Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
1.
Neuropeptides ; 107: 102460, 2024 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-39142164

RESUMO

The destruction of the blood-brain barrier and damage to the gastrointestinal mucosa after intracerebral hemorrhage (ICH) are important reasons for its high disability and mortality rates. However, the exact etiology is not yet clear. In addition, there are currently no effective treatments for improving cerebral edema and gastric mucosal damage after ICH. Trefoil factor 1 (TFF1) is a secretory protein that plays a crucial role in maintaining the integrity and barrier function of the gastric mucosa, and it has been reported to have a protective effect on brain damage induced by various causes. This study utilized a rat model of ICH induced by type IV collagenase was utilized, and intervened with recombinant TFF1 protein from an external institute to investigate the protective mechanisms of TFF1 against brain edema and gastric mucosal damage after ICH. The results demonstrated that TFF1 alleviated the neurological function and gastric mucosal damage in the rat model of ICH induced by type IV collagenase. TFF1 may ensure the integrity of the blood-brain and gastric mucosal barriers by regulating the EGFR (epidermal growth factor receptor)/Src (non-receptor tyrosine kinase)/FAK (focal adhesion kinase) pathway. Clearly, the disruption of the blood-brain barrier and the destruction of the gastric mucosal barrier are key pathological features of ICH, and TFF1 can improve the progression of blood-brain barrier and gastric mucosal barrier disruption in ICH by regulating the EGFR/Src/FAK pathway. Therefore, TFF1 may be a potential target for the treatment of ICH.

2.
Cancer Lett ; 598: 217097, 2024 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-38964729

RESUMO

Gemcitabine is the first-line treatment option for patients with locally advanced or metastatic pancreatic ductal adenocarcinoma (PDAC). However, the frequent adoption of resistance to gemcitabine by cancer cells poses a significant challenge in treating this aggressive disease. In this study, we focused on analyzing the role of trefoil factor 1 (TFF1) in gemcitabine resistance in PDAC. Analysis of PDAC TCGA and cell line datasets indicated an enrichment of TFF1 in the gemcitabine-resistant classical subtype and suggested an inverse correlation between TFF1 expression and sensitivity to gemcitabine treatment. The genetic ablation of TFF1 in PDAC cells enhanced their sensitivity to gemcitabine treatment in both in vitro and in vivo tumor xenografts. The biochemical studies revealed that TFF1 contributes to gemcitabine resistance through enhanced stemness, increasing migration ability of cancer cells, and induction of anti-apoptotic genes. We further pursued studies to predict possible receptors exerting TFF1-mediated gemcitabine resistance. Protein-protein docking investigations with BioLuminate software revealed that TFF1 binds to the chemokine receptor CXCR4, which was supported by real-time binding analysis of TFF1 and CXCR4 using SPR studies. The exogenous addition of TFF1 increased the proliferation and migration of PDAC cells through the pAkt/pERK axis, which was abrogated by treatment with a CXCR4-specific antagonist AMD3100. Overall, the present study demonstrates the contribution of the TFF1-CXCR4 axis in imparting gemcitabine resistance properties to PDAC cells.


Assuntos
Antimetabólitos Antineoplásicos , Carcinoma Ductal Pancreático , Desoxicitidina , Resistencia a Medicamentos Antineoplásicos , Gencitabina , Neoplasias Pancreáticas , Receptores CXCR4 , Fator Trefoil-1 , Ensaios Antitumorais Modelo de Xenoenxerto , Humanos , Desoxicitidina/análogos & derivados , Desoxicitidina/farmacologia , Receptores CXCR4/metabolismo , Receptores CXCR4/genética , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/patologia , Carcinoma Ductal Pancreático/metabolismo , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/patologia , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Fator Trefoil-1/genética , Fator Trefoil-1/metabolismo , Animais , Linhagem Celular Tumoral , Antimetabólitos Antineoplásicos/farmacologia , Movimento Celular/efeitos dos fármacos , Camundongos , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo , Apoptose/efeitos dos fármacos , Camundongos Nus , Proliferação de Células/efeitos dos fármacos , Simulação de Acoplamento Molecular
3.
J Gastroenterol ; 59(7): 572-585, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38836911

RESUMO

BACKGROUND: Currently utilized serum tumor markers and fecal immunochemical tests do not have sufficient diagnostic power for colorectal cancer (CRC) due to their low sensitivities. To establish non-invasive urinary protein biomarkers for early CRC diagnosis, we performed stepwise analyses employing urine samples from CRCs and healthy controls (HCs). METHODS: Among 474 urine samples, 363 age- and sex-matched participants (188 HCs, 175 stage 0-III CRCs) were randomly divided into discovery (16 HCs, 16 CRCs), training (110 HCs, 110 CRCs), and validation (62 HCs, 49 CRCs) cohorts. RESULTS: Of the 23 urinary protein candidates comprehensively identified from mass spectrometry in the discovery cohort, urinary levels of dipeptidase 1 (uDPEP1) and Trefoil factor1 (uTFF1) were the two most significant diagnostic biomarkers for CRC in both training and validation cohorts using enzyme-linked immunosorbent assays. A urinary biomarker panel comprising uDPEP1 and uTFF1 significantly distinguished CRCs from HCs, showing area under the curves of 0.825-0.956 for stage 0-III CRC and 0.792-0.852 for stage 0/I CRC. uDPEP1 and uTFF1 also significantly distinguished colorectal adenoma (CRA) patients from HCs, with uDPEP1 and uTFF1 increasing significantly in the order of HCs, CRA patients, and CRC patients. Moreover, expression levels of DPEP1 and TFF1 were also significantly higher in the serum and tumor tissues of CRC, compared to HCs and normal tissues, respectively. CONCLUSIONS: This study established a promising and non-invasive urinary protein biomarker panel, which enables the early detection of CRC with high sensitivity.


Assuntos
Biomarcadores Tumorais , Neoplasias Colorretais , Dipeptidases , Detecção Precoce de Câncer , Fator Trefoil-1 , Humanos , Neoplasias Colorretais/diagnóstico , Neoplasias Colorretais/urina , Biomarcadores Tumorais/urina , Biomarcadores Tumorais/sangue , Masculino , Detecção Precoce de Câncer/métodos , Feminino , Fator Trefoil-1/urina , Pessoa de Meia-Idade , Idoso , Dipeptidases/urina , Dipeptidases/sangue , Estudos de Casos e Controles , Estadiamento de Neoplasias , Ensaio de Imunoadsorção Enzimática , Adulto , Sensibilidade e Especificidade , Adenoma/diagnóstico , Adenoma/urina , Proteínas Ligadas por GPI
4.
Cancers (Basel) ; 16(9)2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38730608

RESUMO

Retinoblastoma (RB) is the most common malignant intraocular tumor in early childhood. Gene expression profiling revealed that the gastric inhibitory polypeptide receptor (GIPR) is upregulated following trefoil factor family peptide 1 (TFF1) overexpression in RB cells. In the study presented, we found this G protein-coupled transmembrane receptor to be co-expressed with TFF1, a new diagnostic and prognostic RB biomarker for advanced subtype 2 RBs. Functional analyses in two RB cell lines revealed a significant reduction in cell viability and growth and a concomitant increase in apoptosis following stable, lentiviral GIPR overexpression, matching the effects seen after TFF1 overexpression. In chicken chorioallantoic membrane (CAM) assays, GIPR-overexpressing RB cells developed significantly smaller CAM tumors. The effect of GIPR overexpression in RB cells was reversed by the GIPR inhibitor MK0893. The administration of recombinant TFF1 did not augment GIPR overexpression effects, suggesting that GIPR does not serve as a TFF1 receptor. Investigations of potential GIPR up- and downstream mediators suggest the involvement of miR-542-5p and p53 in GIPR signaling. Our results indicate a tumor suppressor role of GIPR in RB, suggesting its pathway as a new potential target for future retinoblastoma therapy.

5.
Cancers (Basel) ; 15(19)2023 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-37835522

RESUMO

Effective management of retinoblastoma (RB), the most prevalent childhood eye cancer, depends on reliable monitoring and diagnosis. A promising candidate in this context is the secreted trefoil family factor peptide 1 (TFF1), recently discovered as a promising new biomarker in patients with a more advanced subtype of retinoblastoma. The present study investigated TFF1 expression within aqueous humor (AH) of enucleated eyes and compared TFF1 levels in AH and corresponding blood serum samples from RB patients undergoing intravitreal chemotherapy (IVC). TFF1 was consistently detectable in AH, confirming its potential as a biomarker. Crucially, our data confirmed that TFF1-secreting cells within the tumor mass originate from RB tumor cells, not from surrounding stromal cells. IVC-therapy-responsive patients exhibited remarkably reduced TFF1 levels post-therapy. By contrast, RB patients' blood serum displayed low-to-undetectable levels of TFF1 even after sample concentration and no therapy-dependent changes were observed. Our findings suggest that compared with blood serum, AH represents the more reliable source of TFF1 if used for liquid biopsy RB marker analysis in RB patients. Thus, analysis of TFF1 in AH of RB patients potentially provides a minimally invasive tool for monitoring RB therapy efficacy, suggesting its importance for effective treatment regimens.

6.
Ann Clin Lab Sci ; 53(3): 427-437, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37437926

RESUMO

OBJECTIVE: As a retinal vaso-proliferative disorder, retinopathy of prematurity (ROP) is characterized by neovascularization and angiogenesis, causing irreversible retinal damage and even visual loss among premature infants. Trefoil factor 1 (TFF1) has been identified as a key regulator in mediating retinal angiogenesis in diabetic retinopathy. However, whether TFF1 can mediate the angiogenic process in ROP remains unknown. Here, we aimed to investigate the regulatory function of TFF1 and its underlying mechanisms in hypoxia-exposed human retinal vascular endothelial cells (HRVECs) in vitro. METHODS: HRVECs were exposed to hypoxia condition to establish the in vitro ROP models. HRVEC viability was validated using CCK-8 assay. The migratory and angiogenic capacities of HRVECs were assessed by wound healing and tube formation assays, respectively. RT-qPCR was performed to detect gene levels. Western blotting was used to measure the protein levels of TFF1 and Runt-related transcription factor 1 (RUNX1). The binding relationship between RUNX1 to TFF1 promoter was confirmed by chromatin immunoprecipitation and luciferase reporter assays. RESULTS: Hypoxia downregulated TFF1 expression and elevated RUNX1 expression in HRVECs. Moreover, hypoxic condition increased HRVEC viability and accelerated HRVEC migration and angiogenesis, which were antagonized by TFF1 elevation or RUNX1 knockdown. RUNX1 as a transcription factor bound to TFF1 promoter and transcriptionally repressed TFF1 expression in HRVECs. In rescue assays, overexpression of TFF1 counteracted the promotive effect of RUNX1 overexpression on the viability, migratory and angiogenic abilities of HRVECs under hypoxia. CONCLUSIONS: RUNX1 transcriptionally suppresses TFF1 expression to aggravate hypoxia-induced HRVEC dysfunction.


Assuntos
Subunidade alfa 2 de Fator de Ligação ao Core , Células Endoteliais , Lactente , Recém-Nascido , Humanos , Fator Trefoil-1/genética , Regulação da Expressão Gênica , Hipóxia
7.
Cancer Epidemiol ; 83: 102333, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36758349

RESUMO

OBJECTIVE: Gastric carcinoma (GC) has received extensive attention due to its complex pathogenesis. Studies have shown that the expression of Trefoil factor 1 (TFF1) and Partner and localiser of BRCA2 (PALB2) genes promotes the occurrence of GC. Therefore, we investigated whether TFF1 and PALB2 gene polymorphisms are associated with GC risk in the Chinese Han population. METHODS: A total of 509 GC cases and 505 controls were recruited, and single nucleotide polymorphisms (SNPs) of TFF1 and PALB2 in these subjects were genotyped. The association between each candidate polymorphism and GC risk was assessed by calculating odds ratios (ORs) and 95% confidence intervals (CIs). The visualization of gene-gene interactions and functional enrichment analysis were then performed using Cytoscape software and the R package "cluster profile". RESULTS: The TFF1 rs2156310 polymorphism significantly reduced the predisposition to GC in people under 60 years of age (AA vs. AG - GG, OR = 0.58, 95% CI = 0.35-0.97, p = 0.036). The gender-stratified analysis found that PALB2 rs513313 was significantly associated with the risk of GC in males (CT vs. TT, OR = 1.51, 95% CI = 1.06-2.15, p = 0.022). Besides, PALB2 rs249954 significantly reduced the susceptibility to GC in females (AA vs GG, OR = 0.42, 95% CI = 0.19-0.94, p = 0.034). CONCLUSION: Our results revealed that TFF1 and PALB2 gene polymorphisms were correlated with the genetic susceptibility to GC, providing certain data support for researchers to further study the mechanism of GC.


Assuntos
Carcinoma , Neoplasias Gástricas , Masculino , Feminino , Humanos , Fator Trefoil-1/genética , População do Leste Asiático , Predisposição Genética para Doença , Genótipo , Polimorfismo de Nucleotídeo Único , Estudos de Casos e Controles , China , Proteína do Grupo de Complementação N da Anemia de Fanconi/genética
8.
Cancers (Basel) ; 14(22)2022 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-36428568

RESUMO

As one of the most frequently occurring tumor types, the increasing incidence of gastric cancer (GC) has been observed in the past decades. The recent studies have illustrated that epigenetic modifications mediated by DNA methyltransferases (DNMTs) are the major epigenetic hallmark in GC progression. Nowadays, DNA methylation was considered to be necessary for inducing the silence of tumor suppressor genes (TSGs). As an important group of peptides, the TFF family has been confirmed to function as a TSG in various kinds of cancers. However, whether TFFs could be modified by DNA methylation in gastric cancer remains unknown. Here, we initially screened out two transcriptional sequencing profiles about GC from Gene Expression Omnibus (GEO) database. The lower expression levels of TFF1 and TFF2 were observed in GC tumor tissues as compared to those in normal tissues. Additionally, utilizing the Kaplan-Meier analysis, the expressions of TFF1 and TFF2 were identified to be associated with the prognosis of GC patients. Subsequently, the integrative analysis was performed to estimate the DNA methylation level of each site in TFF1/TFF2 CpG islands. Importantly, our findings indicated that hyper-methylation of cg01886855 and cg26403416 were separately responsible for the downregulation of TFF1 and TFF2 in GC samples. In addition, utilizing the experiments in vitro, we demonstrated that TFF1/TFF2 could suppress the proliferation of GC cells. Based on these results, we suspected that TFF1/TFF2 could potentially act as the putative tumor suppressor in GC, and these two TFFs were of great value for predicting the overall survival (OS) status in the gastric cancer cohort. Totally, our findings revealed a potential therapeutic method for targeting the TFFs for the treatment of GC.

9.
Cancers (Basel) ; 14(18)2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-36139637

RESUMO

The immunoglobulin family cell adhesion receptor L1 is induced in CRC cells at the invasive front of the tumor tissue, and confers enhanced proliferation, motility, tumorigenesis, and liver metastasis. To identify putative tumor suppressors whose expression is downregulated in L1-expressing CRC cells, we blocked the L1-ezrin-NF-κB signaling pathway and searched for genes induced under these conditions. We found that TFF1, a protein involved in protecting the mucus epithelial layer of the colon, is downregulated in L1-expressing cells and displays characteristics of a tumor suppressor. Overexpression of TFF1 in L1-transfected human CRC cells blocks the pro-tumorigenic and metastatic properties conferred by L1 by suppressing NF-κB signaling. Immunohistochemical analyses revealed that human CRC tissue samples often lose the expression of TFF1, while the normal mucosa displays TFF1 in goblet cells. Identifying TFF1 as a tumor suppressor in CRC cells could provide a novel marker for L1-mediated CRC development and a potential target for therapy.

10.
Mol Biol Rep ; 49(10): 10127-10131, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36057754

RESUMO

INTRODUCTION: Trefoil Factor 1 (TFF1) is a secretory peptide with gastrointestinal protective functions. Abnormal TFF1 expression is reported in some cancers and functional promoter polymorphism in TFF1 is believed to be associated with risk of gastric cancer. We evaluated rs3761376 in a sample of Iranian patients with colorectal cancer. METHODS: Peripheral blood samples were taken from pathology confirmed cases of colorectal cancer and healthy volunteers. Genotyping was carried out using Restriction Fragment Length Polymorphism (RFLP) PCR. Any association with clinicopathologic data was assessed by SPSS version 19. RESULTS: A total of 245 participants, including 122 patients with cancer and 123 non-cancer subjects were enrolled. Age, body mass index, and smoking habits were not significantly different between the two groups (P > 0.05). Distribution of TFF1 genotypes was not found to be associated with colorectal cancer. However, distant metastasis was more prevalent in carriers of the mutant allele. CONCLUSION: TFF1 rs3761376 was not associated with colorectal cancer but it may be involved in metastasis. Therefore, further investigation is warranted to determine this relationship.


Assuntos
Neoplasias Colorretais , Polimorfismo de Nucleotídeo Único , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Humanos , Irã (Geográfico) , Peptídeos/genética , Peptídeos/metabolismo , Polimorfismo de Nucleotídeo Único/genética , Fator Trefoil-1/genética , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo
11.
BMC Urol ; 22(1): 127, 2022 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-35987613

RESUMO

Trefoil Factor 1 (TFF1) is considered to be able to inhibit the formation of kidney stone. However, genetic variants in TFF1 and corresponding function in kidney stone development are still not well studied. In this study, the discovery set including 230 cases and 250 controls was used to analyze the association between seven tagSNPs of TFF1 gene and the nephrolithiasis risk. Further evaluation was confirmed by the validation set comprising 307 cases and 461 controls. The consequences of the two-stage case-control study indicated that individuals with the rs3761376 A allele have significantly increased nephrolithiasis risk than those with the GG genotypes [adjusted odds ratio (OR) = 1.35, 95% confidence interval (CI) = 1.05-1.73]. Moreover, we also carried out a stratified analysis and found the increased nephrolithiasis risks at A allele among males, overweight individuals, no hypertensive individuals, nondiabetic individuals, smokers, and drinkers. In the following functional experiments, the notably lower expression of TFF1 was exhibited by the vectors carrying A allele compared with those carrying G allele in both luciferase (P = 0.022) and expression vectors (P = 0.041). In addition to tissue detection, we confirmed a significant inverse association of rs3761376 G > A and TFF1 gene expression (P < 0.001). These results suggest that TFF1 rs3761376 may serve as a potential biomarker to predict the risk of nephrolithiasis.


Assuntos
Cálculos Renais , Nefrolitíase , Fator Trefoil-1 , Estudos de Casos e Controles , China , Humanos , Cálculos Renais/genética , Masculino , Nefrolitíase/genética , Polimorfismo de Nucleotídeo Único/genética , Fator Trefoil-1/genética
12.
Front Immunol ; 13: 881289, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35693767

RESUMO

Porcine epidemic diarrhea virus (PEDV) is an emerging coronavirus which causes acute diarrhea and destroys gastrointestinal barrier function in neonatal pigs. Trefoil factor 1 (TFF1) is a protective peptide for maintaining the integrity of gastrointestinal mucosa and reducing intestinal inflammation. However, its role in protecting intestinal epithelium against PEDV infection is still unclear. In this study, we discovered that TFF1 expression was activated in the jejunum of pigs with PEDV infection and TFF1 is required for the growth of porcine intestinal epithelial cells. For instance, inhibited cell proliferation and cell arrest were observed when TFF1 is genetically knocked-out using CRISPR-Cas9. Additionally, TFF1 depletion increased viral copy number and PEDV titer, along with the elevated genes involved in antiviral and inflammatory cytokines. The decreased TFF1 mRNA expression is in line with hypermethylation on the gene promoter. Notably, the strong interactions of protein-DNA complexes containing CCAAT motif significantly increased C/EBPα accessibility, whereas hypermethylation of mC-6 loci decreased C/EBPα binding occupancies in TFF1 promoter. Overall, our findings show that PEDV triggers the C/EBPα-mediated epigenetic regulation of TFF1 in intestine epithelium and facilitates host resistance to PEDV and other Coronavirus infections.


Assuntos
Infecções por Coronavirus , Coronavirus , Vírus da Diarreia Epidêmica Suína , Animais , Proteína alfa Estimuladora de Ligação a CCAAT , Infecções por Coronavirus/genética , Infecções por Coronavirus/veterinária , Epigênese Genética , Inflamação/genética , Jejuno , Metilação , Vírus da Diarreia Epidêmica Suína/genética , Suínos , Fator Trefoil-1/genética
13.
Biochem Genet ; 60(6): 2155-2170, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35279761

RESUMO

Breast cancer (BC) is a common malignant tumor, and circular RNA-trefoil factor 1 (circ-TFF1; hsa_circ_0061825) has been found to be highly expressed in BC tissues and cells and is associated with the poor prognosis of BC patients. However, the interaction between circ-TFF1 and microRNA in BC has not been studied. Quantitative real-time PCR was used to detect the expression of circ-TFF1, miR-129-2-3p, and interleukin (IL)-1 receptor-associated kinase 1 (IRAK1). Through the detection of cell proliferation, migration, invasion, tube formation, and apoptosis, cell function was assessed. The expression levels of angiogenesis-related proteins were detected by western blot. The interaction between miR-129-2-3p and circ-TFF1 or IRAK1 was verified by dual-luciferase reporter assay and RNA immunoprecipitation assay. Xenotransplantation experiments were used to confirm the function of circ-TFF1 in vivo. Circ-TFF1 and IRAK1 were significantly high expressed in BC tissues and cells. Silencing of circ-TFF1 reduced the proliferation, migration, invasion and tube formation, while increased the apoptosis of MDA-MB-361 and SK-Br-3 cells. MiR-129-2-3p was a target of circ-TFF1. Silencing of circ-TFF1 inhibited the malignant behavior of BC cells by releasing miR-129-2-3p. In addition, IRAK1 was a target of miR-129-2-3p. Overexpression of IRAK1 partially restored the inhibitory effect of miR-129-2-3p on cell progression. Animal experiments confirmed the anti-tumor effect of circ-TFF1 knockdown in vivo. Circ-TFF1 regulated the expression of IRAK1 by sponging miR-129-2-3p, thereby, promoting the development of BC. These data provided a novel targeted therapy for BC.


Assuntos
MicroRNAs , Neoplasias , Animais , Fator Trefoil-1/genética , Regulação Neoplásica da Expressão Gênica , Movimento Celular/genética , MicroRNAs/genética , Proliferação de Células/genética , Neoplasias/genética , Linhagem Celular Tumoral
14.
Cancers (Basel) ; 14(3)2022 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-35158945

RESUMO

Retinoblastoma (RB) is the most common childhood eye cancer. The expression of trefoil factor family peptide 1 (TFF1), a small secreted peptide, has been correlated with more advanced RB stages and it might be a promising new candidate as a RB biomarker. The study presented addressed the question of if TFF1 is detectable in aqueous humor (AH) of RB patients' eyes, providing easy accessibility as a diagnostic and/or therapy accompanying predictive biomarker. The TFF1 expression status of 15 retinoblastoma AH samples was investigated by ELISA and Western blot analyses. The results were correlated with the TFF1 expression status in the tumor of origin and compared to TFF1 expression in established corresponding primary tumor cell cultures and supernatants. Nine out of fifteen AH patient samples exhibited TFF1 expression, which correlated well with TFF1 levels of the original tumor. TFF1 expression in most of the corresponding primary cell cultures reflects the levels of the original tumor, although not all TFF1-expressing tumor cells seem to secret into the AH. Together, our findings strongly suggest TFF1 as a reliable new RB biomarker.

15.
Exp Eye Res ; 217: 108969, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35114215

RESUMO

Diabetic retinopathy (DR) represents a major complication of diabetes, and molecular mechanisms related to vascular dysfunction, particularly endothelial dysfunction, in DR remains unclear. In the present work, we generated a DR animal model using mice and a cell model in mouse retinal microvascular endothelial cells (mRMECs) to examine the role of Trefoil factor family 1 (Tff1) in DR. Tff1 was poorly expressed in DR mice and high glucose (HG)-treated mRMECs. Overexpression of Tff1 significantly attenuated streptozotocin-induced retinal proliferation and angiogenesis in DR mice and reduced the secretion of inflammatory factors. In HG-treated mRMECs, overexpression of Tff1 remarkably reduced the proliferation and angiogenesis of mRMECs. In further experiments, we found that Tff1 was transcriptionally repressed by Runt-related transcription factor 1 (Runx1) directly, and Tff1 expression was indirectly modulated by Runx1 via the core-binding factor subunit beta (CBF-ß)/nuclear factor, erythroid 2/microRNA-423-5p axis and the CBF-ß/estrogen receptor 1 (ESR1) axis. Moreover, Tff1 could inhibit the activation of NF-κB signaling pathway, which in turn attenuated retinal endothelial cell proliferation and angiogenesis. It was thus proposed that Runx1/Tff1/NF-κB axis may be a potential target for the treatment strategy of DR, and further studies are needed.


Assuntos
Subunidade alfa 2 de Fator de Ligação ao Core , Diabetes Mellitus , Retinopatia Diabética , MicroRNAs , Fator Trefoil-1 , Animais , Subunidade alfa 2 de Fator de Ligação ao Core/metabolismo , Diabetes Mellitus/metabolismo , Retinopatia Diabética/metabolismo , Células Endoteliais/metabolismo , Camundongos , MicroRNAs/metabolismo , NF-kappa B/metabolismo , Neovascularização Patológica/metabolismo , Retina/metabolismo , Fator Trefoil-1/metabolismo
16.
Biochem Genet ; 60(1): 315-335, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34219206

RESUMO

Some circular RNAs (circRNAs) have been verified to act as essential regulators in the progression of breast cancer (BC). We aimed to investigate the role of circRNA trefoil factor 1 (circ-TFF1) in BC progression. The expression of circ-TFF1, microRNA-338-3p (miR-338-3p) and fibroblast growth factor receptor 1 (FGFR1) mRNA was measured by quantitative real-time polymerase chain reaction (qRT-PCR). Cell proliferation was evaluated by methylthiazolyldiphenyl-tetrazolium bromide (MTT), colony formation, and 5-Ethynyl-2'-deoxyuridine (EDU) assays. Cell apoptosis and invasion were assessed by flow cytometry and transwell assay, respectively. Cellular glycolysis, including glucose consumption, lactate production, and ATP/ADP ratio, was detected by commercial kits. All protein levels were measured by western blot assay. The relationship between miR-338-3p and circ-TFF1 or FGFR1 was predicted by online bioinformatics tool and verified by dual-luciferase reporter assay. Xenograft tumor model was established to verify the function of circ-TFF1 in vivo. Circ-TFF1 was overexpressed in BC tissues and cells. Circ-TFF1 knockdown inhibited cell proliferation, invasion and glycolysis and induced apoptosis in BC cells. Circ-TFF1 acted as a sponge of miR-338-3p, and the effects of circ-TFF1 knockdown on BC cell proliferation, apoptosis, invasion, and glycolysis were abolished by miR-338-3p inhibition. FGFR1 was confirmed to be a target gene of miR-338-3p, and miR-338-3p played a tumor-suppressive role in BC by targeting FGFR1. Moreover, circ-TFF1 regulated FGFR1 expression by targeting miR-338-3p. Additionally, circ-TFF1 knockdown hampered tumorigenesis in vivo. Circ-TFF1 knockdown suppressed BC progression by regulating miR-338-3p/FGFR1 axis, providing a promising therapeutic target for BC.


Assuntos
Neoplasias da Mama , MicroRNAs , Neoplasias da Mama/genética , Feminino , Humanos , MicroRNAs/genética , RNA Circular , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/genética , Fator Trefoil-1
17.
Onco Targets Ther ; 14: 4761-4777, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34531663

RESUMO

INTRODUCTION: Trefoil Factor (TFF) is a member of a protein family comprised of three isoforms, of which TFF-1 exhibits antithetical functions; promotion or suppression of cell proliferation, survival and invasion, depending on the cancer type. However, the pathobiological function of TFF-1 in lung carcinoma has been still unclear. METHODS: We examined the expression and secretion of TFF-1 using cultured human lung carcinoma cells by immunoblotting, immunofluorescence, enzyme-linked immunosorbent assay and quantitative real-time PCR analyses. The effects of TFF-1 on various phenotypes were analyzed in two cell lines, including those transfected with cDNA encoding TFF-1. Cell proliferation and death were examined by hemocytometer cell counting and by colorimetric viability/cytotoxicity assay. Cell cycle profile, migration and invasion were also examined by flow cytometry, wound healing assay and Matrigel Transwell assay, respectively. The effect of TFF-1 overexpression was confirmed by additional transfection of TFF-1-specific siRNA. RESULTS: Endogenous TFF-1 protein expression and secretion into the media were observed exclusively in adenocarcinoma-derived cell lines. Forced overexpression of TFF-1 drove cell cycle transition, while the proliferation decreased by 19% to 25% due to increased cell death. This cell death was predominantly caused by apoptosis, as assessed by the activation of caspase 3/7. Cell migration was also suppressed by 71% to 82% in TFF-1-transfected cells. The suppressive effect of TFF-1 on proliferation and migration was restored by transfection of TFF-1 siRNA. Moreover, invasion was also suppressed to 77% to 83% in TFF-1-transfected cells. CONCLUSION: These findings reveal that TFF-1 functions as a suppressor of cancer proliferation by induction of apoptosis, cell migration and invasion and thus may provide a synergistic target for potential treatment strategies for human lung carcinoma.

18.
Bioengineered ; 12(1): 5266-5278, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34424807

RESUMO

Long non-coding RNA (lncRNA) FOXD3 antisense RNA 1 (FOXD3-AS1) has been reported to participate in multiple processes that contribute toward the development of cancer. The present study aimed to explore the effect of lncRNA FOXD3-AS1 on anti-estrogen resistance in breast cancer (BC) cells. FOXD3-AS1 was found to be highly expressed in BC cell lines. Moreover, FOXD3-AS1 was highly expressed in estrogen receptor-negative (ER-) cells compared to the ER-positive (ER+) cells. FOXD3-AS1 overexpression in T47D and MCF-7 (ER+) cells enhanced the resistance of cells to tamoxifen (TMX), whereas FOX3-AS1 downregulation reduced the TMX resistance in MDA-MB-231 (ER-) cells. Similar results were reproduced in vivo that FOXD3-AS1 inhibition reduced the growth of xenograft tumors formed by MDA-MB-231 cells following TMX treatment whereas FOXD3-AS1 overexpression in T47D cells facilitated tumor growth. The bioinformatic analysis and luciferase assays indicated that FOXD3-AS1 sponged microRNA-363 (miR-363) to restore expression of trefoil factor 1 (TFF1) mRNA. Overexpression of miR-363 reduced T47D cell proliferation induced by FOXD3-AS1, whereas overexpression of TFF1 restored growth of MDA-MB-231 cells reduced after FOXD3-AS1 silencing. The phosphorylation of phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt) was increased by FOXD3-AS1 but attenuated by miR-363. Inhibition of PI3K/Akt blocked the role of FOXD3-AS1 and reduced the TMX resistance in T47D and MCF-7 cells. Taken together, the present study suggested that FOXD3-AS1 sponges miR-363 to upregulate TFF1 expression, leading to PI3K/Akt signaling activation and anti-estrogen resistance in BC cells.


Assuntos
Neoplasias da Mama , MicroRNAs/genética , RNA Longo não Codificante/genética , Fator Trefoil-1/genética , Animais , Antineoplásicos Hormonais/farmacologia , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética , Antagonistas de Estrogênios/farmacologia , Feminino , Inativação Gênica , Humanos , Camundongos , Camundongos Nus , MicroRNAs/metabolismo , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA Longo não Codificante/metabolismo , Transdução de Sinais , Tamoxifeno/farmacologia , Fator Trefoil-1/metabolismo
19.
Cancer Cell Int ; 21(1): 444, 2021 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-34419066

RESUMO

BACKGROUND: H. pylori infection is the main risk factor for gastric cancer. In this study, we investigated H. pylori-mediated activation of STAT3 and NF-κB in gastric cancer, using in vitro and in vivo models. METHODS: To investigate the activation of NF-κB and STAT3 by H. pylori strains we used in vitro and in vivo mouse models, western blots, immunofluorescence, ChIP Assay, luciferase and quantitative real-time PCR assays. RESULTS: Following infection with H. pylori in vitro, we found an earlier phosphorylation of NF-kB-p65 (S536), followed by STAT3 (Y705). Immunofluorescence, using in vitro and in vivo models, demonstrated nuclear localization of NF-kB and STAT3, following H. pylori infection. NF-kB and STAT3 luciferase reporter assays confirmed earlier activation of NF-kB followed by STAT3. In vitro and in vivo models demonstrated induction of mRNA expression of IL-6 (p < 0.001), VEGF-α (p < 0.05), IL-17 (p < 0.001), and IL-23 (p < 0.001). Using ChIP, we confirmed co-binding of both NF-kB-p65 and STAT3 on the IL6 promoter. The reconstitution of Trefoil Factor 1 (TFF1) suppressed activation of NF-kB with reduction in IL6 levels and STAT3 activity, in response to H. pylori infection. Using pharmacologic (BAY11-7082) and genetic (IκB super repressor (IκBSR)) inhibitors of NF-kB-p65, we confirmed the requirement of NF-kB-p65 for activation of STAT3, as measured by phosphorylation, transcription activity, and nuclear localization of STAT3 in in vitro and in vivo models. CONCLUSION: Our findings suggest the presence of an early autocrine NF-kB-dependent activation of STAT3 in response to H. pylori infection. TFF1 acts as an anti-inflammatory guard against H. pylori-mediated activation of pro-inflammatory networks.

20.
Scand J Clin Lab Invest ; 81(6): 446-450, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34242119

RESUMO

The trefoil factor family proteins: TFF1, TFF2 and TFF3 are secreted by epithelial cells in the respiratory tract. Here, we explore circulating concentrations of the trefoil factors in relation to lung cancer, age and lung function. We included 751 patients suspected of lung cancer. Lung cancer diagnosis was based on data reported to a national database. Serum TFF1, TFF2 and TFF3 concentrations were measured by ELISA, and spirometry was performed within ±3 days of blood sampling. Forced expiratory volume in the first second (FEV1) in relation to forced vital capacity (FVC), FEV1/FVC (a parameter used to quantify reduced lung function) was recorded. Lung cancer was diagnosed in 163 (22%) patients. Circulating concentrations of TFF3 (p = .021), but not TFF1 and TFF2, were significantly elevated in cancer patients. All three trefoil factors showed an increase in concentration with increasing age (p < .001) and declining lung function (p < .004). In the present cohort, concentrations of all three peptides were elevated compared with previous results published for healthy individuals. In conclusion, we report higher concentrations of TFF3 in patients with lung cancer, while increasing age and reduced lung function are associated with increasing concentrations of all trefoil factors in this specific patient population. The results emphasize that age and lung function should be taken into consideration when evaluating concentrations of trefoil factors in patients. However, the increases in trefoil factor concentrations were relatively small, and consequently, it is unlikely that circulating trefoil factor concentrations may have a role in the diagnosis of lung cancer and lung function impairment.


Assuntos
Neoplasias Pulmonares/sangue , Neoplasias Pulmonares/fisiopatologia , Encaminhamento e Consulta , Testes de Função Respiratória , Fator Trefoil-1/sangue , Fator Trefoil-2/sangue , Fator Trefoil-3/sangue , Adulto , Fatores Etários , Idoso , Idoso de 80 Anos ou mais , Intervalos de Confiança , Estudos Transversais , Humanos , Neoplasias Pulmonares/patologia , Pessoa de Meia-Idade , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA