Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Adv Sci (Weinh) ; : e2406309, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39076120

RESUMO

Frequent recurrence and metastasis caused by cancer stem cells (CSCs) are major challenges in lung cancer treatment. Therefore, identifying and characterizing specific CSC targets are crucial for the success of prospective targeted therapies. In this study, it is found that upregulated TOR Signaling Pathway Regulator-Like (TIPRL) in lung CSCs causes sustained activation of the calcium/calmodulin-dependent protein kinase kinase 2 (CaMKK2) signaling pathway by binding to CaMKK2, thereby maintaining stemness and survival. CaMKK2-mediated activation of CaM kinase 4 (CaMK4) leads to phosphorylation of cAMP response element-binding protein (CREB) at Ser129 and Ser133, which is necessary for its maximum activation and the downstream constitutive expression of its target genes (Bcl2 and HMG20A). TIPRL depletion sensitizes lung CSCs to afatinib-induced cell death and reduces distal metastasis of lung cancer in vivo. It is determined that CREB activates the transcription of TIPRL in lung CSCs. The positive feedback loop consisting of CREB and TIPRL induces the sustained activation of the CaMKK2-CaMK4-CREB axis as a driving force and upregulates the expression of stemness- and survival-related genes, promoting tumorigenesis in patients with lung cancer. Thus, TIPRL and the CaMKK2 signaling axis may be promising targets for overcoming drug resistance and reducing metastasis in lung cancer.

2.
Cell Biochem Biophys ; 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38888871

RESUMO

The target of rapamycin (TOR) proteins exhibits phylogenetic conservation across various species, ranging from yeast to humans, and are classified as members of the phosphatidylinositol kinase (PIK)-related kinase family. Multiple serine/threonine (Ser/Thr) protein phosphatases (PP)2A, PP4, and PP6, have been recognized as constituents of the TOR signaling pathway in mammalian cells. The protein known as TOR signaling pathway regulator-like (TIPRL) functions as a regulatory agent by impeding the activity of the catalytic subunits of PP2A. Various cellular contexts have been postulated for TIPRL, encompassing the regulation of mechanistic target of rapamycin (mTOR) signaling, inhibition of apoptosis and biogenesis, and recycling of PP2A. According to reports, there has been an observed increase in TIPRL levels in several types of carcinomas, such as non-small-cell lung carcinoma (NSCLC) and hepatocellular carcinomas (HCC). This review aims to comprehensively examine the significance of the Tor pathway in regulating apoptosis and proliferation of cancer cells, with a specific focus on the role of TOR signaling and TIPRL in cancer.

3.
Cell Oncol (Dordr) ; 2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-37971644

RESUMO

PURPOSE: TIPRL1 (target of rapamycin signaling pathway regulator-like 1) is a known interactor and inhibitor of protein phosphatases PP2A, PP4 and PP6 - all pleiotropic modulators of the DNA Damage Response (DDR). Here, we investigated the role of TIPRL1 in the radiotherapy (RT) response of Head and Neck Squamous Cell Carcinoma (HNSCC). METHODS: TIPRL1 mRNA (cBioportal) and protein expression (immunohistochemistry) in HNSCC samples were linked with clinical patient data. TIPRL1-depleted HNSCC cells were generated by CRISPR/Cas9 editing, and effects on colony growth, micronuclei formation (microscopy), cell cycle (flow cytometry), DDR signaling (immunoblots) and proteome (mass spectrometry) following RT were assessed. Mass spectrometry was used for TIPRL1 phosphorylation and interactomics analysis in irradiated cells. RESULTS: TIPRL1 expression was increased in tumor versus non-tumor tissue, with high tumoral TIPRL1 expression associating with lower locoregional control and decreased survival of RT-treated patients. TIPRL1 deletion in HNSCC cells resulted in increased RT sensitivity, a faster but prolonged cell cycle arrest, increased micronuclei formation and an altered proteome-wide DDR. Upon irradiation, ATM phosphorylates TIPRL1 at Ser265. A non-phospho Ser265Ala mutant could not rescue the increased radiosensitivity phenotype of TIPRL1-depleted cells. While binding to PP2A-like phosphatases was confirmed, DNA-dependent protein kinase (DNA-PKcs), RAD51 recombinase and nucleosomal histones were identified as novel TIPRL1 interactors. Histone binding, although stimulated by RT, was adversely affected by TIPRL1 Ser265 phosphorylation. CONCLUSIONS: Our findings underscore a clinically relevant role for TIPRL1 and its ATM-dependent phosphorylation in RT resistance through modulation of the DDR, highlighting its potential as a new HNSCC predictive marker and therapeutic target.

4.
Cancers (Basel) ; 13(12)2021 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-34208132

RESUMO

Recently, we reported the involvement of TIPRL/LC3/CD133 in liver cancer aggressiveness. This study assessed the human TOR signaling regulator (TIPRL)/microtubule-associated light chain 3 (LC3)/prominin-1 (CD133)/cluster of differentiation 44 (CD44) as potential diagnostic and prognostic biomarkers for early liver cancer. For the assessment, we stained tissues of human liver disease/cancer with antibodies against TIPRL/LC3/CD133/CD44/CD46, followed by confocal observation. The roles of TIPRL/LC3/CD133/CD44/CD46 in liver normal and cancer cell lines were determined by in vitro studies. We analyzed the prognostic and diagnostic potentials of TIPRL/LC3/CD133/CD44/CD46 using the receiver-operating characteristic curve, a Kaplan-Meier and uni-/multi-Cox analyses. TIPRL and LC3 were upregulated in tissues of HCCs and adult hepatocytes-derived liver diseases while downregulated in iCCA. Intriguingly, TIPRL levels were found to be critically associated with liver cancer patients' survivability, and TIPRL is the key player in liver cancer cell proliferation and viability via stemness and self-renewal induction. Furthermore, we demonstrate that TIPRL/LC3/CD133 have shown prominent efficiency for diagnosing patients with grade 1 iCCA. TIPRL/LC3/CD133/CD44 have also provided excellent potential for prognosticating patients with grade 1 iCCA and grade 1 HCCs, together with demonstrating that TIPRL/LC3/CD133/CD44 are, either individually or in conjunction, potential biomarkers for early liver cancer.

5.
Cancer Cell Int ; 21(1): 73, 2021 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-33494763

RESUMO

BACKGROUND: Non-small cell lung cancer (NSCLC) is a threat to human health. Circular RNAs (circRNAs) have been proved to function in NSCLC development. In this study, the role of circRNA hsa_circ_0010235 in NSCLC progression and the possible molecular mechanism were explored. METHODS: Expression of hsa_circ_0010235, miRNA (miR)-433-3p and TOR signaling pathway regulator-like (TIPRL) was examined by quantitative real-time PCR (qRT-PCR). Cell viability and clonogenicity were detected by cell counting kit-8 (CCK-8) assay and colony formation assay, respectively. Flow cytometry was performed to monitor cell apoptosis and cell cycle distribution. Western blot assay was employed to evaluate the protein levels of TIPRL, light chain 3 (LC3)-II/I and p62. Cell metastasis was assessed by Transwell and wound healing assays. The targeted relationship between miR-433-3p and hsa_circ_0010235 or TIPRL was confirmed by dual-luciferase reporter and RNA immunoprecipitation (RIP) assays. Furthermore, the role of hsa_circ_0010235 in vivo was investigated by xenograft assay. RESULTS: Hsa_circ_0010235 and TIPRL were highly expressed in NSCLC tissues and cells, while miR-433-3p was downregulated. Depletion of hsa_circ_0010235 or gain of miR-433-3p repressed proliferation and autophagy but promoted apoptosis in NSCLC cells. Hsa_circ_0010235 sponged miR-433-3p to upregulate TIPRL expression, so as to affect NSCLC development. Hsa_circ_0010235 knockdown also blocked tumor growth in vivo. CONCLUSION: Hsa_circ_0010235 knockdown suppressed NSCLC progression by regulating miR-433-3p/TIPRL axis, affording a novel mechanism of NSCLC progression.

6.
Front Oncol ; 10: 1062, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32719745

RESUMO

Invasion and metastasis of gastric cancer after curative resection remain the most common lethal outcomes. However, our current understanding of the molecular mechanism underlying gastric cancer metastasis is far from complete. Herein, we identified TOR signaling pathway regulator (TIPRL) as a novel metastasis suppressor in gastric cancer through genome-wide gene expression profiling analysis using mRNA microarray. Decreased TIPRL expression was detected in clinical gastric cancer specimens, and low TIPRL expression was correlated with more-advanced TNM stage, distant metastasis, and poor clinical outcome. Moreover, TIPRL was identified as a direct target of miR-216a-5p and miR-383-5p. Functional study revealed that re-expression of TIPRL in gastric cancer cell lines suppressed their migratory and invasive capacities, whereas inverse effects were observed in TIPRL-deficient models. Mechanistically, TIPRL downstream effectors and signaling pathways were investigated using mRNA microarray. Gene expression profiling revealed that TIPRL could not modulate the downstream genes at transcriptional levels, thereby implying that the regulation might occur at the post-transcriptional levels. We further demonstrated that TIPRL induced phosphorylation/activation of AMPK, which in turn attenuated phosphorylation of mTOR, p70S6K, and 4E-BP1, thereby leading to inactivation of mTOR signaling and subsequent suppression of cell migration/invasion in gastric cancer. Taken together, TIPRL acts as a novel metastasis suppressor in gastric cancer, at least in part, through regulating AMPK/mTOR signaling, likely representing a promising target for new therapies in gastric cancer.

7.
J Alzheimers Dis ; 74(2): 441-448, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32039845

RESUMO

Increased amyloid-ß (Aß) accumulation associated with abnormal autophagy-lysosomal activity and nutrient kinase dysregulation are common features in Alzheimer's disease (AD) brain. Recent studies have identified PRKAG2 and TIPRL genes that control nutrient kinase regulated autophagy, and here we determined if their expression is altered in postmortem AD brains. Gene and protein expression of TIPRL were unchanged. However, gene expression of PRKAG2 was increased 3-fold and its protein levels positively correlated with Aß accumulation in the AD brain. In summary, our findings suggest that increased PRKAG2 is an important contributing factor to Aß accumulation in the AD brain.


Assuntos
Proteínas Quinases Ativadas por AMP/genética , Doença de Alzheimer/genética , Peptídeos beta-Amiloides/biossíntese , Química Encefálica/genética , Proteínas Quinases Ativadas por AMP/biossíntese , Doença de Alzheimer/metabolismo , DNA Complementar/biossíntese , DNA Complementar/genética , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/biossíntese , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteínas Associadas aos Microtúbulos/biossíntese , Proteínas Associadas aos Microtúbulos/genética
8.
Oncotarget ; 8(68): 112610-112622, 2017 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-29348850

RESUMO

Hepatocellular carcinoma (HCC) is one of the most malignant tumors. Although various treatments, such as surgery and chemotherapy, have been developed, a novel alternative therapeutic approach for HCC therapy is urgently needed. Tumor necrosis factor-related apoptosis inducing ligand (TRAIL) is a promising anti-cancer agent, but many cancer cells are resistant to TRAIL-induced apoptosis. To help overcome TRAIL resistance in HCC cancer cells, we have identified novel chemical compounds that act as TRAIL sensitizers. We first identified the hit compound, TRT-0002, from a chemical library of 6,000 compounds using a previously developed high-throughput enzyme-linked immunosorbent assay (ELISA) screening system, which was based on the interaction of mitogen-activated protein kinase kinase 7 (MKK7) and TOR signaling pathway regulator-like (TIPRL) proteins and a cell viability assay. To increase the efficacy of this TRAIL sensitizer, we synthesized 280 analogs of TRT-0002 and finally identified two lead compounds (TRT-0029 and TRT-0173). Co-treating cultured Huh7 cells with either TRT-0029 or TRT-0173 and TRAIL resulted in TRAIL-induced apoptosis due to the inhibition of the MKK7-TIPRL interaction and subsequent phosphorylation of MKK7 and c-Jun N-terminal kinase (JNK). In vivo, injection of these compounds and TRAIL into HCC xenograft tumors resulted in tumor regression. Taken together, our results suggest that the identified lead compounds serve as TRAIL sensitizers and represent a novel strategy to overcome TRAIL resistance in HCC.

9.
Mol Carcinog ; 55(4): 387-96, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25647515

RESUMO

TRAIL (TNF-related apoptosis inducing ligand) is a promising anti-cancer drug target that selectively induces apoptosis in cancer cells. However, many cancer cells are resistant to TRAIL-induced apoptosis. Therefore, reversing TRAIL resistance is an important step for the development of effective TRAIL-based anti-cancer therapies. We previously reported that knockdown of the TOR signaling pathway regulator-like (TIPRL) protein caused TRAIL-induced apoptosis by activation of the MKK7-c-Jun N-terminal Kinase (JNK) pathway through disruption of the MKK7-TIPRL interaction. Here, we identified Taraxacum officinale F.H. Wigg (TO) as a novel TRAIL sensitizer from a set of 500 natural products using an ELISA system and validated its activity by GST pull-down analysis. Furthermore, combination treatment of Huh7 cells with TRAIL and TO resulted in TRAIL-induced apoptosis mediated through inhibition of the MKK7-TIPRL interaction and subsequent activation of MKK7-JNK phosphorylation. Interestingly, HPLC analysis identified chicoric acid as a major component of the TO extract, and combination treatment with chicoric acid and TRAIL induced TRAIL-induced cell apoptosis via JNK activation due to inhibition of the MKK7-TIPRL interaction. Our results suggest that TO plays an important role in TRAIL-induced apoptosis, and further functional studies are warranted to confirm the importance of TO as a novel TRAIL sensitizer for cancer therapy. © 2015 Wiley Periodicals, Inc.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Apoptose/efeitos dos fármacos , Carcinoma Hepatocelular/tratamento farmacológico , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Neoplasias Hepáticas/tratamento farmacológico , Ligante Indutor de Apoptose Relacionado a TNF/farmacologia , Taraxacum/química , Antineoplásicos Fitogênicos/química , Carcinoma Hepatocelular/metabolismo , Linhagem Celular Tumoral , Ativação Enzimática/efeitos dos fármacos , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Fígado/efeitos dos fármacos , Fígado/metabolismo , Neoplasias Hepáticas/metabolismo , MAP Quinase Quinase 7/metabolismo , Mapas de Interação de Proteínas/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Ligante Indutor de Apoptose Relacionado a TNF/metabolismo
10.
FEBS Lett ; 587(18): 2924-9, 2013 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-23892082

RESUMO

Target of rapamycin complex 1 (TORC1) has a key role in cellular regulations in response to environmental conditions. In yeast, Tip41 downregulates TORC1 signaling via activation of PP2A phosphatase. We show here that overexpression of TIPRL, a mammalian Tip41, suppressed dephosphorylation of mechanistic TORC1 (mTORC1) substrates under amino acid withdrawal, and knockdown of TIPRL conversely attenuated phosphorylation of those substrates after amino acid refeeding. TIPRL associated with the catalytic subunit of PP2A (PP2Ac), which was required for the TIPRL action on mTORC1 signaling. Collectively, unlike yeast TIP41, TIPRL has a positive effect on mTORC1 signaling through the association with PP2Ac.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Complexos Multiproteicos/metabolismo , Proteína Fosfatase 2/metabolismo , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo , Animais , Linhagem Celular , Regulação da Expressão Gênica , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/antagonistas & inibidores , Peptídeos e Proteínas de Sinalização Intracelular/genética , Alvo Mecanístico do Complexo 1 de Rapamicina , Camundongos , Complexos Multiproteicos/genética , Mutação Puntual , Proteína Fosfatase 2/genética , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Ratos , Serina-Treonina Quinases TOR/genética , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA