Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 178
Filtrar
1.
Int J Gen Med ; 17: 3745-3753, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39219669

RESUMO

Purpose: Tick-borne encephalitis virus (TBEV) infections result in severe central nervous system diseases in humans across Asia and Europe. In China, cases of tick-borne encephalitis are primarily caused by the Far East subtype of TBEV, which exhibits a distinct disease course compared to other extensively studied subtypes. However, there is limited knowledge regarding the nucleic acid and serological diagnostic characteristics of patients infected with the TBEV in China, which is the focus of investigation in the present study. Methods: This study established a TaqMan qPCR approach to detect TBEV RNA in the serum with optimal specificity, sensitivity, and precision. Using TaqMan qPCR and ELISA assay for TBEV IgM detection, serum samples from 63 hospitalized patients bitten by ticks in Northeast China were investigated for diagnostic characteristics. Results: Twenty-five patients were positive for viral RNA; nineteen patients were positive for IgM, and nine were positive for both viral RNA and IgM. Through comparative analysis, TBEV RNA copies were negatively correlated with the virus incubation period. IgM levels were positively correlated with the clinical symptom scores of patients. The severity of clinical symptoms and the length after the tick bite could be used to predict the IgM occurrence. Furthermore, IgM levels and viral RNA copies were not correlated in double-positive patients. Conclusion: Both nucleic acid and serological detection methods exhibited distinct windows for detecting TBEV infection, with some overlap, and were associated with specific correlated factors. This study provided novel insights into the diagnosis and course of TBEV-induced tick-borne encephalitis in China.

2.
Vaccines (Basel) ; 12(9)2024 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-39340104

RESUMO

(1) Background: Horses infected by a tick-borne encephalitis virus (TBEV) can develop clinically apparent infections. In humans, vaccination is the most effective preventive measure, while a vaccine is not available for horses. The objective of this study was to describe the immune response in horses after a TBEV vaccination with a human vaccine. (2) Materials and Methods: Seven healthy horses were randomised to a treatment or a control group in a stratified fashion based on TBEV-IgG concentrations on day -4. The treatment group (n = 4) was intramuscularly vaccinated using an inactivated human TBEV vaccine on days 0 and 28; the control group (n = 3) did not receive an injection. A clinical examination and blood sampling were performed on day -4, 0, 2, 4, 6, 8, 10, 14, 28, 30, 32, 34, 36, 38, 43, 56, 84, and 373. A linear mixed model analysis was used to compare IgG and IgM concentrations, neutralising antibody (nAb) titres, leucocyte count, serum amyloid A (SAA), and fibrinogen and globulin concentrations between the groups and time points. (3) Results: The clinical examination was normal in all horses at all time points. There were no significant changes in SAA, globulin, and fibrinogen concentrations and leucocyte count between the groups or time points (all p > 0.05). There was no significant increase in IgG, IgM, or nAb titres in the control group over time (all p > 0.05). In the vaccination group, there was a significant increase in IgG concentration and nAb titres after the second vaccination (p < 0.0001). There was no significant increase in IgM antibodies after the TBEV vaccination (all p > 0.05). One horse in the vaccination group had an IgM concentration above the laboratory reference on day 10. (4) Conclusions: The human TBEV vaccine did not have side effects when used in healthy horses in this study. A significant rise in TBEV-specific IgG antibodies and nAbs after the second vaccination was observed. However, IgG and nAb titres have been shown to decrease within 1 year after vaccination. The results of this study indicate that a vaccination with a human vaccine only induces a mild rise in IgM antibodies and only in previously naive horses. With no significant changes to inflammatory parameters in the vaccinated horses, it remains unclear whether vaccination with the human vaccine leads to protective immunity.

3.
J Med Virol ; 96(8): e29843, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39092814

RESUMO

Tick-borne encephalitis (TBE) virus is the most prevalent tick-transmitted orthoflavivirus in Europe. Due to the nonspecific nature of its symptoms, TBE is primarily diagnosed by ELISA-based detection of specific antibodies in the patient serum. However, cross-reactivity between orthoflaviviruses complicates the diagnosis. Specificity issues may be mitigated by serum neutralization assays (SNT), although the handling of clinically relevant orthoflaviviruses requires biosafety level (BSL) 3 conditions and they have highly divergent viral kinetics and cell tropisms. In the present study, we established a reporter virus particle (RVP)-based SNT in which the infectivity is measured by luminescence and that can be performed under BSL-2 conditions. The RVP-based SNT for TBEV exhibited a highly significant correlation with the traditional virus-based SNT (R2 = 0.8637, p < 0.0001). The RVP-based assay demonstrated a sensitivity of 92.3% (95% CI: 79.7%-97.4%) and specificity of 100% (95% CI: 81.6%-100%). We also tested the cross-reactivity of serum samples in RVP-based assays against other orthoflaviviruses (yellow fever virus, dengue virus type 2, Zika virus, West Nile virus and Japanese encephalitis virus). Interestingly, all serum samples which had tested TBEV-positive by ELISA but negative by RVP-based SNT were reactive for antibodies against other orthoflaviviruses. Thus, the RVP-based seroneutralization assay provides an added value in clinical diagnostics as well as in epidemiological studies.


Assuntos
Anticorpos Antivirais , Reações Cruzadas , Vírus da Encefalite Transmitidos por Carrapatos , Encefalite Transmitida por Carrapatos , Ensaio de Imunoadsorção Enzimática , Testes de Neutralização , Sensibilidade e Especificidade , Vírus da Encefalite Transmitidos por Carrapatos/imunologia , Humanos , Anticorpos Antivirais/sangue , Testes de Neutralização/métodos , Encefalite Transmitida por Carrapatos/diagnóstico , Encefalite Transmitida por Carrapatos/virologia , Ensaio de Imunoadsorção Enzimática/métodos , Vírion/imunologia , Anticorpos Neutralizantes/sangue , Anticorpos Neutralizantes/imunologia , Animais
4.
Emerg Microbes Infect ; 13(1): 2317909, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-39133062

RESUMO

Tick-borne encephalitis virus (TBEV) infection may cause acute central nervous system inflammation varying in clinical manifestations and severity. A possible correlation of TBEV-specific antibody and cell-mediated immune responses, shortly after infection, with clinical manifestations, severity and long-term outcome has been poorly investigated. In a cohort of thirty early tick-borne encephalitis (TBE) patients, we assessed the magnitude, specificity and functional properties of TBEV-specific T-cell and antibody responses. These responses early during disease were assessed in view of clinical manifestations, severity and long-term outcome. TBEV-specific T-cell responses to C, E, NS1, and NS5 proteins were significantly lower in patients with severe acute illness than in patients with mild TBE. Lower T-cell responses to E, NS1, and NS5 proteins also correlated with the development of meningoencephalomyelitis. Virus-specific antibody titres early after infection did not correlate with disease severity, clinical manifestations, or long-term outcome in this study, possibly due to the small number of patients of which matching serum and peripheral blood mononuclear cells were available. The findings suggest that virus-specific T cells afford a certain degree of protection against the development of severe TBEV-induced disease.


Assuntos
Anticorpos Antivirais , Vírus da Encefalite Transmitidos por Carrapatos , Encefalite Transmitida por Carrapatos , Linfócitos T , Encefalite Transmitida por Carrapatos/imunologia , Encefalite Transmitida por Carrapatos/virologia , Vírus da Encefalite Transmitidos por Carrapatos/imunologia , Humanos , Linfócitos T/imunologia , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Masculino , Feminino , Pessoa de Meia-Idade , Adulto , Índice de Gravidade de Doença , Idoso , Proteínas não Estruturais Virais/imunologia
5.
Infection ; 2024 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-39177883

RESUMO

OBJECTIVES: Tick-borne encephalitis (TBE) is an infection caused by the tick-borne encephalitis virus (TBEV) that can lead to symptoms of central nervous system inflammation. There are five subtypes of TBEV, three of which - European, Siberian and Far Eastern - occur in Europe. As it is thought that different subtype infections exhibit varying clinical courses and outcomes, serological differentiation of the virus subtypes is clearly important. However, to date, this has proved difficult to achieve. METHODS: An ELISA format was developed based on TBE virus NS1 antigen against the European, Siberian and Far Eastern subtype. The three NS1 antigens were biotechnologically produced in a human cell line and used for ELISA coating. Sera from German (European subtype) and Russian (Siberian and/or Far Eastern subtypes) TBE patients with positive TBEV IgG were used to test the reactivity against these three NS1 antigens. RESULTS: Testing of 23 German and 32 Russian TBEV IgG-positive sera showed that the ELISA was able to differentiate between TBEV European subtype and TBEV Siberian and Far Eastern subtype infections. CONCLUSIONS: In geographical areas where two or more TBEV subtype infections can occur, the NS1-IgG ELISA developed here constitutes an important diagnostic tool to differentiate between European subtype infections and Siberian/Far Eastern subtype infections and to use the new assay for epidemiological studies to clarify the importance of particular subtype infections in an area. Consequently, it may help to better describe and anticipate the clinical courses and outcomes of particular TBEV subtype infections.

6.
Viruses ; 16(7)2024 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-39066217

RESUMO

Tick-borne Encephalitis (TBE) is a zoonotic disease caused by the Tick-borne Encephalitis virus (TBEV), which affects the central nervous system of both humans and animals. Currently, there is no specific therapy for patients with TBE, with symptomatic treatment being the primary approach. In this study, the effects of minocycline (MIN), which is a kind of tetracycline antibiotic, on TBEV propagation and cellular protection in TBEV-infected cell lines were evaluated. Indirect immunofluorescence, virus titers, and RT-qPCR results showed that 48 h post-treatment with MIN, TBEV replication was significantly inhibited in a dose-dependent manner. In addition, the inhibitory effect of MIN on different TBEV multiplicities of infection (MOIs) in Vero cells was studied. Furthermore, the transcriptomic analysis and RT-qPCR results indicate that after incubation with MIN, the levels of TBEV and CALML4 were decreased, whereas the levels of calcium channel receptors, such as RYR2 and SNAP25, were significantly increased. MIN also regulated MAPK-ERK-related factors, including FGF2, PDGFRA, PLCB2, and p-ERK, and inhibited inflammatory responses. These data indicate that administering MIN to TBEV-infected cells can reduce the TBEV level, regulate calcium signaling pathway-associated proteins, and inhibit the MAPK-ERK signaling pathway and inflammatory responses. This research offers innovative strategies for the advancement of anti-TBEV therapy.


Assuntos
Vírus da Encefalite Transmitidos por Carrapatos , Minociclina , Replicação Viral , Animais , Vírus da Encefalite Transmitidos por Carrapatos/efeitos dos fármacos , Vírus da Encefalite Transmitidos por Carrapatos/fisiologia , Minociclina/farmacologia , Chlorocebus aethiops , Células Vero , Replicação Viral/efeitos dos fármacos , Humanos , Antivirais/farmacologia , Encefalite Transmitida por Carrapatos/virologia , Encefalite Transmitida por Carrapatos/tratamento farmacológico , Linhagem Celular , Transdução de Sinais/efeitos dos fármacos
7.
Viruses ; 16(7)2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-39066195

RESUMO

Omsk hemorrhagic fever virus (OHFV) is a member of the tick-borne encephalitis virus (TBEV) complex of the Flaviviridae family. Currently, there are no data on the cross-reactivity of antibodies to the NS1 proteins of OHFV and TBEV. Such data are of major interest for monitoring viral encephalitis of unknown etiology due to the increasing geographical distribution of OHFV. In this study, a recombinant OHFV NS1 protein was produced using the Escherichia coli expression system and purified. The recombinant OHFV NS1 protein was recognized by specific mice immune ascetic fluids to the native OHFV NS1 protein. A Western blot analysis and ELISA of the recombinant NS1 proteins of OHFV and TBEV were used to study the cross-reactivity of antibodies from immune ascites fluid obtained from OHFV-infected mice and mAbs against TBEV NS1. Anti-TBEV NS1 mouse monoclonal antibodies (mAbs) have been shown to not be cross-reactive to the OHFV NS1 protein. Sera from patients with confirmed tick-borne encephalitis (TBE) were examined by ELISA using recombinant OHFV NS1 and TBEV NS1 proteins as antigens. It was shown for the first time that cross-reactive antibodies to the OHFV NS1 protein were not detected in the sera of TBE patients, whereas the sera contained antibodies to the TBEV NS1 protein.


Assuntos
Anticorpos Antivirais , Reações Cruzadas , Vírus da Encefalite Transmitidos por Carrapatos , Encefalite Transmitida por Carrapatos , Proteínas Recombinantes , Proteínas não Estruturais Virais , Proteínas não Estruturais Virais/imunologia , Encefalite Transmitida por Carrapatos/imunologia , Encefalite Transmitida por Carrapatos/virologia , Encefalite Transmitida por Carrapatos/sangue , Reações Cruzadas/imunologia , Vírus da Encefalite Transmitidos por Carrapatos/imunologia , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Animais , Humanos , Camundongos , Proteínas Recombinantes/imunologia , Proteínas Recombinantes/genética , Ensaio de Imunoadsorção Enzimática , Escherichia coli/genética , Camundongos Endogâmicos BALB C , Feminino
8.
J Mol Model ; 30(8): 295, 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39083139

RESUMO

CONTEXT: Flaviviruses cause severe encephalitic or hemorrhagic diseases in humans. Its members, Kyasanur forest disease virus (KFDV) and Alkhumra hemorrhagic fever virus (ALKV), cause hemorrhagic fever and are prevalent in India and Saudi Arabia, respectively, while the tick-borne encephalitis virus (TBEV) causes a dangerous encephalitic infection in Europe and Asia. However, little information is available about the targets of immune responses for these deadly viruses. Here, we predict potential antigenic peptide epitopes of viral envelope protein for inducing a cell-mediated and humoral immune response. METHODS: Using the Immune Epitope Database and Analysis Resource (IEDB-AR), we identified 13 MHC-I and two MHC-II dominant conserved epitopes in KFDV and ALKV and six MHC-I and three MHC-II epitopes in TBEV envelope proteins. Parallelly, we also predicted B-cell linear and discontinuous envelope protein epitopes for these viruses. Interestingly, the epitopes are conserved in all three viral envelope proteins. Further, the discontinuous epitopes are structurally compared with the available DENV, ZIKV, WNV, TBEV, and LIV envelope protein antibody structures. Overall structural comparison analyses highlight (i) lateral ridge epitope in the ED-III domain of E protein, and (ii) envelope dimer epitope (EDE) could be targeted for developing potent vaccine candidates as well as therapeutic antibody production. Moreover, existing structural and biochemical functions of the same epitopes in homologous viruses are predicted to have a reduced antibody-dependent enhancement (ADE) effect on flaviviral infection.


Assuntos
Flavivirus , Flavivirus/imunologia , Humanos , Proteínas do Envelope Viral/imunologia , Proteínas do Envelope Viral/química , Biologia Computacional , Sequência de Aminoácidos , Epitopos de Linfócito B/imunologia , Epitopos de Linfócito B/química , Homologia de Sequência de Aminoácidos , Epitopos/imunologia , Epitopos/química , Modelos Moleculares , Vírus da Encefalite Transmitidos por Carrapatos/imunologia
9.
Pathogens ; 13(7)2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39057813

RESUMO

Ticks are ectoparasites of a wide range of animals and are important vectors of numerous pathogens affecting humans, livestock, and pets. This study investigates possible correlations between selected factors, altitude, soil pH, and a factor called 'amount' (number of ticks examined in pooled samples) on the occurrence of I. ricinus ticks positive for selected tick-borne microorganisms. Questing I. ricinus ticks were collected in 2016 and 2017 across various altitudes, at two mountain ranges in central Slovakia. Tick pools were screened for the presence of Anaplasma phagocytophilum, Borrelia burgdorferi sensu lato (Bbsl), Babesia/Theileria spp., Rickettsia spp., and tick-borne encephalitis virus (TBEV) using molecular methods. Regression analysis was employed to evaluate relationships between selected factors and the occurrence of vector-borne microorganisms. This study revealed a statistically significant influence of altitude on the occurrence of A. phagocytophilum; increasing altitude of the sampling site was associated with increased probability of pathogen occurrence. For Babesia/Theileria spp., neither altitude nor soil pH significantly affected pathogen occurrence. The occurrence of Bbsl was notably impacted by both altitude and soil pH; higher altitudes were associated with a decreased probability of pathogen presence, whereas higher soil pH increased the likelihood of pathogen occurrence. The presence of Rickettsia in a pooled sample was not affected by altitude and soil pH, but the 'amount' factor was a significant predictor, increasing the probability of pathogen detection. Neither altitude nor soil pH had a significant impact on TBEV occurrence. The regression models showed moderate goodness-of-fit levels to the data, underscoring their utility in examining the role of altitude and soil pH on pathogen occurrence. However, they explained only a small portion of the overall variance in pathogen occurrence, indicating the presence of other significant factors not covered in this study.

10.
Int J Nanomedicine ; 19: 3907-3917, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38708183

RESUMO

Background: As highlighted by recent pandemic outbreaks, antiviral drugs are crucial resources in the global battle against viral diseases. Unfortunately, most antiviral drugs are characterized by a plethora of side effects and low efficiency/poor bioavailability owing to their insolubility. This also applies to the arylnaphthalide lignin family member, diphyllin (Diph). Diph acts as a vacuolar ATPase inhibitor and has been previously identified as a promising candidate with broad-spectrum antiviral activity. However, its physicochemical properties preclude its efficient administration in vivo, complicating preclinical testing. Methods: We produced human recombinant H- ferritin (HsaFtH) and used it as a delivery vehicle for Diph encapsulation through pH-mediated reversible reassembly of HsaFtH. Diph nanoformulation was subsequently thoroughly characterized and tested for its non-target cytotoxicity and antiviral efficiency using a panel of pathogenic viral strain. Results: We revealed that loading into HsaFtH decreased the undesired cytotoxicity of Diph in mammalian host cells. We also confirmed that encapsulated Diph exhibited slightly lower antiviral activity than free Diph, which may be due to the differential uptake mechanism and kinetics of free Diph and Diph@HsaFtH. Furthermore, we confirmed that the antiviral effect was mediated solely by Diph with no contribution from HsaFtH. Conclusion: It was confirmed that HsaFtH is a suitable vehicle that allows easy loading of Diph and production of highly homogeneous nanoparticles dispersion with promising broad-spectrum antiviral activity.


Assuntos
Antivirais , Lignanas , Animais , Humanos , Antivirais/farmacologia , Antivirais/química , Antivirais/farmacocinética , Interações Hidrofóbicas e Hidrofílicas , Nanopartículas/química , Proteínas Recombinantes/química , ATPases Vacuolares Próton-Translocadoras/antagonistas & inibidores , ATPases Vacuolares Próton-Translocadoras/metabolismo
11.
Vector Borne Zoonotic Dis ; 24(7): 443-450, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38593456

RESUMO

Objectives: Tick-borne encephalitis virus Siberian subtype (TBEV-Sib) and Omsk hemorrhagic fever virus (OHFV) are causative agents of natural focal infections in Western Siberia, Russia. The distribution of TBEV phylogenetic lineages and OHFV in the Kemerovo Region of Western Siberia remains poorly investigated. Methods: The phylogenetic analyses of fragment genome sequences 26 flaviviruses identified in 2019 were performed, and the amino acid variation was determined to reveal to which clusteron they belong. The age of Baltic and Asian lineages of the TBEV-Sib was calculated for Kemerovo District and Region, respectively. Results: Twenty-five isolates were members of three TBEV-Sib phylogenetic lineages: Baltic (48%), Asian (36%), and East Siberian (16%). The Baltic lineage's eastern boundary is commonly thought to be in the Novosibirsk Region, but our data suggest that it may reach further east. Analysis of the Baltic lineage clusteron structure showed that the isolates found are unique (6) or belong to clusteron-founder 3D (1) and derived clusteron 3O (5). Based on the age of 3O clusteron, Baltic lineage could have appeared in the Kemerovo Region by the late 1970s. One of the isolated viruses turned out to be the OHFV of the first subtype and not to belong to any known clusteron. This finding is the first known detection of the virus outside the endemic area of Russia. Given the recent discovery of OHFV in Kazakhstan, it can be assumed that the area of this virus distribution is much wider than previously thought. Conclusions: This report provides insights into the population structure of TBEV and OHFV, which may be helpful for epidemiological investigation and surveillance of the viruses.


Assuntos
Vírus da Encefalite Transmitidos por Carrapatos , Filogenia , Vírus da Encefalite Transmitidos por Carrapatos/genética , Vírus da Encefalite Transmitidos por Carrapatos/isolamento & purificação , Vírus da Encefalite Transmitidos por Carrapatos/classificação , Sibéria/epidemiologia , Encefalite Transmitida por Carrapatos/virologia , Encefalite Transmitida por Carrapatos/epidemiologia , Animais , Federação Russa/epidemiologia , Humanos
12.
Viruses ; 16(3)2024 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-38543809

RESUMO

Wild rodents are considered to be one of the most important TBEV-amplifying reservoir hosts; therefore, they may be suitable for foci detection studies. To investigate the effectiveness of viral RNA detection in wild rodents for suspected TBEV foci confirmation, we trapped small rodents (n = 139) in various locations in Lithuania where TBEV was previously detected in questing ticks. Murine neuroblastoma Neuro-2a cells were inoculated with each rodent sample to maximize the chances of detecting viral RNA in rodent samples. TBEV RNA was detected in 74.8% (CI 95% 66.7-81.1) of the brain and/or internal organ mix suspensions, and the prevalence rate increased significantly following sample cultivation in Neuro-2a cells. Moreover, a strong correlation (r = 0.88; p < 0.05) was found between the average monthly air temperature of rodent trapping and the TBEV RNA prevalence rate in cell culture isolates of rodent suspensions, which were PCR-negative before cultivation in cell culture. This study shows that wild rodents are suitable sentinel animals to confirm TBEV foci. In addition, the study results demonstrate that sample cultivation in cell culture is a highly efficient method for increasing TBEV viral load to detectable quantities.


Assuntos
Vírus da Encefalite Transmitidos por Carrapatos , Encefalite Transmitida por Carrapatos , Ixodes , Animais , Camundongos , Encefalite Transmitida por Carrapatos/epidemiologia , Encefalite Transmitida por Carrapatos/veterinária , Encefalite Transmitida por Carrapatos/diagnóstico , Roedores , Vírus da Encefalite Transmitidos por Carrapatos/genética , Prevalência , Lituânia/epidemiologia , RNA Viral/genética
13.
Pathogens ; 13(3)2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38535574

RESUMO

BACKGROUND: Tick-borne encephalitis (TBE) is a disease with mandatory declaration in the EU since 2012. Information regarding the seroprevalence of the disease across Romania is limited, and only sporadic cases are rarely reported. We aimed to identify new areas of TBEV infection in different counties of Romania. METHODS: We conducted a serosurvey assessing the immune response to TBEV infection in adult populations from rural areas in different counties of the country. Seropositivity was defined by a positive TBEV IgM/IgG ELISA test and confirmed by serum neutralization. RESULTS: We collected 1116 samples from 15 different localities in 10 counties (divided into endemic/border/non-endemic counties) across Romania. Overall, 26 (2.3%) of the samples were tested positive using the TBEV ELISA assay in six counties. In those counties, 3.7% of sera were positive, varying from 1.4% to 6.9% per county. After performing the neutralization assay, seven (0.6%) samples were confirmed positive, interestingly all from one site in Sibiu County, where the seroprevalence was 9.7%. CONCLUSIONS: The identification of positive serum samples in serosurveys appears to rely on the discovery of TBEV microfoci. Further serological surveys should be conducted in Romania, especially after the identification of positive TBEV patients presenting for medical care.

14.
J Med Virol ; 96(4): e29522, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38533889

RESUMO

The tick-borne encephalitis virus (TBEV) serocomplex includes several medically important flavivirus members endemic to Europe, Asia, and North America, which can induce severe neuroinvasive or viscerotropic diseases with unclear mechanisms of pathogenesis. Langat virus (LGTV) shares a high sequence identity with TBEV but exhibits lower pathogenic potential in humans and serves as a model for virus-host interactions. In this study, we demonstrated that LGTV infection inhibits the activation of gp130/JAK/STAT (Janus kinases (JAK) and signal transducer and activator of transcription (STAT)) signaling, which plays a pivotal role in numerous biological processes. Our data show that the LGTV-infected cells had significantly lower phosphorylated STAT3 (pSTAT3) protein upon oncostatin M (OSM) stimulation than the mock-infected control. LGTV infection blocked the nuclear translocation of STAT3 without a significant effect on total STAT3 protein level. LGTV inhibited JAK1 activation and reduced gp130 protein expression in infected cells, with the viral NS5 protein mediating this effect. TBEV infection also reduces gp130 level. On the other hand, pretreatment of Vero cells with OSM significantly reduces LGTV replication, and STAT1/STAT2 knockdown had little effect on OSM-mediated antiviral effect, which suggests it is independent of STAT1/STAT2 and, instead, it is potentially mediated by STAT3 signlaing. These findings shed light on the LGTV and TBEV-cell interactions, offering insights for the future development of antiviral therapeutics and improved vaccines.


Assuntos
Fenômenos Biológicos , Vírus da Encefalite Transmitidos por Carrapatos , Animais , Chlorocebus aethiops , Humanos , Janus Quinases/metabolismo , Células Vero , Receptor gp130 de Citocina/metabolismo , Antivirais/metabolismo
16.
Nano Lett ; 24(9): 2821-2830, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38407052

RESUMO

Single-virus tracking provides a powerful tool for studying virus infection with high spatiotemporal resolution. Quantum dots (QDs) are used to label and track viral particles due to their brightness and photostability. However, labeling viral particles with QDs is not easy. We developed a new method for labeling viral particles with QDs by using the Strep-tag II/streptavidin system. In this method, QDs were site-specifically ligated to viral proteins in live cells and then packaged into viral-like particles (VLPs) of tick-borne encephalitis virus (TBEV) and Ebola virus during viral assembly. With TBEV VLP-QDs, we tracked the clathrin-mediated endocytic entry of TBEV and studied its intracellular dynamics at the single-particle level. Our Strep-tag II/streptavidin labeling procedure eliminates the need for BirA protein expression or biotin addition, providing a simple and general method for site-specifically labeling viral particles with QDs for single-virus tracking.


Assuntos
Oligopeptídeos , Pontos Quânticos , Vírus , Estreptavidina , Vírion
17.
Vaccines (Basel) ; 12(1)2024 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-38276677

RESUMO

Tick-borne encephalitis (TBE) is a serious neurological disease caused by TBE virus (TBEV). Because antiviral treatment options are not available, vaccination is the key prophylactic measure against TBEV infections. Despite the availability of effective vaccines, cases of vaccination breakthrough infections have been reported. The multienzymatic non-structural protein 3 (NS3) of orthoflaviviruses plays an important role in polyprotein processing and virus replication. In the present study, we evaluated NS3 of TBEV as a potential vaccine target for the induction of protective immunity. To this end, a recombinant modified vaccinia virus Ankara that drives the expression of the TBEV NS3 gene (MVA-NS3) was constructed. MVA-NS3 was used to immunize C57BL/6 mice. It induced NS3-specific immune responses, in particular T cell responses, especially against the helicase domain of NS3. However, MVA-NS3-immunized mice were not protected from subsequent challenge infection with a lethal dose of the TBEV strain Neudoerfl, indicating that in contrast to immunity to prME and NS1, NS3-specific immunity is not an independent correlate of protection against TBEV in this mouse model.

18.
Vaccine ; 42(4): 745-752, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38242736

RESUMO

Inactivated vaccines, such as tick-borne-encephalitis-virus-(TBEV) vaccine, have been discussed as less immunogenic in elderly and in immunocompromised patients. In this controlled cross-sectional cohort study, the antibody and cellular responses after TBEV-vaccination were investigated in 36 rheumatoid arthritis (RA) patients and 112 healthy controls (HC) by evaluating IgG-anti-TBEV concentration, neutralization and relative avidity index (RAI). Cellular reactivity was assessed by IFNgamma-producing spot-forming-units (SFU) by ELISPOT assay and flow cytometry. RA patients showed lower IgG-anti-TBEV compared to HC, which were influenced by age at and time since last TBEV vaccination and disease duration. High-responders regarding cellular immunity and avidity were less frequent in RA compared to HC. RA patients who had received booster vaccinations were more likely to demonstrate higher IgG-anti-TBEV responses compared to those who had not. In conclusion, RA patients showed a negative effect of age on anti-TBEV-IgG and immunological benefits of timely booster vaccination are suggested.


Assuntos
Vírus da Encefalite Transmitidos por Carrapatos , Encefalite Transmitida por Carrapatos , Carrapatos , Humanos , Idoso , Animais , Anticorpos Antivirais , Estudos Transversais , Vacinação , Imunidade Celular , Imunoglobulina G , Encefalite Transmitida por Carrapatos/prevenção & controle
19.
Emerg Infect Dis ; 30(2): 341-344, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38270164

RESUMO

Tick-borne encephalitis was limited to northeast portions of Italy. We report in Lombardy, a populous region in the northwest, a chamois displaying clinical signs of tickborne encephalitis virus that had multiple virus-positive ticks attached, as well as a symptomatic man. Further, we show serologic evidence of viral circulation in the area.


Assuntos
Encefalite Transmitida por Carrapatos , Encefalite Viral , Infecções por Flavivirus , Masculino , Humanos , Encefalite Transmitida por Carrapatos/epidemiologia , Itália/epidemiologia
20.
Front Microbiol ; 14: 1314538, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38156013

RESUMO

Introduction: Tick-borne encephalitis (TBE) is an emerging vector-borne and food-borne disease caused by the tick-borne encephalitis virus (TBEV; Orthoflavivirus encephalitidis), with a distribution spanning the Eurasian continent. Despite its significant public health impact in various European regions, TBE remains largely underdiagnosed in Serbia due to limited awareness and diagnostic challenges. In response to this, our study aimed to comprehensively assess TBEV exposure in individuals infested with ticks and to identify potential TBEV foci within Serbia. Materials and methods: From 2019 to 2021, we conducted an observational study involving 450 patients who reported tick infestations. Results: Our demographic analysis revealed a median age of 38 years, with a slight male predominance among the participants. We documented tick infestations in 38 municipalities across 14 districts of Serbia, with a notable concentration in proximity to Fruska Gora Mountain. The ticks most frequently removed were Ixodes ricinus, with nymphs and adult females being the predominant stages. On average, nymphs were removed after about 27.1 hours of feeding, while adult females remained attached for approximately 44.4 hours. Notably, we found age as a significant predictor of infestation time for both nymphs and adult females. Furthermore, we detected TBEV-neutralizing antibodies in 0.66% of the serum samples, shedding light on potential TBEV foci, particularly in Fruska Gora Mountain and other regions of Serbia. Conclusion: Our study emphasizes the urgent need for active TBE surveillance programs, especially in areas suspected of hosting TBEV foci, in order to assess the true TBE burden, identify at-risk populations, and implement effective preventive measures.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA