Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Adv Sci (Weinh) ; : e2405459, 2024 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-39206796

RESUMO

Hepatocellular carcinomas (HCCs) are characterized by a vast spectrum of somatic copy number alterations (CNAs); however, their functional relevance is largely unknown. By performing a genome-wide survey on prognosis-associated focal CNAs in 814 HCC patients by an integrative computational framework based on transcriptomic data, genomic amplification is identified at 8q24.13 as a promising candidate. Further evidence is provided that the 8q24.13 amplification-driven overexpression of Rab GTPase activating protein TBC1D31 exacerbates HCC growth and metastasis both in vitro and in vivo through activating Epidermal growth factor receptor (EGFR) signaling. Mechanistically, TBC1D31 acts as a Rab GTPase activating protein to catalyze GTP hydrolysis for Rab22A and then reduces the Rab22A-mediated endolysosomal trafficking and degradation of EGFR. Notably, overexpression of TBC1D31 markedly increases the resistance of HCC cells to lenvatinib, whereas inhibition of the TBC1D31-EGFR axis can reverse this resistance phenotype. This study highlights that TBC1D31 at 8q24.13 is a new critical oncogene, uncovers a novel mechanism of EGFR activation in HCC, and proposes the potential strategies for treating HCC patients with TBC1D31 amplification or overexpression.

2.
Clin Genet ; 104(6): 679-685, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37468454

RESUMO

Congenital anomalies of the kidney and urinary tract (CAKUT) is the leading cause of chronic kidney disease in the first three decades of life. Until now, more than 180 monogenic causes of isolated or syndromic CAKUT have been described. In addition, copy number variants (CNV) have also been implicated, however, all of these causative factors only explain a small fraction of patients with CAKUT, suggesting that additional yet-to-be-discovered novel genes are present. Herein, we report three siblings (two of them are monozygotic twin) of a consanguineous family with CAKUT. Whole-exome sequencing identified a homozygous variant in TBC1D31. Three dimensional protein modeling as well as molecular dynamics simulations predicted it as pathogenic. We therefore showed for the first time an association between a homozygous TBC1D31 variant with CAKUT in humans, expanding its genetic spectrum.


Assuntos
Sistema Urinário , Anormalidades Urogenitais , Humanos , Consanguinidade , Rim/anormalidades , Anormalidades Urogenitais/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA