide control during the long-term operation. An optimized biofilm-initiated sewer process model demonstrated that neither the intermittent nitrate addition nor the continuous nitrate addition was a sustainable strategy for the sulfide control. To minimize the negative impact from sulfide rebounds, a (bi)monthly routine maintenance (e.g., hydraulic flushing with nitrate spike) to remove the proliferative microorganism in biofilm is necessary.


Assuntos
Sulfeto de Hidrogênio , Nitratos , Esgotos , Sulfetos , Enxofre , Óxidos de Nitrogênio
5.
Sci Total Environ ; 855: 158913, 2023 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-36411604

RESUMO

The sewer system is a significant source of hydrogen sulfide (H2S) and greenhouse gases which has attracted extensive interest from researchers. In this study, a novel combined dosing strategy using nitrate and calcium peroxide (CaO2) was proposed to simultaneously control sulfide and greenhouse gases, and its performance was evaluated in laboratory-scale reactors. Results suggested that the addition of nitrate and CaO2 improved the effectiveness of sulfide control. And the combination index method further proved that nitrate and CaO2 were synergistic in controlling sulfide. Meanwhile, the combination of nitrate and CaO2 substantially reduced greenhouse gas emissions, especially the carbon dioxide (CO2) and methane (CH4). The microbial analysis revealed that the combined addition greatly stimulated the accumulation of nitrate reducing-sulfide oxidizing bacteria (NR-SOB) that participate in anoxic nitrate-dependent sulfide oxidation, while the abundance of heterotrophic denitrification bacteria (hNRB) was reduced significantly. Moreover, the presence of oxygen and alkaline chemicals generated by CaO2 facilitated the inhibition of sulfate-reducing bacteria (SRB) activities. Therefore, the nitrate dosage was diminished significantly. On the other hand, the generated alkaline chemicals promoted CO2 elimination and inhibited the activities of methanogens, leading to a decrease of CO2 and CH4 fluxes, which facilitated elimination of greenhouse effects. The intermittent dosing test showed that the nitrate and CaO2 could be applied intermittently for sulfide removal. And the chemical cost of intermittent dosing strategy was reduced by 85 % compared to the continuous dosing nitrate strategy. Therefore, intermittent dosing nitrate combined with CaO2 is probably an effective and economical approach to control sulfide and greenhouse gases in sewer systems.


Assuntos
Gases de Efeito Estufa , Nitratos , Esgotos/microbiologia , Dióxido de Carbono , Oxirredução , Sulfetos , Óxidos de Nitrogênio
6.
Water Res ; 225: 119202, 2022 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-36215837

RESUMO

Although iron salts such as iron(III) chloride (FeCl3) have widespread application in wastewater treatment, safety concerns limit their use, due to the corrosive nature of concentrated solutions. This study demonstrates that local, electrochemical generation of iron is a viable alternative to the use of iron salts. Three laboratory systems with anaerobic membrane processes were set up to treat real wastewater; two systems used the production of either in-situ or ex-situ electrochemical iron (as Fe2+ and Fe2+(Fe3+)2O4, respectively), while the other system served as a control. These systems were operated for over one year to assess the impact of electrochemically produced iron on system performance. The results showed that dosing of electrochemical iron significantly reduced sulfide concentration in effluent and hydrogen sulfide content in biogas, and mitigated organics-based membrane fouling, all of which are critical issues inherently related to sustainability of anaerobic wastewater treatment. The electrochemical iron strategy can generate multiple benefits for wastewater management including increased removal efficiencies for total and volatile suspended solids, chemical oxygen demand and phosphorus. The rate of methane production also increased with electrochemically produced iron. Economic analysis revealed the viability of electrochemical iron with total cost reduced by one quarter to a third compared with using FeCl3. These benefits indicate that electrochemical iron dosing can greatly enhance the overall operation and performance of anaerobic membrane processes, and this particularly facilitates wastewater management in a decentralized scenario.


Assuntos
Cáusticos , Sulfeto de Hidrogênio , Águas Residuárias/química , Eliminação de Resíduos Líquidos/métodos , Ferro/química , Esgotos/química , Reatores Biológicos , Anaerobiose , Biocombustíveis , Cloretos , Sais , Fósforo , Sulfetos , Metano
7.
Sci Total Environ ; 816: 151581, 2022 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-34774952

RESUMO

Nitrate dosing is commonly used for controlling hydrogen sulfide in sewer systems. However, it may potentially facilitate N2O emission due to the denitrification process promoted by nitrate addition. In this study, lab-scale sewer reactors were operated to investigate the impact of nitrate addition on N2O production in sewer systems. Results showed that the N2O flux even increased by six times with the addition of nitrate when dissolved oxygen (DO) in the wastewater exceeded 0.4 mg/L. Principal component analysis showed that the N2O concentration was notably affected by DO and oxidation-reduction potential (ORP) in the wastewater. Furthermore, it was founded that N2O flux had a strong linear relationship with the DO concentration in the batch test. The microbial analysis found that the nosZ possessing organisms decreased significantly in the micro-aerobic condition and the copy numbers of nosZ gene declined consequently. It indicated that the inhibition of N2O reduced to N2 was responsible for significant accumulation and emission of N2O in the micro-aerobic condition. Given the gravity sewers are not completely anaerobic, the DO concentration is ranged from 0.1 to 2.4 mg/L in gravity sewers with the partially filled flow. Therefore, more attention should be paid to the N2O production when nitrate dosing for hydrogen sulfide controlling in gravity sewers.


Assuntos
Sulfeto de Hidrogênio , Nitratos , Desnitrificação , Óxidos de Nitrogênio , Óxido Nitroso/análise , Oxigênio/análise , Esgotos
8.
J Hazard Mater ; 424(Pt B): 127527, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-34879520

RESUMO

Nitrate has been widely used in sewer systems for sulfide control. However, significant chemical consumption and the loss of carbon source were observed in previous studies. To find a feasible and cost-effective control strategy of the sulfide control, the effect of nitrate combined with sodium nitroprusside (SNP) dosage strategy was tested in lab-scale sewer biofilm reactors. Results showed that nitrate and SNP were strongly synergistic, with 30 mg N/L nitrate and 20 mg/L SNP being sufficient for sulfide control in this study. While large amount of nitrate alone (100 mg N/L) is required to achieve the same sulfide control effectiveness. Meanwhile, the nitrate combined with SNP could reduce the organic carbon source loss by 80%. Additionally, the high-throughput sequencing results showed that the relative abundance of autotrophic, nitrate reducing-sulfide oxidizing bacteria genera (a-NR-SOB) such as Arcobacter and Sulfurimonas was increased by around 18%, while the heterotrophic, nitrate-reducing bacteria (hNRB) such as Thauera was substantially reduced. It demonstrated that the sulfide control was mainly due to the a-NR-SOB activity under the nitrate and SNP dosing strategy. The microbial functional prediction further revealed that nitrate and SNP promoted the dissimilatory nitrate reduction process which utilizes sulfide as an effective electron donor. Moreover, economic assessment indicated that using the combination of nitrate and SNP for sulfide control in sewers would lower the chemical costs by approximately 35% compared with only nitrate addition.


Assuntos
Carbono , Nitratos , Biofilmes , Nitroprussiato , Oxirredução , Sulfetos
9.
Water Res ; 184: 116179, 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-32688148

RESUMO

Recent studies demonstrated the practical potential of multiple beneficial reuse of ferric-rich drinking water sludge (ferric DWS) for sulfide and phosphate removal in wastewater applications. In practice, ferric DWS is often stored on-site for periods ranging from days to several weeks (or even months), which may affect its reuse potential through changes in iron speciation and morphology. In this study, we investigated for the first time the impact of ferric DWS 'aging' time on the iron speciation and morphology and its subsequent impact on its reactivity and overall sulfide and phosphate removal capacity. A series of coagulation tests were conducted to generate ferric DWS of a practically relevant composition by using raw influent water from a full-scale drinking water treatment plant (DWTP). A comparison with ferric DWS from 8 full-scale DWTPs confirmed the similitude. The presence of akaganeite (ß-FeOOH) was detected in ferric DWS (through XRD analyses), independent of the DWS storage time. However, the morphology of akaganeite changed over time from a predominant poorly-crystalline phase in 'fresh' DWS (8 ± 0.1% of total Fe) to a highly crystalline phase (76 ± 3% of total Fe) at a sludge aging time of 30 days which was confirmed by means of Rietveld refinement in XRD analyses (n = 3). Subsequent batch tests showed that its sulfide removal capacity decreased significantly from 1.30 ± 0.02 mmol S/mmol Fe (day 1) to 0.60 ± 0.01 (day 30), a decrease of 54 % (p < 0.05). The level of crystallinity however had no impact on sulfide removal kinetics, most sulfide being removed within 10 minutes. Upon aeration of sulfide-loaded ferric DWS in activate sludge, amorphous iron oxides species were formed independent of the initial DWS crystallinity which resulted in efficient P removal at capacities similar to that of conventional FeCl3 dosing.


Assuntos
Água Potável , Esgotos , Compostos Férricos , Ferro , Fosfatos , Sulfetos , Eliminação de Resíduos Líquidos , Águas Residuárias
10.
Chemosphere ; 250: 126221, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32114337

RESUMO

This study demonstrates the full scale application of iron dosing in a metropolitan wastewater treatment plant (WWTP) and the upstream sewer system for multiple benefits. Two different dosing locations, i.e., the WWTP inlet works (Trial-1) and upstream sewer network (Trial-2) were tested in this study. Both dosing trials achieved multiple benefits such as sulfide control, phosphate removal and improved sludge dewaterability. During Trial-1, a sulfide reduction of >90% was achieved at high dosing rates (>19 kgFe ML-1) of ferrous chloride in the inlet works and in Trial-2 the in-sewer ferrous dosing had significant gas phase hydrogen sulfide (H2S) concentration reduction in the sewer network. The ferrous dosing enhanced the phosphate removal in the bioreactor up to 76% and 53 ± 2% during Trial-1 & 2, respectively. The iron ending up in the anaerobic sludge digester reduced the biogas H2S concentration by up to 36% and 45%, respectively. The dewaterability of the digested sludge was improved, with relative increases of 9.7% and 9.8%, respectively. The presence of primary clarifier showed limited impact on the downstream availability of iron for achieving the afore-mentioned multiple benefits. The iron dosing enhanced the total chemical oxygen demand removal in the primary clarifier reaching up to 49% at the high dose rates during Trial-1 and 42 ± 1% during Trial-2. This study demonstrated that multiple benefits could be achieved independent of the iron dosing location (i.e., at the WWTP inlet or in the network). Further, iron dosing at both locations enhances primary settling, beneficial for bioenergy recovery from wastewater.


Assuntos
Eliminação de Resíduos Líquidos/métodos , Análise da Demanda Biológica de Oxigênio , Reatores Biológicos , Compostos Ferrosos , Sulfeto de Hidrogênio , Ferro , Fosfatos , Esgotos , Sulfetos , Águas Residuárias
11.
Water Res ; 174: 115627, 2020 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-32101785

RESUMO

Iron-based coagulants are dosed in enormous amounts and play an essential role in various segments of our urban water infrastructure. In order for the water industry to become circular, a closed-loop management strategy for iron needs to be developed. In this study, we have demonstrated for the first time that in-sewer dosed iron, either in the form of FeCl3 or ferric-based drinking water sludge (Fe-DWS) as a means to combat sewer corrosion and odour, can be recovered in the form of vivianite in digested sludge in down-stream wastewater treatment plants. Importantly, about 92 ± 2% of the in-sewer dosed Fe was estimated to be bound in vivianite in digested sludge. A simple insertion of Neodymium magnet allowed to recover 11 ± 0.2% and 15.3 ± 0.08% of the vivianite formed in the digested sludge of the in-sewer dosed iron in the form of FeCl3 and Fe-DWS, respectively. The purity of recovered vivianite ranged between 70 ± 5% and 49 ± 3% for in-sewer dosed FeCl3 and Fe-DWS, respectively. Almost complete (i.e. 98 ± 0.3%) separation of Fe in the form of ferrihydrite was achieved from vivianite after alkaline washing. Subsequent batch experiments demonstrated that the recovered ferrihydrite can be directly reused for efficient sulfide control in sewers. At a ferrihydrite-Fe:S molar ratio of 1.2:1, sewage dissolved sulfide concentrations was reduced from 15 mgS/L to below 0.5 mgS/L within 1 h of reaction. Overall, the results obtained in our study flag a first step for utilities towards a closed-loop iron-based coagulant management approach.


Assuntos
Ferro , Esgotos , Sulfetos , Eliminação de Resíduos Líquidos , Águas Residuárias
12.
Sci Total Environ ; 673: 719-725, 2019 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-31003099

RESUMO

The addition of chemical agents to control the production of hydrogen sulfide (H2S) is currently the principal technology used to control odor emissions from sewers. In this study, laboratory reactors were used to investigate the change in dimethyl trisulfide (DMTS) concentrations when dosing with oxidant to control sulfide in sewers. Our results show that the intermittent addition of oxidant leads to sulfide regeneration and increased DMTS formation. Additional experiments were conducted to investigate the processes that result in the formation of DMTS. The results indicate that the polysulfide produced after oxidant addition was a key intermediate in DMTS production. Enzymatic methylation of polysulfide was an important process in DMTS formation. Dimethylsulfoxide (DMSO) was observed in the reactor when oxidant was again added but it was reduced to DMTS when the oxidant was depleted. There are side-effects of adding oxidant, and alternative control measures for volatile sulfur compounds (VSCs) need to be investigated further.

13.
Water Res ; 154: 12-20, 2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-30763871

RESUMO

Sulfide production and oilfield produced water are considered as environmental challenges in the oil industry. Iron-crosslinked sodium alginate (SA-Fe) was used to address these problems simultaneously. A pair of columns containing one coarse-sand column and one fine-sand column was designed to simulate heterogeneous rock layers and evaluate the plugging effect of SA-Fe. Generation of FeS precipitates led to decreases of sulfide in the gas phase by 45 ±â€¯3.2% and in the aqueous solution by 75 ±â€¯4.7%. The generated FeS nanoparticles and sulfate-reducing bacteria attached on the surface of the sand in the coarse-sand column to plug the pores that caused the water flow to switch from the coarse-sand column to the fine-sand column. Analysis of FeS distribution indicated that the column inlet was effectively plugged by FeS. The theoretical amount of FeS (1.19 mmol) that was determined based on sulfur balance was nearly equal to the actual amount of FeS precipitation (1.11 mmol). Additionally, water viscosity increased from 0.9 mPa s to 342 mPa s, induced by the collapse of SA-Fe gels, which reduced the difference in viscosity between oil and water to avoid viscous fingering. As a consequence, the oil recovery improved from 46 ±â€¯2.6% to 85 ±â€¯3.0% in the sand column oil-saturated recovery experiment, which contributed to the decrease of oil-normalized produced water from 70.1 ±â€¯4.0 to 37.5 ±â€¯1.3 mL water/mL oil. Therefore, this study shows that SA-Fe exhibits potential for application in controlling sulfide as well as reducing produced water.


Assuntos
Ferro , Poluentes Químicos da Água , Alginatos , Sulfetos , Água
14.
Water Res ; 135: 302-310, 2018 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-29477793

RESUMO

Water utilities worldwide spend annually billions of dollars to control sulfide-induced corrosion in sewers. Iron salts chemically oxidize and/or precipitate dissolved sulfide in sewage and are especially used in medium- and large-size sewers. Iron salt dosing rates are defined ad hoc, ignoring variation in sewage flows and sulfide levels. This often results in iron overdosing or poor sulfide control. Online dosing control can adjust the chemical dosing rates to current (and future) state of the sewer system, allowing high-precision, stable and cost-effective sulfide control. In this paper, we report a novel and robust online control strategy for the dosing of ferrous salt in sewers. The control considers the fluctuation of sewage flow, pH, sulfide levels and also the perturbation from rainfall. Sulfide production in the pipe is predicted using auto-regressive models (AR) based on current flow measurements, which in turn can be used to determine the dose of ferrous salt required for cost-effective sulfide control. Following comprehensive model-based assesment, the control was successfully validated and its effectiveness demonstrated in a 3-week field trial. The online control algorithm controlled sulfide below the target level (0.5 mg S/L) while reducing chemical dosing up to 30%.


Assuntos
Algoritmos , Compostos Ferrosos/química , Esgotos/química , Sulfetos/química , Austrália , Desenho de Equipamento , Concentração de Íons de Hidrogênio , Oxirredução , Reprodutibilidade dos Testes
15.
Water Res ; 122: 447-454, 2017 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-28624728

RESUMO

Most commonly used methods for sewer sulfide control involves dosing chemical agents to wastewater, which incurs high operational costs. Here, we propose and demonstrate a cost-effective and environmentally attractive approach to sewer sulfide control through urine separation and its subsequent conversion to nitrite prior to intermittent dosage to sewers. Urine collected from a male toilet urinal was fed to laboratory-scale sequencing batch reactors. The reactors stably converted roughly 50% of the nitrogen in urine to nitrite, with high abundance (at 17.46%) of known ammonia-oxidizing bacteria (AOB) of the genus Nitrosomonas, and absence (below detection level) of typical nitrite-oxidizing bacteria of the genus Nitrospira, according to 454 pyrosequencing analysis. The stable nitrite production was achieved at both relatively high (1.0-2.0 mg/L) and low (0.2-0.3 mg/L) dissolved oxygen concentrations. Dosing tests in laboratory-scale sewer systems confirmed the sulfide control effectiveness of free nitrous acid generated from urine. Life cycle assessment indicated that, compared with commodity chemicals, nitrite/free nitrous acid (FNA) production from urine for sulfide control in sewers would lower the operational costs by approximately 2/3 and greenhouse gas (GHG) emissions by 1/3 in 20 years.


Assuntos
Nitritos , Esgotos , Sulfetos , Nitrosomonas , Ácido Nitroso
16.
Water Res ; 100: 421-428, 2016 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-27232986

RESUMO

Nitrate dosing is commonly used to control hydrogen sulfide production in sewer systems. However, quick rebound of the sulfide concentration after nitrate depletion has been observed and results in more serious odor and corrosion problem. To investigate the mechanism of sulfide regeneration in the nitrate-free period, a laboratory-scale sewer reactor was run for 30 days to simulate sulfide production and oxidation with intermittent nitrate addition. The results show that nitrate addition substantially reduced the sulfide concentration, but the produced elemental sulfur was then quickly reduced back to sulfide in nitrate-free periods. This induced more and more sulfide production in the sewer reactor. Elemental sulfur and polysulfide reductions were found in the sewage in nitrate-free periods, showing their contributions to the sulfide regeneration. Through batch tests, polysulfide was confirmed as the key intermediate for accelerating sulfur reduction during the nitrate-free period in the sewer. Sulfide production rates significantly increased by 65% and 59% in the presences of tetrasulfide and sulfur with sulfide, respectively, at the beginning of the test. While polysulfide formation was prevented by the ferrous chloride addition, the sulfur reduction rate remarkably decreased from 12.8 mgS/L-h to 1.8 mgS/L-h. This indicates that direct sulfur reduction was significantly slower than the indirect sulfur reduction via polysulfide; the latter process could be the cause for the quick rebound of the sulfide concentration in the sewer with intermittent nitrate dosing. Thus, the pathways of sulfur transformations in a sewer, both in the presence and absence of nitrate, were proposed. Microbial community analysis results reveal that some common sulfate-reducing bacteria (SRB) genera in sewer sediment were possible sulfur reducers. According to this finding, the effect and strategy of nitrate dosing for hydrogen sulfide control in sewers should be re-evaluated and re-considered.


Assuntos
Odorantes , Enxofre , Sulfeto de Hidrogênio/metabolismo , Nitratos , Oxirredução , Esgotos/microbiologia , Sulfetos/metabolismo
17.
Front Microbiol ; 5: 153, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24795702

RESUMO

Nitrate is an inhibitor of sulfate-reducing bacteria (SRB). In petroleum production sites, amendments of nitrate and nitrite are used to prevent SRB production of sulfide that causes souring of oil wells. A better understanding of nitrate stress responses in the model SRB, Desulfovibrio vulgaris Hildenborough and Desulfovibrio alaskensis G20, will strengthen predictions of environmental outcomes of nitrate application. Nitrate inhibition of SRB has historically been considered to result from the generation of small amounts of nitrite, to which SRB are quite sensitive. Here we explored the possibility that nitrate might inhibit SRB by a mechanism other than through nitrite inhibition. We found that nitrate-stressed D. vulgaris cultures grown in lactate-sulfate conditions eventually grew in the presence of high concentrations of nitrate, and their resistance continued through several subcultures. Nitrate consumption was not detected over the course of the experiment, suggesting adaptation to nitrate. With high-throughput genetic approaches employing TnLE-seq for D. vulgaris and a pooled mutant library of D. alaskensis, we determined the fitness of many transposon mutants of both organisms in nitrate stress conditions. We found that several mutants, including homologs present in both strains, had a greatly increased ability to grow in the presence of nitrate but not nitrite. The mutated genes conferring nitrate resistance included the gene encoding the putative Rex transcriptional regulator (DVU0916/Dde_2702), as well as a cluster of genes (DVU0251-DVU0245/Dde_0597-Dde_0605) that is poorly annotated. Follow-up studies with individual D. vulgaris transposon and deletion mutants confirmed high-throughput results. We conclude that, in D. vulgaris and D. alaskensis, nitrate resistance in wild-type cultures is likely conferred by spontaneous mutations. Furthermore, the mechanisms that confer nitrate resistance may be different from those that confer nitrite resistance.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA