Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 196
Filtrar
1.
Front Pharmacol ; 15: 1413844, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39086388

RESUMO

Introduction: Any disruption in renal function can have cascading effects on overall health. Understanding how a heat-born toxicant like acrylamide (ACR) affects kidney tissue is vital for realizing its broader implications for systemic health. Methods: This study investigated the ACR-induced renal damage mechanisms, particularly focusing on the regulating role of miR-21a-5p/fibrotic and miR-122-5p/inflammatory signaling pathways via targeting Timp-3 and TP53 proteins in an In silico preliminary study. Besides, renal function assessment, oxidative status, protein profile, and the expression of renal biomarkers (Timp-1, Keap-1, Kim-1, P53, TNF-α, Bax, and Caspase3) were assessed in a 60-day experiment. The examination was additionally extended to explore the potential protective effects of green-synthesized zinc oxide nanoparticles (ZNO-MONPs). A four-group experiment including control, ZNO-MONPs (10 mg/kg b.wt.), ACR (20 mg/kg b.wt.), and ZNO-MONPs + ACR was established encompassing biochemical, histological, and molecular levels. The study further investigated the protein-binding ability of ZNO and MONPs to inactivate caspase-3, Keap-1, Kim-1, and TNFRS-1A. Results: ZNO-MONPs significantly reduced ACR-induced renal tissue damage as evidenced by increased serum creatinine, uric acid, albumin, and oxidative stress markers. ACR-induced oxidative stress, apoptosis, and inflammationare revealed by biochemical tests, gene expression, and the presence of apoptotic nuclei microscopically. Also, molecular docking revealed binding affinity between ACR-BCL-2 and glutathione-synthetase, elucidating the potential mechanisms through which ACR induces renal damage. Notably, ZNO-MONPs revealed a protective potential against ACR-induced damage. Zn levels in the renal tissues of ACR-exposed rats were significantly restored in those treated with ACR + ZNO-MONPs. In conclusion, this study establishes the efficacy of ZNO-MONPs in mitigating ACR-induced disturbances in renal tissue functions, oxidative stress, inflammation, and apoptosis. The findings shed light on the potential renoprotective activity of green-synthesized nanomaterials, offering insights into novel therapeutic approaches for countering ACR-induced renal damage.

2.
Mol Metab ; 88: 101995, 2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-39047907

RESUMO

OBJECTIVES: Mutations in Tissue Inhibitor of Metalloproteinases 3 (TIMP3) cause Sorsby's Fundus Dystrophy (SFD), a dominantly inherited, rare form of macular degeneration that results in vision loss. TIMP3 is synthesized primarily by retinal pigment epithelial (RPE) cells, which constitute the outer blood-retinal barrier. One major function of RPE is the synthesis and transport of vital nutrients, such as glucose, to the retina. Recently, metabolic dysfunction in RPE cells has emerged as an important contributing factor in retinal degenerations. We set out to determine if RPE metabolic dysfunction was contributing to SFD pathogenesis. METHODS: Quantitative proteomics was conducted on RPE of mice expressing the S179C variant of TIMP3, known to be causative of SFD in humans. Proteins found to be differentially expressed (P < 0.05) were analyzed using statistical overrepresentation analysis to determine enriched pathways, processes, and protein classes using g:profiler and PANTHER Gene Ontology. We examined the effects of mutant TIMP3 on RPE metabolism using human ARPE-19 cells expressing mutant S179C TIMP3 and patient-derived induced pluripotent stem cell-derived RPE (iRPE) carrying the S204C TIMP3 mutation. RPE metabolism was directly probed using isotopic tracing coupled with GC/MS analysis. Steady state [U-13C6] glucose isotopic tracing was preliminarily conducted on S179C ARPE-19 followed by [U-13C6] glucose and [U-13C5] glutamine isotopic tracing in SFD iRPE cells. RESULTS: Quantitative proteomics and enrichment analysis conducted on RPE of mice expressing mutant S179C TIMP3 identified differentially expressed proteins that were enriched for metabolism-related pathways and processes. Notably these results highlighted dysregulated glycolysis and glucose metabolism. Stable isotope tracing experiments with [U-13C6] glucose demonstrated enhanced glucose utilization and glycolytic activity in S179C TIMP3 APRE-19 cells. Similarly, [U-13C6] glucose tracing in SFD iRPE revealed increased glucose contribution to glycolysis and the TCA cycle. Additionally, [U-13C5] glutamine tracing found evidence of altered malic enzyme activity. CONCLUSIONS: This study provides important information on the dysregulation of RPE glucose metabolism in SFD and implicates a potential commonality with other retinal degenerative diseases, emphasizing RPE cellular metabolism as a therapeutic target.

3.
Prostaglandins Other Lipid Mediat ; 174: 106862, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38936541

RESUMO

Atherosclerosis is a chronic inflammatory disease forming plaques in medium and large-sized arteries. ADAMTS-4 (a disintegrin and metalloproteinase with thrombospondin motifs-4) is an extracellular-matrix remodelling enzyme involved in the degradation of versican in the arterial wall. Recent reports indicated that increased expression of ADAMTS-4 is associated with plaque progression and vulnerability. Bioactive components of dietary oil, like sesame oil, are reported to have anti-inflammatory and antioxidant properties. Here, we studied the effect of sesame oil on regulating ADAMTS-4 in high-fat diet-induced atherosclerosis rat model. Our results indicated that sesame oil supplementation improved the anti-inflammatory and anti-oxidative status of the body. It also reduced atherosclerotic plaque formation in high-fat diet-fed rats. Our results showed that the sesame oil supplementation significantly down-regulated the expression of ADAMTS-4 in serum and aortic samples. The versican, the large proteoglycan substrate of ADAMTS-4 in the aorta, was downregulated to normal control level on sesame oil supplementation. This study, for the first time, reveals that sesame oil could down-regulate the expression of ADAMTS-4 in high-fat diet-induced atherosclerosis, imparting a new therapeutic potential for sesame oil in the management of atherosclerosis.

4.
J Pharm Biomed Anal ; 248: 116290, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-38878456

RESUMO

TIMP metallopeptidase inhibitor 3 (TIMP-3) may contribute to the pathogenesis of venous thromboembolism (VTE). However, few studies have investigated the effect of TIMP-3 on VTE. Therefore, a two-sample Mendelian randomization (MR) analysis was conducted to investigate the association between TIMP-3 levels and VTE. Seven independent single-nucleotide polymorphisms (SNPs) for TIMP-3 levels were obtained from a published genome-wide association study (the KORA Consortium, including 997 Europeans). We obtained outcome datasets for VTE, pulmonary embolism (PE), and deep vein thrombosis (DVT) from the FinnGen Consortium. The primary analytical method used in the MR analysis was the inverse variance weighted (IVW) method. To enhance the robustness of the MR results, some other MR methods including weighted median, MR-Egger, and MR-PRESSO were conducted. Moreover, several sensitivity analyses were performed to identify potential horizontal pleiotropy and heterogeneity. In primary IVW MR analyses, per log increase in genetically predicted TIMP-3 levels were positively associated with the incidence of VTE (odds ratio [OR], 1.03; 95 % confidence interval (CI), 1.01, 1.06; P = 0.010), PE (OR, 1.04; 95 % CI, 1.01, 1.08; P = 0.009), and DVT (OR, 1.06; 95 % CI, 1.02, 1.10; P= 0.003). The results of the weighted median, MR-Egger, and MR-PRESSO were similar to the main findings. No unbalanced pleiotropy or heterogeneity was observed. The study suggests that genetically predicted high levels of TIMP-3 may be associated with an increased risk of VTE. These findings indicate that strategies targeting TIMP-3 may provide a basis for the prevention and treatment of VTE. Further investigation is required to clarify this potential mechanism.


Assuntos
Estudo de Associação Genômica Ampla , Análise da Randomização Mendeliana , Polimorfismo de Nucleotídeo Único , Inibidor Tecidual de Metaloproteinase-3 , Tromboembolia Venosa , Humanos , Análise da Randomização Mendeliana/métodos , Tromboembolia Venosa/genética , Tromboembolia Venosa/epidemiologia , Inibidor Tecidual de Metaloproteinase-3/genética , Estudo de Associação Genômica Ampla/métodos , Predisposição Genética para Doença , Embolia Pulmonar/genética , Embolia Pulmonar/epidemiologia , Embolia Pulmonar/sangue , Fatores de Risco , Trombose Venosa/genética , Trombose Venosa/epidemiologia
5.
Front Genet ; 15: 1367399, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38774282

RESUMO

Background: Numerous studies have demonstrated a positive association between the level of tissue inhibitor of metalloproteinase 3 (TIMP3) and chronic kidney disease (CKD). Nevertheless, whether those associations reflect causal links still to be determined. This study intended to research the causal relationship of TIMP3 with CKD and markers of kidney function, such as creatinine-based estimated glomerular filtration rate (eGFRcrea), cystatin C-based estimated glomerular filtration rate (eGFRcys), eGFRcrea in diabetics (eGFRcrea (DM)) and eGFRcrea in non diabetics (eGFRcrea (No DM)). Methods: In this study, we investigated the causal relationships between TIMP3 and CKD and kidney function markers using a two-sample Mendelian randomization (MR) technique. We used summary level datasets for TIMP3 and CKD from genome-wide association studies that we were able to access through the study by Suhre K and Pattaro C. Results: We found that TIMP3 had a significant positive causal effect on the risk of CKD (Inverse variance weighted (IVW):odds ratio (OR):0.962, 95% confidence interval (CI): (0.936-0.988),P:0.005). However TIMP3 levels had no significant effect on risk of eGFRcys (PIVW: 0.114),eGFRcrea (PIVW:0.333). After grouping patients based on their diabetes status, we found that genetically higher levels of TIMP3 had a significant impact on eGFRcrea in participants without diabetes (OR:1.003,95%CI (1.001-1.006),P IVW:0.007), but not in participants with diabetes (PIVW = 0.057). Heterogeneity and pleiotropy analyses were carried out to verify the accuracy of the MR findings. Their findings were all not statistically significant. Conclusion: Our study suggests that TIMP3 may be causally associated with CKD and eGFRcrea (No DM)in people of European ancestry. Strategies aimed to increase TIMP3 levels may provide new ways to delay the deterioration of renal function.

6.
Int J Mol Sci ; 25(7)2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38612555

RESUMO

We aim to report the ocular phenotype and molecular genetic findings in two Czech families with Sorsby fundus dystrophy and to review all the reported TIMP3 pathogenic variants. Two probands with Sorsby fundus dystrophy and three first-degree relatives underwent ocular examination and retinal imaging, including optical coherence tomography angiography. The DNA of the first proband was screened using a targeted ocular gene panel, while, in the second proband, direct sequencing of the TIMP3 coding region was performed. Sanger sequencing was also used for segregation analysis within the families. All the previously reported TIMP3 variants were reviewed using the American College of Medical Genetics and the Association for Molecular Pathology interpretation framework. A novel heterozygous variant, c.455A>G p.(Tyr152Cys), in TIMP3 was identified in both families and potentially de novo in one. Optical coherence tomography angiography documented in one patient the development of a choroidal neovascular membrane at 54 years. Including this study, 23 heterozygous variants in TIMP3 have been reported as disease-causing. Application of gene-specific criteria denoted eleven variants as pathogenic, eleven as likely pathogenic, and one as a variant of unknown significance. Our study expands the spectrum of TIMP3 pathogenic variants and highlights the importance of optical coherence tomography angiography for early detection of choroidal neovascular membranes.


Assuntos
Neovascularização de Coroide , Degeneração Macular , Humanos , República Tcheca , Olho , Mutação , Inibidor Tecidual de Metaloproteinase-3/genética
7.
Health Sci Rep ; 7(2): e1859, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38410497

RESUMO

Background: Thyroid cancer (TC) is a prevalent and increasingly common malignant tumor. In most cases, TC progresses slowly and runs a virtually benign course. However, challenges remain with the treatment of refractory TC, which does not respond to traditional management or is subject to relapse or metastasis. Therefore, new therapeutic regimens for TC patients with poor outcomes are urgently needed. Methods: The differentially expressed RNAs were identified from the expression profile data of RNA from TC downloaded from The Cancer Genome Atlas database. Multiple databases were utilized to investigate the regulatory relationship among RNAs. Subsequently, a competitive endogenous RNA (ceRNA) network was established to elucidate the ceRNA axis that is responsible for the clinical prognosis of TC. To understand the potential mechanism of ceRNA axis in TC, location analysis, functional enrichment analysis, and immune-related analysis were conducted. Results: A ceRNA network of TC was constructed, and the TIMP3/hsa-miR-181b-5p/PAX8-AS1 ceRNA axis associated with the prognosis of TC was successfully identified. Our results showed that the axis might influence the prognosis of TC through its regulation of regulating tumor immunity. Conclusions: Our findings provide evidence that TIMP3/hsa-miR-181b-5p/PAX8-AS1 axis is significantly related to the prognosis of TC. The molecules involved in this axis may serve as novel therapeutic approaches for TC treatment.

8.
Matrix Biol ; 128: 39-64, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38387749

RESUMO

Collagen type XVIII (COL18) is an abundant heparan sulfate proteoglycan in vascular basement membranes. Here, we asked (i) if the loss of COL18 would result in blood-brain barrier (BBB) breakdown, pathological alterations of small arteries and capillaries and neuroinflammation as found in cerebral small vessel disease (CSVD) and (ii) if such changes may be associated with remodeling of synapses and neural extracellular matrix (ECM). We found that 5-month-old Col18a1-/- mice had elevated BBB permeability for mouse IgG in the deep gray matter, and intravascular erythrocyte accumulations were observed brain-wide in capillaries and arterioles. BBB permeability increased with age and affected cortical regions and the hippocampus in 12-month-old Col18a1-/- mice. None of the Col18a1-/- mice displayed hallmarks of advanced CSVD, such as hemorrhages, and did not show perivascular space enlargement. Col18a1 deficiency-induced BBB leakage was accompanied by activation of microglia and astrocytes, a loss of aggrecan in the ECM of perineuronal nets associated with fast-spiking inhibitory interneurons and accumulation of the perisynaptic ECM proteoglycan brevican and the microglial complement protein C1q at excitatory synapses. As the pathway underlying these regulations, we found increased signaling through the TGF-ß1/Smad3/TIMP-3 cascade. We verified the pivotal role of COL18 for small vessel wall structure in CSVD by demonstrating the protein's involvement in vascular remodeling in autopsy brains from patients with cerebral hypertensive arteriopathy. Our study highlights an association between the alterations of perivascular ECM, extracellular proteolysis, and perineuronal/perisynaptic ECM, as a possible substrate of synaptic and cognitive alterations in CSVD.


Assuntos
Doenças de Pequenos Vasos Cerebrais , Colágeno Tipo XVIII , Doenças Neuroinflamatórias , Animais , Humanos , Lactente , Camundongos , Doenças de Pequenos Vasos Cerebrais/genética , Doenças de Pequenos Vasos Cerebrais/metabolismo , Colágeno Tipo XVIII/genética , Colágeno Tipo XVIII/metabolismo , Endostatinas , Matriz Extracelular/metabolismo , Proteoglicanas de Heparan Sulfato/metabolismo , Camundongos Knockout
9.
Prog Retin Eye Res ; 100: 101244, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38278208

RESUMO

Inherited retinal diseases (IRD) are a leading cause of blindness in the working age population and in children. The scope of this review is to familiarise clinicians and scientists with the current landscape of molecular genetics, clinical phenotype, retinal imaging and therapeutic prospects/completed trials in IRD. Herein we present in a comprehensive and concise manner: (i) macular dystrophies (Stargardt disease (ABCA4), X-linked retinoschisis (RS1), Best disease (BEST1), PRPH2-associated pattern dystrophy, Sorsby fundus dystrophy (TIMP3), and autosomal dominant drusen (EFEMP1)), (ii) cone and cone-rod dystrophies (GUCA1A, PRPH2, ABCA4, KCNV2 and RPGR), (iii) predominant rod or rod-cone dystrophies (retinitis pigmentosa, enhanced S-Cone syndrome (NR2E3), Bietti crystalline corneoretinal dystrophy (CYP4V2)), (iv) Leber congenital amaurosis/early-onset severe retinal dystrophy (GUCY2D, CEP290, CRB1, RDH12, RPE65, TULP1, AIPL1 and NMNAT1), (v) cone dysfunction syndromes (achromatopsia (CNGA3, CNGB3, PDE6C, PDE6H, GNAT2, ATF6), X-linked cone dysfunction with myopia and dichromacy (Bornholm Eye disease; OPN1LW/OPN1MW array), oligocone trichromacy, and blue-cone monochromatism (OPN1LW/OPN1MW array)). Whilst we use the aforementioned classical phenotypic groupings, a key feature of IRD is that it is characterised by tremendous heterogeneity and variable expressivity, with several of the above genes associated with a range of phenotypes.


Assuntos
Oftalmopatias Hereditárias , Doenças Retinianas , Humanos , Distrofias de Cones e Bastonetes/genética , Distrofias de Cones e Bastonetes/fisiopatologia , Oftalmopatias Hereditárias/genética , Oftalmopatias Hereditárias/fisiopatologia , Genótipo , Amaurose Congênita de Leber/genética , Amaurose Congênita de Leber/terapia , Amaurose Congênita de Leber/fisiopatologia , Biologia Molecular , Fenótipo , Doenças Retinianas/genética , Doenças Retinianas/fisiopatologia , Doenças Retinianas/terapia
10.
Food Chem Toxicol ; 184: 114350, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38097007

RESUMO

Melanoma is a type of skin cancer considered aggressive due to its high metastatic ability and rapid progression to other tissues and organs. BDE-209 (2,2',3,3',4,4',5,5',6,6'-decabromodiphenyl ether) is an additive used as a flame retardant and classified as a persistent organic pollutant that has a high bioaccumulation capacity due to its lipophilic nature. This substance has already been detected in rivers, air, soil, plants and even in different human biological samples, such as plasma, umbilical cord blood and breast milk, revealing a great concern to human populations. Thus, in the current study we investigated whether prior exposure of murine melanoma B16-F1 cells to BDE-209 modulates in vivo progression and malignancy of melanoma. B16-F1 cells were cultured and exposed in vitro to BDE-209 (0.01, 0.1 e 1 nM) for 15 days and then inoculated, via caudal vein, in C57BL/6 mice for experimental metastasis analysis after 20 days. Inoculation of BDE-209-exposed cells resulted in 82% increase of metastasis colonized area in the lungs of mice, downregulation of tumor suppressors genes, such as Timp3 and Reck, decrease of lipid peroxidation and increase of systemic and local inflammatory response. These findings are related to melanoma progression. Additionally, the histopathological analysis revealed greater number of focal points of metastases in the lungs and invasiveness of metastases to the mice brain (89%). The results showed that exposure to BDE-209 may alter the phenotype of B16-F1 cells, worsening their metastatic profile. Current data showed that BDE-209 may interfere with the prognosis of melanoma by modulating cells with less invasiveness capacity to a more aggressive profile.


Assuntos
Melanoma Experimental , Melanoma , Neoplasias Cutâneas , Feminino , Humanos , Animais , Camundongos , Melanoma/patologia , Camundongos Endogâmicos C57BL , Éteres Difenil Halogenados , Melanoma Experimental/patologia
11.
Int J Mol Sci ; 24(23)2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-38069171

RESUMO

Micro-environmental factors, including stromal and immune cells, cytokines, and circulating hormones are well recognized to determine cancer progression. Melanoma cell growth was recently shown to be suppressed by cholecystokinin/gastrin (CCK) receptor antagonists, and our preliminary data suggested that melanoma patients with Helicobacter gastritis (which is associated with elevated serum gastrin) might have an increased risk of cancer progression. Therefore, in the present study, we examined how gastrin may act on melanoma cells. In 89 melanoma patients, we found a statistically significant association between circulating gastrin concentrations and melanoma thickness and metastasis, which are known risk factors of melanoma progression and prognosis. Immunocytochemistry using a validated antibody confirmed weak to moderate CCK2R expression in both primary malignant melanoma cells and the melanoma cell lines SK-MEL-2 and G361. Furthermore, among the 219 tumors in the Skin Cutaneous Melanoma TCGA Pan-Cancer dataset showing gastrin receptor (CCKBR) expression, significantly higher CCKBR mRNA levels were linked to stage III-IV than stage I-II melanomas. In both cell lines, gastrin increased intracellular calcium levels and stimulated cell migration and invasion through mechanisms inhibited by a CCK2 receptor antagonist. Proteomic studies identified increased MMP-2 and reduced TIMP-3 levels in response to gastrin that were likely to contribute to the increased migration of both cell lines. However, the effects of gastrin on tumor cell invasion were relatively weak in the presence of the extracellular matrix. Nevertheless, dermal fibroblasts/myofibroblasts, known also to express CCK2R, increased gastrin-induced cancer cell invasion. Our data suggest that in a subset of melanoma patients, an elevated serum gastrin concentration is a risk factor for melanoma tumor progression, and that gastrin may act on both melanoma and adjacent stromal cells through CCK2 receptors to promote mechanisms of tumor migration and invasion.


Assuntos
Melanoma , Neoplasias Cutâneas , Humanos , Melanoma/metabolismo , Gastrinas/farmacologia , Gastrinas/metabolismo , Proteômica , Receptores da Colecistocinina , Receptor de Colecistocinina B/genética , Receptor de Colecistocinina B/metabolismo
13.
Life Sci ; 334: 122212, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37890697

RESUMO

AIMS: Osteoarthritis (OA), is a debilitating disease characterized by progressive cartilage degradation, synovial inflammation, and chondrocyte senescence. Various treatment agents independently targeting these hallmarks have been investigated. However, due to the complex multifaceted nature of OA, no disease-modifying osteoarthritis drugs are clinically available. In an attempt to overcome this, we developed a combinatorial approach and demonstrated the efficacy of TsC [Tissue inhibitor of metalloproteinase-3 (TIMP3) + sulfated carboxymethylcellulose (sCMC)] and piperlongumine (PL) combination for the amelioration of OA in a goat ex vivo OA model. MAIN METHODS: The efficacy of the drug combination was evaluated using the goat ex vivo OA explant model and results were validated in clinically relevant human OA cartilage explants. The chondroprotective effects were evaluated in terms of reduced inflammation and cartilage matrix loss, reduction in chondrosenescence, and reduced oxidative stress. KEY FINDINGS: A combination of TsC and PL (TsC-PL) significantly reduced inflammation, cartilage matrix loss, chondrosenescence, and oxidative stress in the goat ex vivo OA model and showed chondroprotective effects. Further, similar chondroprotective effects were observed in human OA cartilage. Additionally, the coefficient of drug interaction analysis indicated that the combination of TsC and PL had a synergistic effect in reducing matrix degrading proteases and inflammation (goat ex vivo OA model) and Reactive oxygen species (ROS) production (human OA cartilage). SIGNIFICANCE: Combinatorial treatment with TsC and PL demonstrated potential disease-modifying effects for the treatment of osteoarthritis via inhibition of inflammation and senescence and supports the usage of treatment strategies targeting multiple pathological factors of OA simultaneously.


Assuntos
Cartilagem Articular , Osteoartrite , Humanos , Animais , Osteoartrite/patologia , Inflamação/patologia , Cartilagem/metabolismo , Condrócitos/metabolismo , Combinação de Medicamentos , Cabras , Cartilagem Articular/patologia
14.
Int Immunopharmacol ; 124(Pt B): 110970, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37748221

RESUMO

Rat Thy-1 nephritis (Thy-1N) is an experimental model for studying human mesangioproliferative glomerulonephritis (MsPGN), and its pathological features are glomerular mesangial cell (GMC) proliferation and extracellular matrix (ECM) accumulation. Although we have confirmed that renal lesions of Thy-1N rats are sublytic C5b-9-dependent, and ECM accumulation is related to tissue inhibitor of matrix metalloproteinase (TIMP) inhibiting matrix metalloproteinase (MMP) activity, whether sublytic C5b-9 can induce TIMP production by GMC in Thy-1N rat and the underlying mechanism remains unclear. In the study, we proved that the expressions of TIMP3, krϋppel-like transcription factor 5 (KLF5) and tumor necrosis factor receptor-associated factor 6 (TRAF6) were simultaneously up-regulated both in the renal tissues of Thy-1N rats (in vivo) and in the GMC exposed to sublytic C5b-9 (in vitro). Further mechanism exploration discovered that KLF5 and TRAF6 as two upstream molecules could induce TIMP3 gene transcription through binding to the same region i.e., -1801nt to -1554nt (GGGGAGGGGC) and -228nt to -46nt (GCCCCGCCCC) of TIMP3 promoter. In the process, TRAF6 mediated KLF5 K63-linked ubiquitination at K99 and K100 enhancing KLF5 nuclear localization and binding to TIMP3 promoter, augmenting its gene activation. Furthermore, the experiments in vivo exhibited that silencing KLF5, TRAF6 or TIMP3 gene could markedly lessen renal KLF5 K63-linked ubiquitination or TIMP3 induction, ECM accumulation and other pathological changes of Thy-1N rats. Besides, the positive expressions of above-mentioned these proteins and ECM accumulation and their correlation in the renal tissues of MsPGN patients were also demonstrated. Overall, our findings implicate that KLF5 and TRAF6 play a promoting role in sublytic C5b-9-triggered TIMP3 gene transcription and expression, which might provide a novel mechanistic insight into rat Thy-1N and human MsPGN.


Assuntos
Células Mesangiais , Nefrite , Humanos , Ratos , Animais , Células Mesangiais/metabolismo , Complexo de Ataque à Membrana do Sistema Complemento/metabolismo , Fator 6 Associado a Receptor de TNF/genética , Fator 6 Associado a Receptor de TNF/metabolismo , Nefrite/metabolismo , Ubiquitinação , Metaloproteinases da Matriz/metabolismo , Fatores de Transcrição Kruppel-Like/genética , Fatores de Transcrição Kruppel-Like/metabolismo , Inibidor Tecidual de Metaloproteinase-3/genética , Inibidor Tecidual de Metaloproteinase-3/metabolismo
15.
Front Neurosci ; 17: 1149603, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37456993

RESUMO

Adult neural stem cells (NSCs) in the mouse subventricular zone (SVZ) serve as a lifelong reservoir for newborn olfactory bulb neurons. Recent studies have identified a slowly dividing subpopulation of embryonic neural stem-progenitor cells (NPCs) as the embryonic origin of adult NSCs. Yet, little is known about how these slowly dividing embryonic NPCs are maintained until adulthood while other NPCs are extinguished by the completion of brain development. The extracellular matrix (ECM) is an essential component of stem cell niches and thus a key determinant of stem cell fate. Here we investigated tissue inhibitors of metalloproteinases (TIMPs)-regulators of ECM remodeling-for their potential roles in the establishment of adult NSCs. We found that Timp2, Timp3, and Timp4 were expressed at high levels in slowly dividing NPCs compared to rapidly dividing NPCs. Deletion of TIMP3 reduced the number of adult NSCs and neuroblasts in the lateral SVZ. In addition, overexpression of TIMP3 in the embryonic NPCs suppressed neuronal differentiation and upregulated the expression levels of Notch signaling relating genes. These results thus suggest that TIMP3 keeps the undifferentiated state of embryonic NPCs, leading to the establishment and maintenance of adult NSCs.

16.
Bioorg Med Chem ; 92: 117424, 2023 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-37517101

RESUMO

Osteoarthritis is a chronic degenerative joint disease affecting millions of people worldwide, with no disease-modifying drugs currently available to treat the disease. Tissue inhibitor of metalloproteinases 3 (TIMP-3) is a potential therapeutic target in osteoarthritis because of its ability to inhibit the catabolic metalloproteinases that drive joint damage by degrading the cartilage extracellular matrix. We previously found that suramin inhibits cartilage degradation through its ability to block endocytosis and intracellular degradation of TIMP-3 by low-density lipoprotein receptor-related protein 1 (LRP1), and analysis of commercially available suramin analogues indicated the importance of the 1,3,5-trisulfonic acid substitutions on the terminal naphthalene rings for this activity. Here we describe synthesis and structure-activity relationship analysis of additional suramin analogues using ex vivo models of TIMP-3 trafficking and cartilage degradation. This showed that 1,3,6-trisulfonic acid substitution of the terminal naphthalene rings was also effective, and that the protective activity of suramin analogues depended on the presence of a rigid phenyl-containing central region, with para/para substitution of these phenyl rings being most favourable. Truncated analogues lost protective activity. The physicochemical characteristics of suramin and its analogues indicate that approaches such as intra-articular injection would be required to develop them for therapeutic use.


Assuntos
Osteoartrite , Inibidor Tecidual de Metaloproteinase-3 , Humanos , Inibidor Tecidual de Metaloproteinase-3/metabolismo , Inibidor Tecidual de Metaloproteinase-3/farmacologia , Inibidor Tecidual de Metaloproteinase-3/uso terapêutico , Suramina/farmacologia , Suramina/metabolismo , Suramina/uso terapêutico , Cartilagem/metabolismo , Osteoartrite/tratamento farmacológico , Osteoartrite/metabolismo , Metaloproteases/metabolismo , Metaloproteases/farmacologia , Metaloproteases/uso terapêutico
17.
Pharmacol Res ; 194: 106846, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37414199

RESUMO

Malignant proliferation and metastasis are the main causes of breast cancer death. The transcription factor high mobility group (HMG) box-containing protein 1 (HBP1) is an important tumor suppressor whose deletion or mutation is closely related to the appearance of tumors. Here, we investigated the role of HBP1 in breast cancer suppression. HBP1 enhances the activity of the tissue inhibitors of metalloproteinases 3 (TIMP3) promoter, thereby increasing protein and mRNA levels of TIMP3. TIMP3 increases the phosphatase and tensin homolog (PTEN) protein level by inhibiting its degradation and acts as a metalloproteinase inhibitor to inhibit the protein levels of MMP2/9. In this study, we demonstrated that the HBP1/TIMP3 axis plays a crucial role in inhibiting the tumorigenesis of breast cancer. HBP1 deletion interferes with the regulation of the axis and induces the occurrence and malignant progression of breast cancer. In addition, the HBP1/TIMP3 axis promotes the sensitivity of breast cancer to radiation therapy and hormone therapy. Our study opens new perspectives on the treatment and prognosis of breast cancer.


Assuntos
Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , RNA Mensageiro/genética , Prognóstico , Regiões Promotoras Genéticas , Proteínas de Grupo de Alta Mobilidade/genética , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Inibidor Tecidual de Metaloproteinase-3/genética , Inibidor Tecidual de Metaloproteinase-3/metabolismo
18.
Front Immunol ; 14: 1147037, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36936905

RESUMO

Inherited retinal dystrophies (IRDs) as well as genetically complex retinal phenotypes represent a heterogenous group of ocular diseases, both on account of their phenotypic and genotypic characteristics. Therefore, overlaps in clinical features often complicate or even impede their correct clinical diagnosis. Deciphering the molecular basis of retinal diseases has not only aided in their disease classification but also helped in our understanding of how different molecular pathologies may share common pathomechanisms. In particular, these relate to dysregulation of two key processes that contribute to cellular integrity, namely extracellular matrix (ECM) homeostasis and inflammation. Pathological changes in the ECM of Bruch's membrane have been described in both monogenic IRDs, such as Sorsby fundus dystrophy (SFD) and Doyne honeycomb retinal dystrophy (DHRD), as well as in the genetically complex age-related macular degeneration (AMD) or diabetic retinopathy (DR). Additionally, complement system dysfunction and distorted immune regulation may also represent a common connection between some IRDs and complex retinal degenerations. Through highlighting such overlaps in molecular pathology, this review aims to illuminate how inflammatory processes and ECM homeostasis are linked in the healthy retina and how their interplay may be disturbed in aging as well as in disease.


Assuntos
Degeneração Macular , Drusas do Disco Óptico , Humanos , Degeneração Macular/genética , Retina/patologia , Drusas do Disco Óptico/patologia , Inflamação/patologia
19.
Int J Mol Sci ; 24(3)2023 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-36768220

RESUMO

Amyotrophic lateral sclerosis (ALS) is a complex disease characterized by the interplay of genetic and environmental factors for which, despite decades of intense research, diagnosis remains rather delayed, and most therapeutic options fail. Therefore, unravelling other potential pathogenetic mechanisms and searching for reliable markers are high priorities. In the present study, we employ the SOMAscan assay, an aptamer-based proteomic technology, to determine the circulating proteomic profile of ALS patients. The expression levels of ~1300 proteins were assessed in plasma, and 42 proteins with statistically significant differential expression between ALS patients and healthy controls were identified. Among these, four were upregulated proteins, Thymus- and activation-regulated chemokine, metalloproteinase inhibitor 3 and nidogen 1 and 2 were selected and validated by enzyme-linked immunosorbent assays in an overlapping cohort of patients. Following statistical analyses, different expression patterns of these proteins were observed in the familial and sporadic ALS patients. The proteins identified in this study might provide insight into ALS pathogenesis and represent potential candidates to develop novel targeted therapies.


Assuntos
Esclerose Lateral Amiotrófica , Humanos , Esclerose Lateral Amiotrófica/metabolismo , Proteômica , Proteínas Sanguíneas
20.
Discov Oncol ; 14(1): 8, 2023 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-36682035

RESUMO

PURPOSE: Results of laryngeal squamous cell carcinoma (LSCC) treatment and the 5 year survival rate of these patients remain poor. To purify therapeutic targets, investigation of new specific and prognostic blood-based markers for LSCC development is essential. METHODS: In the present study, we evaluated five single nucleotide polymorphisms (SNPs): IL1RAP rs4624606, IL1RL1 rs1041973, IL-6 rs1800795, BLK rs13277113, and TIMP3 rs9621532, and determined their associations with the patients' 5 year survival rate. Also, we performed a detailed statistical analysis of different LSCC patients' characteristics impact on their survival rate. RESULTS: Three hundred fifty-three LSCC patients and 538 control subjects were included in this study. The multivariable Cox regression analysis revealed a significant association between patients' survival rate and distribution of IL1RAP rs4624606 variants: patients carrying AT genotype at IL1RAP rs4624606 had a lower risk of death (p = 0.044). Also, it was revealed that tumor size (T) (p = 0.000), tumor differentiation grade (G) (p = 0.015), and IL1RAP rs4624606 genotype (p = 0.044) were effective variables in multivariable Cox regression analysis prognosing survival of LSCC patients. The specific-LSCC 5 year survival rate was 77%. CONCLUSIONS: In summary, our findings indicate that the genotypic distribution of IL1RAP rs4624606 influences the 5 year survival rate of LSCC patients. The results of the present study facilitate a more complete understanding of LSCC at the biological level, thus providing the base for the identification of new specific and prognostic blood-based markers for LSCC development.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA