Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Neurosci ; 44(11)2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38316564

RESUMO

We recorded directly from the orbital (oPFC) and ventromedial (vmPFC) subregions of the orbitofrontal cortex (OFC) in 22 (9 female, 13 male) epilepsy patients undergoing intracranial electroencephalography (iEEG) monitoring during an experimental task in which the participants judged the accuracy of self-referential autobiographical statements as well as valenced self-judgments (SJs). We found significantly increased high-frequency activity (HFA) in ∼13% of oPFC sites (10/18 subjects) and 16% of vmPFC sites (4/12 subjects) during both of these self-referential thought processes, with the HFA power being modulated by the content of self-referential stimuli. The location of these activated sites corresponded with the location of fMRI-identified limbic network. Furthermore, the onset of HFA in the vmPFC was significantly earlier than that in the oPFC in all patients with simultaneous recordings in both regions. In 11 patients with available depression scores from comprehensive neuropsychological assessments, we documented diminished HFA in the OFC during positive SJ trials among individuals with higher depression scores; responses during negative SJ trials were not related to the patients' depression scores. Our findings provide new temporal and anatomical information about the mode of engagement in two important subregions of the OFC during autobiographical memory and SJ conditions. Our findings from the OFC support the hypothesis that diminished brain activity during positive self-evaluations, rather than heightened activity during negative self-evaluations, plays a key role in the pathophysiology of depression.


Assuntos
Epilepsia , Memória Episódica , Humanos , Masculino , Feminino , Julgamento , Córtex Pré-Frontal/diagnóstico por imagem , Córtex Pré-Frontal/fisiologia , Encéfalo/fisiologia , Mapeamento Encefálico , Imageamento por Ressonância Magnética
4.
eNeuro ; 8(5)2021.
Artigo em Inglês | MEDLINE | ID: mdl-34518367

RESUMO

The subthalamic nucleus (STN) is an essential component of the basal ganglia and has long been considered to be a part of the ventral thalamus. However, recent neurodevelopmental data indicated that this nucleus is of hypothalamic origin which is now commonly acknowledged. In this work, we aimed to verify whether the inclusion of the STN in the hypothalamus could influence the way we understand and conduct research on the organization of the whole ventral and posterior diencephalon. Developmental and neurochemical data indicate that the STN is part of a larger glutamatergic posterior hypothalamic region that includes the premammillary and mammillary nuclei. The main anatomic characteristic common to this region involves the convergent cortical and pallidal projections that it receives, which is based on the model of the hyperdirect and indirect pathways to the STN. This whole posterior hypothalamic region is then integrated into distinct functional networks that interact with the ventral mesencephalon to adjust behavior depending on external and internal contexts.


Assuntos
Núcleo Subtalâmico , Gânglios da Base , Globo Pálido , Hipotálamo , Vias Neurais
5.
Front Syst Neurosci ; 15: 682990, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34354572

RESUMO

While current dopamine-based drugs seem to be effective for most Parkinson's disease (PD) motor dysfunctions, they produce variable responsiveness for resting tremor. This lack of consistency could be explained by considering recent evidence suggesting that PD resting tremor can be divided into different partially overlapping phenotypes based on the dopamine response. These phenotypes may be associated with different pathophysiological mechanisms produced by a cortical-subcortical network involving even non-dopaminergic areas traditionally not directly related to PD. In this study, we propose a bio-constrained computational model to study the neural mechanisms underlying a possible type of PD tremor: the one mainly involving the serotoninergic system. The simulations run with the model demonstrate that a physiological serotonin increase can partially recover dopamine levels at the early stages of the disease before the manifestation of overt tremor. This result suggests that monitoring serotonin concentration changes could be critical for early diagnosis. The simulations also show the effectiveness of a new pharmacological treatment for tremor that acts on serotonin to recover dopamine levels. This latter result has been validated by reproducing existing data collected with human patients.

6.
Neurosci Res ; 152: 44-58, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31857115

RESUMO

Understanding how cognitive functions arise from computations occurring in the brain requires the ability to measure and perturb neural activity while the relevant circuits are engaged for specific cognitive processes. Rapid technical advances have led to the development of new approaches to transiently activate and suppress neuronal activity as well as to record simultaneously from hundreds to thousands of neurons across multiple brain regions during behavior. To realize the full potential of these approaches for understanding cognition, however, it is critical that behavioral conditions and stimuli are effectively designed to engage the relevant brain networks. Here, we highlight recent innovations that enable this combined approach. In particular, we focus on how to design behavioral experiments that leverage the ever-growing arsenal of technologies for controlling and measuring neural activity in order to understand cognitive functions.


Assuntos
Cognição/fisiologia , Animais , Escala de Avaliação Comportamental , Encéfalo/fisiologia , Humanos , Camundongos , Condução Nervosa , Neurônios/fisiologia , Imagem Óptica/métodos , Optogenética/métodos
7.
Med Hypotheses ; 123: 35-46, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30696589

RESUMO

This paper proposes a theoretical framework for the biological learning mechanism as a general learning system. The proposal is as follows. The bursting and tonic modes of firing patterns found in many neuron types in the brain correspond to two separate modes of information processing, with one mode resulting in awareness, and another mode being subliminal. In such a coding scheme, a neuron in bursting state codes for the highest level of perceptual abstraction representing a pattern of sensory stimuli, or volitional abstraction representing a pattern of muscle contraction sequences. Within the 50-250 ms minimum integration time of experience, the bursting neurons form synchrony ensembles to allow for binding of related percepts. The degree which different bursting neurons can be merged into the same synchrony ensemble depends on the underlying cortical connections that represent the degree of perceptual similarity. These synchrony ensembles compete for selective attention to remain active. The dominant synchrony ensemble triggers episodic memory recall in the hippocampus, while forming new episodic memory with current sensory stimuli, resulting in a stream of thoughts. Neuromodulation modulates both top-down selection of synchrony ensembles, and memory formation. Episodic memory stored in the hippocampus is transferred to semantic and procedural memory in the cortex during rapid eye movement sleep, by updating cortical neuron synaptic weights with spike timing dependent plasticity. With the update of synaptic weights, new neurons become bursting while previous bursting neurons become tonic, allowing bursting neurons to move up to a higher level of perceptual abstraction. Finally, the proposed learning mechanism is compared with the back-propagation algorithm used in deep neural networks, and a proposal of how the credit assignment problem can be addressed by the current theory is presented.


Assuntos
Encéfalo/fisiologia , Inteligência , Modelos Neurológicos , Neurônios/fisiologia , Acetilcolina/metabolismo , Potenciais de Ação/fisiologia , Algoritmos , Tonsila do Cerebelo , Animais , Inteligência Artificial , Mapeamento Encefálico , Dopamina/metabolismo , Emoções , Hipocampo , Humanos , Testes de Inteligência , Aprendizagem , Memória , Memória Episódica , Plasticidade Neuronal , Neurônios/metabolismo , Neurônios/patologia , Norepinefrina/metabolismo , Serotonina/metabolismo , Sono REM , Transmissão Sináptica
8.
Netw Neurosci ; 2(4): 464-480, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30320294

RESUMO

Graph theoretical functional magnetic resonance imaging (fMRI) studies have demonstrated that brain networks reorganize significantly during motor skill acquisition, yet the associations between motor learning ability, brain network features, and the underlying biological mechanisms remain unclear. In the current study, we applied a visually guided sequential pinch force learning task and graph theoretical analyses to investigate the associations between short-term motor learning ability and resting-state brain network metrics in 60 healthy subjects. We further probed the test-retest reliability (n = 26) and potential effects of the N-methyl-d-aspartate (NMDA) antagonist ketamine (n = 19) in independent healthy volunteers. Our results show that the improvement of motor performance after short-term training was positively correlated with small-worldness (p = 0.032) and global efficiency (p = 0.025), whereas negatively correlated with characteristic path length (p = 0.014) and transitivity (p = 0.025). In addition, using network-based statistics (NBS), we identified a learning ability-associated (p = 0.037) and ketamine-susceptible (p = 0.027) cerebellar-cortical network with fair to good reliability (intraclass correlation coefficient [ICC] > 0.7) and higher functional connectivity in better learners. Our results provide new evidence for the association of intrinsic brain network features with motor learning and suggest a role of NMDA-related glutamatergic processes in learning-associated subnetworks.

9.
Front Behav Neurosci ; 8: 378, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25404902

RESUMO

Motivation is a key neurobehavioral concept underlying adaptive responses to environmental incentives and threats. As such, dysregulation of motivational processes may be critical in the formation of abnormal behavioral patterns/tendencies. According to the long standing model of the Reinforcement Sensitivity Theory (RST), motivation behaviors are driven by three neurobehavioral systems mediating the sensitivity to punishment, reward or goal-conflict. Corresponding to current neurobehavioral theories in psychiatry, this theory links abnormal motivational drives to abnormal behavior; viewing depression and mania as two abnormal extremes of reward driven processes leading to either under or over approach tendencies, respectively. We revisit the RST framework in the context of bipolar disorder (BD) and challenge this concept by suggesting that dysregulated interactions of both punishment and reward related processes better account for the psychological and neural abnormalities observed in BD. We further present an integrative model positing that the three parallel motivation systems currently proposed by the RST model, can be viewed as subsystems in a large-scale neurobehavioral network of motivational decision making.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA