Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Front Cell Dev Biol ; 10: 952518, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36147743

RESUMO

Mechanisms underlying severe male infertility are still largely elusive. However, recently, a single-cell transcription study by our group identified several differentially expressed coding genes in all the somatic cell types in testes of patients with idiopathic germ cell aplasia (iGCA). Here, we leverage this work by extending the analysis also to the non-coding portion of the genome. As a result, we found that 43 LncRNAs were differentially expressed in the somatic cells of these patients. Interestingly, a significant portion of the overexpressed LncRNAs was found to be a target of TAF9B, a transcription factor known to be involved in germ cell survival. Moreover, several overexpressed LncRNAs were also found to be activated in a mouse model of Sertoli cells treated with bisphenol A, a widespread environmental contaminant, long suspected to impair male fertility. Finally, a literature search for MEG3, a maternally imprinted LncRNA overexpressed as well in our patients, found it to be involved, among other things, in obesity and inflammation, known comorbidities of iGCA, ultimately suggesting that our findings deepen the understanding of the molecular insights coupled not only to the pathogenesis, but also to the clinical course of this class of patients.

2.
Front Pharmacol ; 12: 775528, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34925033

RESUMO

Fatty acid ß-oxidation is an essential pathogenic mechanism in nonalcoholic fatty liver disease (NAFLD), and TATA-box binding protein associated factor 9 (TAF9) has been reported to be involved in the regulation of fatty acid ß-oxidation. However, the function of TAF9 in NAFLD, as well as the mechanism by which TAF9 is regulated, remains unclear. In this study, we aimed to investigate the signaling mechanism underlying the involvement of TAF9 in NAFLD and the protective effect of the natural phenolic compound Danshensu (DSS) against NAFLD via the HDAC1/TAF9 pathway. An in vivo model of high-fat diet (HFD)-induced NAFLD and a palmitic acid (PA)-treated AML-12 cell model were developed. Pharmacological treatment with DSS significantly increased fatty acid ß-oxidation and reduced lipid droplet (LD) accumulation in NAFLD. TAF9 overexpression had the same effects on these processes both in vivo and in vitro. Interestingly, the protective effect of DSS was markedly blocked by TAF9 knockdown. Mechanistically, TAF9 was shown to be deacetylated by HDAC1, which regulates the capacity of TAF9 to mediate fatty acid ß-oxidation and LD accumulation during NAFLD. In conclusion, TAF9 is a key regulator in the treatment of NAFLD that acts by increasing fatty acid ß-oxidation and reducing LD accumulation, and DSS confers protection against NAFLD through the HDAC1/TAF9 pathway.

3.
Onco Targets Ther ; 14: 2917-2927, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33958878

RESUMO

BACKGROUND: Osteosarcoma (OS) is a malignant bone tumor with high metastatic potential. As a regulatory factor of apoptosis, TATA-box binding protein (TBP) associated factor 9B (TAF9B) is rarely studied in tumors. METHODS: We investigated the role and mechanism of TAF9B in OS cells by overexpression and knockdown. CCK8, colony formation, transwell, and flow cytometry analysis were performed to detect proliferation, migration, invasion, and apoptosis. RESULTS: TAF9B overexpression promotes the proliferation, migration, and invasion of OS cells, while TAF9B knockdown gives the opposite result. TAF9B inhibits apoptosis by upregulating Bcl-2 and downregulating Bax and Cleaved-caspase-3. Through starBase analysis, it was found that miR-7-5p can bind to the 3'UTR region of TAF9B, which is further confirmed by the dual luciferase reporter system assay. MiR-7-5p downregulates the expression of TAF9B in MG63 and U2OS cells. The proliferation and invasion of OS cells are inhibited after miR-7-5p mimics transfection and are promoted after miR-7-5p inhibitor transfection. TAF9B rescues the inhibitory effect of miR-7-5p on OS cells. TAF9B also activates the AKT/mTOR signaling pathway. CONCLUSION: According to our results, miR-7-5p inhibits the translation of TAF9B and then suppresses growth and metastasis through the AKT/mTOR signaling pathway in OS cells, thereby indicating the potential value of miR-7-5p and TAF9B as therapeutic targets for human OS.

4.
J Proteome Res ; 20(5): 2830-2838, 2021 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-33739118

RESUMO

Radiotherapy constitutes a major therapeutic modality for early management of breast cancer. Despite the high efficacy in treating breast cancer (BC), radiation resistance and tumor recurrence are major hurdles in breast cancer radiotherapy. Herein, stable isotope labeling by amino acids in cell culture (SILAC) was employed, along with the parallel-reaction monitoring (PRM)-based targeted quantitative proteomic method, to examine the differences in kinase protein expression in MCF-7 and MDA-MB-231 breast cancer cells and their corresponding radioresistant C6 and C5 clones. We quantified the relative protein expression levels of 300 and 281 kinases in C5/MDA-MB-231 and C6/MCF-7 pairs of breast cancer cells, respectively. We also showed that TAF9, which was one of the differentially expressed kinases, enhances radiation resistance in breast cancer cells. Moreover, a correlation analysis of gene expression suggested TAF9's role in upregulating the expression of genes involved with radioresistance. Overall, our study uncovered a large number of differentially expressed kinases accompanied with the acquisition of radioresistance and revealed a role of TAF9 in promoting radioresistance in breast cancer.


Assuntos
Neoplasias da Mama , Proteômica , Neoplasias da Mama/genética , Neoplasias da Mama/radioterapia , Linhagem Celular Tumoral , Feminino , Humanos , Recidiva Local de Neoplasia , Proteínas Quinases , Tolerância a Radiação/genética
5.
Cell Mol Life Sci ; 77(9): 1793-1810, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-31375868

RESUMO

The universal nine-amino-acid transactivation domains (9aaTADs) have been identified in numerous transcription activators. Here, we identified the conserved 9aaTAD motif in all nine members of the specificity protein (SP) family. Previously, the Sp1 transcription factor has been defined as a glutamine-rich activator. We showed by amino acid substitutions that the glutamine residues are completely dispensable for 9aaTAD function and are not conserved in the SP family. We described the origin and evolutionary history of 9aaTADs. The 9aaTADs of the ancestral Sp2 gene became inactivated in early chordates. We next discovered that an accumulation of valines in 9aaTADs inactivated their transactivation function and enabled their strict conservation during evolution. Subsequently, in chordates, Sp2 has duplicated and created new paralogs, Sp1, Sp3, and Sp4 (the SP1-4 clade). During chordate evolution, the dormancy of the Sp2 activation domain lasted over 100 million years. The dormant but still intact ancestral Sp2 activation domains allowed diversification of the SP1-4 clade into activators and repressors. By valine substitution in the 9aaTADs, Sp1 and Sp3 regained their original activator function found in ancestral lower metazoan sea sponges. Therefore, the vertebrate SP1-4 clade could include both repressors and activators. Furthermore, we identified secondary 9aaTADs in Sp2 introns present from fish to primates, including humans. In the gibbon genome, introns containing 9aaTADs were used as exons, which turned the Sp2 gene into an activator. Similarly, we identified introns containing 9aaTADs used conditionally as exons in the (SP family-unrelated) transcription factor SREBP1, suggesting that the intron-9aaTAD reservoir is a general phenomenon.


Assuntos
Evolução Molecular , Regulação da Expressão Gênica , Íntrons/genética , Fator de Transcrição Sp2/antagonistas & inibidores , Fator de Transcrição Sp2/genética , Valina/metabolismo , Sequência de Aminoácidos , Animais , Duplicação Gênica , Humanos , Filogenia , Homologia de Sequência , Fator de Transcrição Sp2/metabolismo , Ativação Transcricional , Valina/genética
6.
World J Biol Chem ; 6(3): 139-47, 2015 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-26322172

RESUMO

Deregulated c-Myc expression is a hallmark of many human cancers. We have recently identified a role of mammalian homolog of yeast SPT-ADA-GCN5-acetyltransferas (SAGA) complex component, SAGA-associated factor 29 (SGF29), in regulating the c-Myc overexpression. Here, we discuss the molecular nature of SFG29 in SPT3-TAF9-GCN5-acetyltransferase complex, a counterpart of yeast SAGA complex, and the mechanism through which the elevated SGF29 expression contribute to oncogenic potential of c-Myc in hepatocellularcarcinoma (HCC). We propose that the upstream regulation of SGF29 elicited by sex-determining region Y (Sry) is also augmented in HCC. We hypothesize that c-Myc elevation driven by the deregulated Sry and SGF29 pathway is implicated in the male specific acquisition of human HCCs.

7.
DNA Repair (Amst) ; 34: 9-17, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26282181

RESUMO

The GLI1 oncogene and p53 tumor suppressor gene function in an inhibitory loop that controls stem cell and tumor cell numbers. Since GLI1 and p53 both interact with the coactivator TATA Binding Protein Associated Factor 9 (TAF9), we hypothesized that competition between these transcription factors for TAF9 in cancer cells may contribute to the inhibitory loop and directly affect GLI1 function and cellular phenotype. We showed that TAF9 interacts with the oncogenic GLI family members GLI1 and GLI2 but not GLI3 in cell-free pull-down assays and with GLI1 in rhabdomyosarcoma and osteosarcoma cell lines. Removal of the TAF9-binding acidic alpha helical transactivation domain of GLI1 produced a significant reduction in the ability of GLI1 to transform cells. We then introduced a point mutation into GLI1 (L1052I) that eliminates TAF9 binding and a point mutation into GLI3 (I1510L) that establishes binding. Wild-type and mutant GLI proteins that bind TAF9 showed enhanced transactivating and cell transforming activity compared with those that did not. Therefore, GLI-TAF9 binding appears important for oncogenic activity. We then determined whether wild-type p53 down-regulates GLI function by sequestering TAF9. We showed that p53 binds TAF9 with greater affinity than does GLI1 and that co-expression of p53 with GLI1 or GLI2 down-regulated GLI-induced transactivation, which could be abrogated using mutant forms of GLI1 or p53. This suggests that p53 sequesters TAF9 from GLI1, which may contribute to inhibition of GLI1 activity by p53 and potentially impact therapeutic success of agents targeting GLI-TAF9 interactions in cancer.


Assuntos
Fatores Associados à Proteína de Ligação a TATA/metabolismo , Fator de Transcrição TFIID/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Sequência de Aminoácidos , Animais , Linhagem Celular , Linhagem Celular Tumoral , Transformação Celular Neoplásica , Humanos , Fatores de Transcrição Kruppel-Like/genética , Fatores de Transcrição Kruppel-Like/metabolismo , Dados de Sequência Molecular , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Ligação Proteica , Estrutura Terciária de Proteína , Ratos , Proteínas Recombinantes de Fusão/metabolismo , Fatores Associados à Proteína de Ligação a TATA/genética , Fator de Transcrição TFIID/genética , Fatores de Transcrição/química , Ativação Transcricional , Proteína Supressora de Tumor p53/genética , Proteína GLI1 em Dedos de Zinco , Proteína Gli2 com Dedos de Zinco , Proteína Gli3 com Dedos de Zinco
8.
J Cell Sci ; 127(Pt 17): 3830-9, 2014 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-25015288

RESUMO

Transcriptional activation of Notch signaling targets requires the formation of a ternary complex that involves the intracellular domain of the Notch receptor (NICD), DNA-binding protein Suppressor of Hairless [Su(H), RPBJ in mammals] and coactivator Mastermind (Mam). Here, we report that E(y)1/TAF9, a component of the transcription factor TFIID complex, interacts specifically with the NICD-Su(H)-Mam complex to facilitate the transcriptional output of Notch signaling. We identified E(y)1/TAF9 in a large-scale in vivo RNA interference (RNAi) screen for genes that are involved in a Notch-dependent mitotic-to-endocycle transition in Drosophila follicle cells. Knockdown of e(y)1/TAF9 displayed Notch-mutant-like phenotypes and defects in target gene and activity reporter expression in both the follicle cells and wing imaginal discs. Epistatic analyses in these two tissues indicated that E(y)1/TAF9 functions downstream of Notch cleavage. Biochemical studies in S2 cells demonstrated that E(y)1/TAF9 physically interacts with the transcriptional effectors of Notch signaling Su(H) and NICD. Taken together, our data suggest that the association of the NICD-Su(H)-Mastermind complex with E(y)1/TAF9 in response to Notch activation recruits the transcription initiation complex to induce Notch target genes, coupling Notch signaling with the transcription machinery.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/genética , Receptores Notch/metabolismo , Transdução de Sinais/genética , Fatores Associados à Proteína de Ligação a TATA/metabolismo , Fator de Transcrição TFIID/metabolismo , Animais , Drosophila melanogaster/genética , Drosophila melanogaster/crescimento & desenvolvimento , Fenótipo , Asas de Animais/metabolismo
9.
Front Oncol ; 4: 45, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24653979

RESUMO

As ovarian tumors progress, they undergo a process of dedifferentiation, allowing adaptive changes in growth and morphology that promote metastasis and chemoresistance. Herein, we outline a hypothesis that TATA-box binding protein associated factors (TAFs), which compose the RNA Polymerase II initiation factor, TFIID, contribute to regulation of dedifferentiation states in ovarian cancer. Numerous studies demonstrate that TAFs regulate differentiation and proliferation states; their expression is typically high in pluripotent cells and reduced upon differentiation. Strikingly, TAF2 exhibits copy number increases or mRNA overexpression in 73% of high-grade serous ovarian cancers (HGSC). At the biochemical level, TAF2 directs TFIID to TATA-less promoters by contact with an Initiator element, which may lead to the deregulation of the transcriptional output of these tumor cells. TAF4, which is altered in 66% of HGSC, is crucial for the stability of the TFIID complex and helps drive dedifferentiation of mouse embryonic fibroblasts to induced pluripotent stem cells. Its ovary-enriched paralog, TAF4B, is altered in 26% of HGSC. Here, we show that TAF4B mRNA correlates with Cyclin D2 mRNA expression in human granulosa cell tumors. TAF4B may also contribute to regulation of tumor microenvironment due to its estrogen-responsiveness and ability to act as a cofactor for NFκB. Conversely, TAF9, a cofactor for p53 in regulating apoptosis, may act as a tumor suppressor in ovarian cancer, since it is downregulated or deleted in 98% of HGSC. We conclude that a greater understanding of mechanisms of transcriptional regulation that execute signals from oncogenic signaling cascades is needed in order to expand our understanding of the etiology and progression of ovarian cancer, and most importantly to identify novel targets for therapeutic intervention.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA