Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.339
Filtrar
1.
Front Oncol ; 14: 1407434, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38962270

RESUMO

Hepatitis B infection is substantially associated with the development of liver cancer globally, with the prevalence of hepatocellular carcinoma (HCC) cases exceeding 50%. Hepatitis B virus (HBV) encodes the Hepatitis B virus X (HBx) protein, a pleiotropic regulatory protein necessary for the transcription of the HBV covalently closed circular DNA (cccDNA) microchromosome. In previous studies, HBV-associated HCC was revealed to be affected by HBx in multiple signaling pathways, resulting in genetic mutations and epigenetic modifications in proto-oncogenes and tumor suppressor genes. In addition, transforming growth factor-ß (TGF-ß) has dichotomous potentials at various phases of malignancy as it is a crucial signaling pathway that regulates multiple cellular and physiological processes. In early HCC, TGF-ß has a significant antitumor effect, whereas in advanced HCC, it promotes malignant progression. TGF-ß interacts with the HBx protein in HCC, regulating the pathogenesis of HCC. This review summarizes the respective and combined functions of HBx and TGB-ß in HCC occurrence and development.

2.
Bioorg Chem ; 150: 107611, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38964148

RESUMO

Transforming growth factor ß (TGF-ß) is a ubiquitous molecule that is extremely conserved structurally and plays a systemic role in human organism. TGF-ß is a homodimeric molecule consisting of two subunits joined through a disulphide bond. In mammals, three genes code for TGF-ß1, TGF-ß2, and TGF-ß3 isoforms of this cytokine with a dominating expression of TGF-ß1. Virtually, all normal cells contain TGF-ß and its specific receptors. Considering the exceptional role of fine balance played by the TGF-ß in anumber of physiological and pathological processes in human body, this cytokine may be proposed for use in medicine as an immunosuppressant in transplantology, wound healing and bone repair. TGFb itself is an important target in oncology. Strategies for blocking members of TGF-ß signaling pathway as therapeutic targets have been considered. In this review, signalling mechanisms of TGF-ß1 action are addressed, and their role in physiology and pathology with main focus on carcinogenesis are described.

3.
Avicenna J Phytomed ; 14(2): 166-176, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38966629

RESUMO

Objective: Silibinin has exhibited antitumor activities. However, there are few reports about the immunomodulatory properties of silibinin on T lymphocyte function in the tumor microenvironment. Here, we determined the effects of silibinin on T cells of peripheral blood mononuclear cells (PBMCs), cultivated alone or with a human cell line of glioblastoma (U-87 MG). Materials and Methods: The proliferation of T lymphocytes was assessed by MTT test in the presence of silibinin (15 and 45 µM). Also, total antioxidant capacity (TAC), the activity of superoxide dismutase-3 (SOD3), and the levels of two cytokines interferon gamma (IFN-γ) and tumor growth beta (TGF-ß) were compared between treated and untreated PBMCs alone or co-cultured with U-87 cells. Results: According to our results, silibinin raised the TAC levels and SOD3 activity in the PBMCs and in the co-culture condition. Moreover, silibinin-treated PBMCs showed higher IFN-γ levels and lower TGF-ß levels. Interestingly, silibinin protected PBMCs against the U-87-induced suppression. Conclusion: Altogether, these results proposed the immunomodulatory potential of silibinin on T cells of PBMCs, as well as its partially protective effects on PBMCs against the suppression induced by U-87 MG cells.

4.
Mucosal Immunol ; 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38960319

RESUMO

Tissue-resident memory T cells (TRM) can be induced by infection and vaccination, and play a key role in maintaining long-term protective immunity against mucosal pathogens. Our studies explored the key factors and mechanisms affecting the differentiation, maturation, and stable residence of gastric epithelial CD4+ TRM induced by Helicobacter pylori (Hp) vaccine and optimized Hp vaccination to promote the generation and residence of TRM.CD38 regulated mitochondrial activity and enhanced TGF-ß signal transduction to promote the differentiation and residence of gastric epithelial CD4+ TRM by mediating the expression of CD105. Extracellular nucleotides influenced the long-term maintenance of TRM in gastric epithelium by P2RX7. Vitamin D3 and Gram-positive enhancer matrix particles (GEMs)as immune adjuvants combined with Hp vaccination promoted the production of CD69+CD103+CD4+ TRM.

5.
Neuro Oncol ; 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38982561

RESUMO

BACKGROUND: Chimeric antigen receptor (CAR)-T cell therapies targeting glioblastoma (GBM)-associated antigens such as interleukin-13 receptor subunit alpha-2 (IL-13Rα2) have achieved limited clinical efficacy to date, in part due to an immunosuppressive tumor microenvironment (TME) characterized by inhibitory molecules such as transforming growth factor-beta (TGF-ß). The aim of this study was to engineer more potent GBM-targeting CAR-T cells by countering TGF-ß-mediated immune suppression in the TME. METHODS: We engineered a single-chain, bispecific CAR targeting IL-13Rα2 and TGF-ß, which programs tumor-specific T cells to convert TGF-ß from an immunosuppressant to an immunostimulant. Bispecific IL-13Rα2/TGF-ß CAR-T cells were evaluated for efficacy and safety against both patient-derived GBM xenografts and syngeneic models of murine glioma. RESULTS: Treatment with IL-13Rα2/TGF-ß CAR-T cells leads to greater T-cell infiltration and reduced suppressive myeloid cell presence in the tumor-bearing brain compared to treatment with conventional IL-13Rα2 CAR-T cells, resulting in improved survival in both patient-derived GBM xenografts and syngeneic models of murine glioma. CONCLUSION: Our findings demonstrate that by reprogramming tumor-specific T-cell responses to TGF-ß, bispecific IL-13Rα2/TGF-ß CAR-T cells resist and remodel the immunosuppressive TME to drive potent anti-tumor responses in GBM.

6.
Cell Stem Cell ; 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38986609

RESUMO

Hepatocellular carcinoma (HCC) is the most common type of primary liver cancer. Transforming growth factor beta (TGF-ß) is highly expressed in the liver tumor microenvironment and is known to inhibit immune cell activity. Here, we used human induced pluripotent stem cells (iPSCs) to produce natural killer (NK) cells engineered to mediate improved anti-HCC activity. Specifically, we produced iPSC-NK cells with either knockout TGF-ß receptor 2 (TGFBR2-KO) or expression of a dominant negative (DN) form of the TGF-ß receptor 2 (TGFBR2-DN) combined with chimeric antigen receptors (CARs) that target either GPC3 or AFP. The TGFBR2-KO and TGFBR2-DN iPSC-NK cells are resistant to TGF-ß inhibition and improved anti-HCC activity. However, expression of anti-HCC CARs on iPSC-NK cells did not lead to effective anti-HCC activity unless there was also inhibition of TGF-ß activity. Our findings demonstrate that TGF-ß signaling blockade is required for effective NK cell function against HCC and potentially other malignancies that express high levels of TGF-ß.

7.
Spectrochim Acta A Mol Biomol Spectrosc ; 322: 124741, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38972097

RESUMO

Homalium tomentosum (Vent.) Benth, is a valuable agroforestry species and has industrial importance high-quality wood is used for malas, the manufacture of matches, and is suitable for making a wide range of articles. Nevertheless, leaves and bark are relatively rich in phenols and flavonoids, used for medicinal purposes. In this study, phenols and flavonoids rich in bio-privileged antioxidants in ethyl-acetate extracted fractions of bark (HTEB), and leaves (HTEL) at 300, and 400 mg/kg were examined in carbon tetrachloride (CCl4)-induced hepatotoxicity in experimental rats. HTEB and HTEL (400) showed improvement in liver structural integrity, but, HTEB400 significantly improved serum (total protein, TP; alkaline phosphatase, ALP; total bilirubin, TB; serum glutamate oxaloacetate transaminase, SGOT, and serum glutamate pyruvate transaminase, SGPT), and hepatic oxidative (catalase, CAT; thiobarbituric acid reactive species, TBARS; reduced glutathione, GSH; superoxide dismutase, SOD), and inflammatory (transforming growth factor, TGF-ß; ineterleukin-6, IL-6) biomarkers accompanied by histopathological improvements of the liver. GC-MS analysis of HTEB and HTEL identified 14 and 18 compounds, but physicochemical properties of 3-major antioxidants of HTEB (levoglucosenone, (+)-borneol, α-N-normethadol), and HTEL (2-coumaranone, salicyl alcohol, D-allose) were satisfied for the parameters molecular weight, no. of H-acceptor and H-donor, partition co-efficient (clogP), and topological polar surface area (tPSA) of Lipinski's rule. ADME-Tox properties were directly related to the biological activities of HTEB and HTEL. Molecular docking investigation of α-N-normethadol showed the highest binding energy against TGF-ß and IL-6 than other antioxidants. HTEB and HTEL were powerful antioxidant potential, but levoglucosenone, (+)-borneol, and α-N-normethadol of HTEB demonstrated better activities in neutralizing reactive oxygen species (ROS) to preserve cellular membrane integrity in liver cirrhosis as found evidence in restoring the liver inflammatory cytokines. This study confirmed the economic interest of H. tomentosum bark as crude material for the preparation of biobased materials for the pharmaceutical and food industries.

8.
J Autoimmun ; 148: 103277, 2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-38972101

RESUMO

BACKGROUND: Vascular fibrosis directly causes vascular thickening in Takayasu arteritis (TAK), in which sustained transforming growth factor beta (TGF-ß) activation is critical. Understanding TGF-ß activation regulation and blocking it might yield a therapeutic effect in TAK. Proprotein convertase subtilisin/kexin type 5 (PCSK5) rs6560480 (T/C) is associated with TAK development. In this study, we assessed the association between the PCSK5 rs6560480 genotype and PCSK5 expression in TAK and explored its molecular role in TGF-ß activation and vascular fibrosis development. METHODS: In TAK patients, PCSK5 and TGF-ß expression in plasma and aortic tissue was examined by ELISA and immunohistochemical staining, and PCSK5 rs6560480 was genotyped. The correlation between PCSK5 and extracellular matrix (ECM) expression was examined by Western blotting (WB) and immunohistochemistry staining. Detection by co-immunoprecipitation was performed to detect the interaction between PCSK5 and TGF-ß in adventitial fibroblasts (AAFs). Downstream signaling pathways were detected by WB and validated with appropriate inhibitors. Potential immunosuppressive agents to inhibit the effects of PCSK5 were explored in cell culture and TAK patients. RESULTS: Patients with PCSK5 rs6560480 TT patients had significantly higher PCSK5 levels and more thickened vascular lesions than patients with PCSK5 rs6560480 CT. PCSK5 expression was significantly increased in alpha smooth muscle actin (α-SMA)-positive myofibroblasts in TAK vascular lesions. Overexpressing PCSK5 facilitated TGF-ß and downstream SMAD2/3 activation and ECM expression in AAFs and aorta in in-vitro culture. The mechanistic study supported that PCSK5 activated precursor TGF-ß (pro-TGF-ß) to the mature form by binding the pro-TGF-ß cleavage site. Leflunomide inhibited PCSK5 and pro-TGF-ß binding, decreasing TGF-ß activation and ECM expression, which was also partially validated in leflunomide-treated patients. CONCLUSION: The findings revealed a novel pro-fibrotic mechanism of PCSK5 in TAK vascular fibrosis via TGF-ß and downstream SMAD2/3 pathway activation. Leflunomide might be anti-fibrotic by disrupting PCSK5 and pro-TGF-ß binding, presenting a new TAK treatment approach.

9.
Int J Mol Sci ; 25(13)2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-39000507

RESUMO

Colorectal cancer (CRC) is the third most commonly diagnosed cancer worldwide, with 20% of patients presenting with metastatic disease at diagnosis. TGF-ß signaling plays a crucial role in various cellular processes, including growth, differentiation, apoptosis, epithelial-mesenchymal transition (EMT), regulation of the extracellular matrix, angiogenesis, and immune responses. TGF-ß signals through SMAD proteins, which are intracellular molecules that transmit TGF-ß signals from the cell membrane to the nucleus. Alterations in the TGF-ß pathway and mutations in SMAD proteins are common in metastatic CRC (mCRC), making them critical factors in CRC tumorigenesis. This review first analyzes normal TGF-ß signaling and then investigates its role in CRC pathogenesis, highlighting the mechanisms through which TGF-ß influences metastasis development. TGF-ß promotes neoangiogenesis via VEGF overexpression, pericyte differentiation, and other mechanisms. Additionally, TGF-ß affects various elements of the tumor microenvironment, including T cells, fibroblasts, and macrophages, promoting immunosuppression and metastasis. Given its strategic role in multiple processes, we explored different strategies to target TGF-ß in mCRC patients, aiming to identify new therapeutic options.


Assuntos
Neoplasias Colorretais , Transdução de Sinais , Fator de Crescimento Transformador beta , Microambiente Tumoral , Humanos , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Neoplasias Colorretais/tratamento farmacológico , Fator de Crescimento Transformador beta/metabolismo , Transição Epitelial-Mesenquimal , Animais , Neovascularização Patológica/metabolismo
10.
Int J Mol Sci ; 25(13)2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-39000595

RESUMO

Depending on local cues, macrophages can polarize into classically activated (M1) or alternatively activated (M2) phenotypes. This study investigates the impact of polarized macrophage-derived Extracellular Vesicles (EVs) (M1 and M2) and their cargo of miRNA-19a-3p and miRNA-425-5p on TGF-ß production in lung fibroblasts. EVs were isolated from supernatants of M0, M1, and M2 macrophages and quantified using nanoscale flow cytometry prior to fibroblast stimulation. The concentration of TGF-ß in fibroblast supernatants was measured using ELISA assays. The expression levels of miRNA-19a-3p and miRNA-425-5p were assessed via TaqMan-qPCR. TGF-ß production after stimulation with M0-derived EVs and with M1-derived EVs increased significantly compared to untreated fibroblasts. miRNA-425-5p, but not miRNA-19a-3p, was significantly upregulated in M2-derived EVs compared to M0- and M1-derived EVs. This study demonstrates that EVs derived from both M0 and M1 polarized macrophages induce the production of TGF-ß in fibroblasts, with potential regulation by miRNA-425-5p.


Assuntos
Vesículas Extracelulares , Fibroblastos , Pulmão , Macrófagos , MicroRNAs , Fator de Crescimento Transformador beta , MicroRNAs/genética , MicroRNAs/metabolismo , Fibroblastos/metabolismo , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/genética , Fator de Crescimento Transformador beta/metabolismo , Macrófagos/metabolismo , Pulmão/metabolismo , Pulmão/citologia , Humanos , Ativação de Macrófagos/genética , Células Cultivadas , Regulação da Expressão Gênica
11.
Cancers (Basel) ; 16(13)2024 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-39001472

RESUMO

Immune checkpoint inhibitors have promising outcomes in patients with hepatocellular carcinoma (HCC); however, there is no reliable biomarker for predicting disease progression. Circulating tumor cells (CTCs) derived from peripheral blood have attracted attention in monitoring therapeutic efficacy. In this study, CTCs were serially collected from HCC patients undergoing atezolizumab plus bevacizumab (Atezo+Bev), and changes in molecular expression and CTC numbers were analyzed to identify effective biomarkers. Changes in CTC numbers during Atezo+Bev reflected the tumor volume. Targeted RNA sequencing with next-generation sequencing (NGS) revealed that patients with elevated transforming growth factor (TGF)-ß signaling molecules had a poorer response, whereas those with elevated apoptosis signaling molecules had a favorable response. In addition, compared with changes in CTC counts, changes in TGF-ß signaling molecule expression in CTCs accurately and promptly predicted treatment response. Overall, NGS analysis of CTC-derived RNA showed that changes in TGF-ß signaling molecules predict treatment response earlier than changes in CTC counts. These findings suggest that changes in the expression of TGF-ß molecules in CTCs could serve as novel biomarkers for the early prediction of therapeutic response in patients with unresectable HCC undergoing Atezo+Bev.

12.
Int J Med Sci ; 21(9): 1681-1688, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39006850

RESUMO

Hypertension affects a large number of individuals globally and is a common cause of nephropathy, stroke, ischaemic heart disease and other vascular diseases. While many anti-hypertensive medications are used safely and effectively in clinic practice, controlling hypertensive complications solely by reducing blood pressure (BP) can be challenging. α-Mangostin, a xanthone molecule extracted from the pericarp of Garcinia mangostana L., has shown various beneficial effects such as anti-tumor, anti-hyperuricemia, and anti-inflammatory properties. However, the effects of α-Mangostin on hypertension remain unknown. In this study, we observed that α-Mangostin significantly decreased systolic and diastolic blood pressure in spontaneously hypertensive rats (SHR), possibly through the down-regulation of angiotensin II (Ang II). We also identified early markers of hypertensive nephropathy, including urinary N-acetyl-ß-D-glucosaminidase (NAG) and ß2-microglobulin (ß2-MG), which were reduced by α-Mangostin treatment. Mechanistic studies suggested that α-Mangostin may inhibit renal tubular epithelial-to-mesenchymal transformation (EMT) by down-regulating the TGF-ß signaling pathway, thus potentially offering a new therapeutic approach for hypertension and hypertensive nephropathy.


Assuntos
Angiotensina II , Pressão Sanguínea , Transição Epitelial-Mesenquimal , Hipertensão , Ratos Endogâmicos SHR , Xantonas , Animais , Xantonas/farmacologia , Xantonas/uso terapêutico , Ratos , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Humanos , Pressão Sanguínea/efeitos dos fármacos , Hipertensão/tratamento farmacológico , Hipertensão/patologia , Fibrose/tratamento farmacológico , Masculino , Linhagem Celular , Garcinia mangostana/química , Transdução de Sinais/efeitos dos fármacos , Hipertensão Renal/tratamento farmacológico , Hipertensão Renal/patologia , Anti-Hipertensivos/farmacologia , Anti-Hipertensivos/uso terapêutico , Nefrite
13.
Cells ; 13(13)2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38994958

RESUMO

The cornea is continuously exposed to injuries, ranging from minor scratches to deep traumas. An effective healing mechanism is crucial for the cornea to restore its structure and function following major and minor insults. Transforming Growth Factor-Beta (TGF-ß), a versatile signaling molecule that coordinates various cell responses, has a central role in corneal wound healing. Upon corneal injury, TGF-ß is rapidly released into the extracellular environment, triggering cell migration and proliferation, the differentiation of keratocytes into myofibroblasts, and the initiation of the repair process. TGF-ß-mediated processes are essential for wound closure; however, excessive levels of TGF-ß can lead to fibrosis and scarring, causing impaired vision. Three primary isoforms of TGF-ß exist-TGF-ß1, TGF-ß2, and TGF-ß3. Although TGF-ß isoforms share many structural and functional similarities, they present distinct roles in corneal regeneration, which adds an additional layer of complexity to understand the role of TGF-ß in corneal wound healing. Further, aberrant TGF-ß activity has been linked to various corneal pathologies, such as scarring and Peter's Anomaly. Thus, understanding the molecular and cellular mechanisms by which TGF-ß1-3 regulate corneal wound healing will enable the development of potential therapeutic interventions targeting the key molecule in this process. Herein, we summarize the multifaceted roles of TGF-ß in corneal wound healing, dissecting its mechanisms of action and interactions with other molecules, and outline its role in corneal pathogenesis.


Assuntos
Fator de Crescimento Transformador beta , Cicatrização , Humanos , Fator de Crescimento Transformador beta/metabolismo , Animais , Doenças da Córnea/metabolismo , Doenças da Córnea/terapia , Doenças da Córnea/patologia , Doenças da Córnea/tratamento farmacológico , Córnea/metabolismo , Córnea/patologia , Transdução de Sinais
14.
Sci Rep ; 14(1): 15947, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38987362

RESUMO

The clinical impact of soluble molecules in pleural effusion (PE) is unclear in patients with malignant pleural mesothelioma (MPM). In this single-center, retrospective, observational study, we assessed soluble forms of cytotoxic T-lymphocyte-associated protein 4 (CTLA-4), programmed cell death protein 1 (PD-1), and PD-1 ligand 1 (PD-L1) using enzyme-linked immunosorbent assays; three TGF-ß isoforms were measured via multiplex assay in PE of patients with fibrinous pleuritis (FP) or MPM, to assess relationships between the levels of six molecules, clinicopathological characteristics, and efficacy of immune checkpoint inhibitors. Soluble forms of CTLA-4, PD-L1, PD-1, TGF-ß1, TGF-ß2, and TGF-ß3 were variably produced in PE of FP (n = 34) and MPM (n = 79); we found significant relationships between the six molecules and clinicopathological features. Although none of the three soluble immune checkpoint molecules showed diagnostic or prognostic effects in patients with MPM, TGF-ß2 level in PE is a useful differential diagnostic marker between FP and MPM. Both TGF-ß1 and TGF-ß3 levels are promising prognostic markers for MPM. Moreover, we found that higher baseline levels of PD-1 soluble forms predicted the response to anti-PD1 monotherapy. Our findings identify novel diagnostic, prognostic, and predictive biomarkers for anti-PD1 therapy in patients with MPM.


Assuntos
Proteínas de Checkpoint Imunológico , Mesotelioma Maligno , Derrame Pleural Maligno , Fator de Crescimento Transformador beta1 , Fator de Crescimento Transformador beta2 , Humanos , Masculino , Feminino , Mesotelioma Maligno/metabolismo , Mesotelioma Maligno/patologia , Mesotelioma Maligno/tratamento farmacológico , Idoso , Pessoa de Meia-Idade , Derrame Pleural Maligno/metabolismo , Derrame Pleural Maligno/patologia , Derrame Pleural Maligno/imunologia , Fator de Crescimento Transformador beta1/metabolismo , Fator de Crescimento Transformador beta2/metabolismo , Estudos Retrospectivos , Proteínas de Checkpoint Imunológico/metabolismo , Proteínas de Checkpoint Imunológico/genética , Fator de Crescimento Transformador beta3/metabolismo , Biomarcadores Tumorais/metabolismo , Antígeno CTLA-4/metabolismo , Inibidores de Checkpoint Imunológico/uso terapêutico , Antígeno B7-H1/metabolismo , Prognóstico , Neoplasias Pleurais/metabolismo , Neoplasias Pleurais/patologia , Idoso de 80 Anos ou mais , Receptor de Morte Celular Programada 1/metabolismo , Adulto
15.
J Transl Med ; 22(1): 653, 2024 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-39004699

RESUMO

BACKGROUND: Non-small cell lung cancer (NSCLC) patients with EGFR mutations exhibit an unfavorable response to immune checkpoint inhibitor (ICI) monotherapy, and their tumor microenvironment (TME) is usually immunosuppressed. TGF-ß plays an important role in immunosuppression; however, the effects of TGF-ß on the TME and the efficacy of anti-PD-1 immunotherapy against EGFR-mutated tumors remain unclear. METHODS: Corresponding in vitro studies used the TCGA database, clinical specimens, and self-constructed mouse cell lines with EGFR mutations. We utilized C57BL/6N and humanized M-NSG mouse models bearing EGFR-mutated NSCLC to investigate the effects of TGF-ß on the TME and the combined efficacy of TGF-ß blockade and anti-PD-1 therapy. The changes in immune cells were monitored by flow cytometry. The correlation between TGF-ß and immunotherapy outcomes of EGFR-mutated NSCLC was verified by clinical samples. RESULTS: We identified that TGF-ß was upregulated in EGFR-mutated NSCLC by EGFR activation and subsequent ERK1/2-p90RSK phosphorylation. TGF-ß directly inhibited CD8+ T cell infiltration, proliferation, and cytotoxicity both in vitro and in vivo, but blocking TGF-ß did not suppress the growth of EGFR-mutated tumors in vivo. Anti-TGF-ß antibody combined with anti-PD-1 antibody significantly inhibited the proliferation of recombinant EGFR-mutated tumors in C57BL/6N mice, which was superior to their monotherapy. Mechanistically, the combination of anti-TGF-ß and anti-PD-1 antibodies significantly increased the infiltration of CD8+ T cells and enhanced the anti-tumor function of CD8+ T cells. Moreover, we found that the expression of TGF-ß1 in EGFR-TKI resistant cell lines was significantly higher than that in parental cell lines. The combination of anti-TGF-ß and nivolumab significantly inhibited the proliferation of EGFR-TKI resistant tumors in humanized M-NSG mice and prolonged their survival. CONCLUSIONS: Our results reveal that TGF-ß expression is upregulated in NSCLC with EGFR mutations through the EGFR-ERK1/2-p90RSK signaling pathway. High TGF-ß expression inhibits the infiltration and anti-tumor function of CD8+ T cells, contributing to the "cold" TME of EGFR-mutated tumors. Blocking TGF-ß can reshape the TME and enhance the therapeutic efficacy of anti-PD-1 in EGFR-mutated tumors, which provides a potential combination immunotherapy strategy for advanced NSCLC patients with EGFR mutations.


Assuntos
Linfócitos T CD8-Positivos , Carcinoma Pulmonar de Células não Pequenas , Resistencia a Medicamentos Antineoplásicos , Receptores ErbB , Neoplasias Pulmonares , Mutação , Receptor de Morte Celular Programada 1 , Fator de Crescimento Transformador beta , Carcinoma Pulmonar de Células não Pequenas/patologia , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/imunologia , Receptores ErbB/metabolismo , Animais , Humanos , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/imunologia , Linfócitos T CD8-Positivos/imunologia , Fator de Crescimento Transformador beta/metabolismo , Mutação/genética , Resistencia a Medicamentos Antineoplásicos/genética , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Linhagem Celular Tumoral , Receptor de Morte Celular Programada 1/metabolismo , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Camundongos Endogâmicos C57BL , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Microambiente Tumoral/efeitos dos fármacos , Inibidores de Checkpoint Imunológico/farmacologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Camundongos , Feminino , Masculino
16.
Ophthalmol Sci ; 4(5): 100526, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38840780

RESUMO

Purpose: Marfan syndrome (MFS) is a connective tissue disorder caused by mutations in the fibrillin-1 ( (FBN1). In addition to typical phenotypes such as ectopia lentis (EL) and aortic dilation, patients with MFS are prone to ocular posterior segment abnormalities, including retinal detachment (RD), maculopathy, and posterior staphyloma (PS). This study aims to investigate the correlations between FBN1 genotype and posterior segment abnormalities within a Chinese cohort of MFS. Design: Retrospective study. Participants: One hundred twenty-one eyes of 121 patients with confirmed FBN1 mutations between January 2015 and May 2023 were included. Methods: Comprehensive ophthalmic examination findings were reviewed, and the incidence of RD, atrophic, tractional, and neovascular maculopathy (ATN classification system), and PS was analyzed between different genotype groups. Only the more severely affected eye from each patient was included. Main Outcome Measures: Clinical features and risk factors. Results: Of 121 patients, 60 eyes (49.59%) exhibited posterior segment abnormalities, including RD (4, 3.31%), maculopathy (47, 38.84%), and PS (54, 44.63%). The mean age was 11.53 ± 11.66 years, with 79.34% of patients <20 years old. The location and region of mutations were found to be associated with the incidence of maculopathy (P = 0.013, P = 0.033) and PS (P = 0.043, P = 0.036). Mutations in the middle region had a lower incidence of maculopathy and PS (P = 0.028 and P = 0.006, respectively) than those in C-terminal region. Mutations in the transforming growth factor-ß (TGF-ß) regulating sequence exhibited a higher incidence of maculopathy and PS (P = 0.020, P = 0.040). Importantly, the location and region of mutations were also associated with the incidence of atrophic maculopathy (P = 0.013 and P = 0.033, respectively). Mutations in the middle region had a significantly lower probability of atrophic maculopathy (P = 0.006), while mutations in the TGF-ß regulating region had a higher incidence of atrophic maculopathy (P = 0.020). Conclusions: Maculopathy and PS were associated with the location and region of FBN1 mutations. Patients with mutations in the TGF-ß regulating region faced an increased risk of developing retinopathy. Financial Disclosures: Proprietary or commercial disclosure may be found in the Footnotes and Disclosures at the end of this article.

17.
Arch Dermatol Res ; 316(7): 338, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38847916

RESUMO

Diabetic foot ulcer (DFU) is a predominant complication of diabetes mellitus with poor prognosis accompanied by high amputation and mortality rates. Dang-Gui-Si-Ni decoction (DSD), as a classic formula with a long history in China, has been found to improve DFU symptoms. However, mechanism of DSD for DFU therapy remains unclear with no systematic elaboration. In vivo, following establishment of DFU rat model, DSD intervention with low, medium and high doses was done, with Metformin (DM) as a positive control group. With wound healing detection, pathological changes by HE staining, inflammatory factor expression by ELISA and qRT-PCR, oxidative stress levels by ELISA, and AGEs/RAGE/TGF-ß/Smad2/3 expression by Western blot were performed. In vitro, intervention with LY2109761 (TGF-ß pathway inhibitor) based on DSD treatment in human dermal fibroblast-adult (HDF-a) cells was made. Cell viability by CCK8, migration ability by cell scratch, apoptosis by flow cytometry, and AGEs/RAGE/TGF-ß/Smad2/3 expression by Western blot were measured. DFU rats exhibited elevated AGEs/RAGE expression, whereas decreased TGF-ß1 and p-Smad3/Smad3 protein expression, accompanied by higher IL-1ß, IL-6, TNF-α levels, and oxidative stress. DSD intervention reversed above effects. Glucose induction caused lower cell viability, migration, TGF-ß1 and p-Smad3/Smad3 protein expression, with increased apoptosis and AGEs/RAGE expression in HDF-a cells. These effects were reversed after DSD intervention, and further LY2109761 intervention inhibited DSD effects in cells. DSD intervention may facilitate wound healing in DFU by regulating expression of AGEs/RAGE/TGF-ß/Smad2/3, providing scientific experimental evidence for DSD clinical application for DFU therapy.


Assuntos
Pé Diabético , Medicamentos de Ervas Chinesas , Produtos Finais de Glicação Avançada , Proteína Smad2 , Proteína Smad3 , Cicatrização , Pé Diabético/tratamento farmacológico , Pé Diabético/metabolismo , Pé Diabético/patologia , Animais , Cicatrização/efeitos dos fármacos , Ratos , Medicamentos de Ervas Chinesas/farmacologia , Proteína Smad2/metabolismo , Humanos , Proteína Smad3/metabolismo , Produtos Finais de Glicação Avançada/metabolismo , Masculino , Receptor para Produtos Finais de Glicação Avançada/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fator de Crescimento Transformador beta/metabolismo , Ratos Sprague-Dawley , Estresse Oxidativo/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Modelos Animais de Doenças , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/tratamento farmacológico , Fibroblastos/metabolismo , Fibroblastos/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos
18.
Cell ; 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38942015

RESUMO

Cellular homeostasis is intricately influenced by stimuli from the microenvironment, including signaling molecules, metabolites, and pathogens. Functioning as a signaling hub within the cell, mitochondria integrate information from various intracellular compartments to regulate cellular signaling and metabolism. Multiple studies have shown that mitochondria may respond to various extracellular signaling events. However, it is less clear how changes in the extracellular matrix (ECM) can impact mitochondrial homeostasis to regulate animal physiology. We find that ECM remodeling alters mitochondrial homeostasis in an evolutionarily conserved manner. Mechanistically, ECM remodeling triggers a TGF-ß response to induce mitochondrial fission and the unfolded protein response of the mitochondria (UPRMT). At the organismal level, ECM remodeling promotes defense of animals against pathogens through enhanced mitochondrial stress responses. We postulate that this ECM-mitochondria crosstalk represents an ancient immune pathway, which detects infection- or mechanical-stress-induced ECM damage, thereby initiating adaptive mitochondria-based immune and metabolic responses.

19.
J Transl Med ; 22(1): 594, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38926762

RESUMO

The transforming growth factor-beta (TGF-ß) signaling pathway is a vital regulator of cell proliferation, differentiation, apoptosis, and extracellular matrix production. It functions through canonical SMAD-mediated processes and noncanonical pathways involving MAPK cascades, PI3K/AKT, Rho-like GTPases, and NF-κB signaling. This intricate signaling system is finely tuned by interactions between canonical and noncanonical pathways and plays key roles in both physiologic and pathologic conditions including tissue homeostasis, fibrosis, and cancer progression. TGF-ß signaling is known to have paradoxical actions. Under normal physiologic conditions, TGF-ß signaling promotes cell quiescence and apoptosis, acting as a tumor suppressor. In contrast, in pathological states such as inflammation and cancer, it triggers processes that facilitate cancer progression and tissue remodeling, thus promoting tumor development and fibrosis. Here, we detail the role that TGF-ß plays in cancer and fibrosis and highlight the potential for future theranostics targeting this pathway.


Assuntos
Fibrose , Neoplasias , Transdução de Sinais , Fator de Crescimento Transformador beta , Humanos , Neoplasias/metabolismo , Neoplasias/patologia , Fator de Crescimento Transformador beta/metabolismo , Animais
20.
Bioengineering (Basel) ; 11(6)2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38927817

RESUMO

To characterize transforming growth factor-ß (TGF-ß) isoform (TGF-ß1~3)-b's biological effects on the human retinal pigment epithelium (RPE) under normoxia and hypoxia conditions, ARPE19 cells cultured by 2D (two-dimensional) and 3D (three-dimensional) conditions were subjected to various analyses, including (1) an analysis of barrier function by trans-epithelial electrical resistance (TEER) measurements; (2) qPCR analysis of major ECM molecules including collagen 1 (COL1), COL4, and COL6; α-smooth muscle actin (αSMA); hypoxia-inducible factor 1α (HIF1α); and peroxisome proliferator-activated receptor-gamma coactivator (PGC1α), a master regulator for mitochondrial respiration;, tight junction-related molecules, Zonula occludens-1 (ZO1) and E-cadherin; and vascular endothelial growth factor (VEGF); (3) physical property measurements of 3D spheroids; and (4) cellular metabolic analysis. Diverse effects among TGF-ß isoforms were observed, and those effects were also different between normoxia and hypoxia conditions: (1) TGF-ß1 and TGF-ß3 caused a marked increase in TEER values, and TGF-ß2 caused a substantial increase in TEER values under normoxia conditions and hypoxia conditions, respectively; (2) the results of qPCR analysis supported data obtained by TEER; (3) 3D spheroid sizes were decreased by TGF-ß isoforms, among which TGF-ß1 had the most potent effect under both oxygen conditions; (4) 3D spheroid stiffness was increased by TGF-ß2 and TGF-ß3 or by TGF-ß1 and TGF-ß3 under normoxia conditions and hypoxia conditions, respectively; and (5) the TGF-ß isoform altered mitochondrial and glycolytic functions differently under oxygen conditions and/or culture conditions. These collective findings indicate that the TGF-ß-induced biological effects of 2D and 3D cultures of ARPE19 cells were substantially diverse depending on the three TGF-ß isoforms and oxygen levels, suggesting that pathological conditions including epithelial-mesenchymal transition (EMT) of the RPE may be exclusively modulated by both factors.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA