Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 580
Filtrar
1.
Cell Rep ; 43(8): 114598, 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39126651

RESUMO

Endosomal Toll-like receptors (eTLRs) are essential for the sensing of non-self through RNA and DNA detection. Here, using spatiotemporal analysis of vesicular dynamics, super-resolution microscopy studies, and functional assays, we show that endomembrane defects associated with the deficiency of the small GTPase Rab27a cause delayed eTLR ligand recognition, defective early signaling, and impaired cytokine secretion. Rab27a-deficient neutrophils show retention of eTLRs in amphisomes and impaired ligand internalization. Extracellular signal-regulated kinase (ERK) signaling and ß2-integrin upregulation, early responses to TLR7 and TLR9 ligands, are defective in Rab27a deficiency. CpG-stimulated Rab27a-deficient neutrophils present increased tumor necrosis factor alpha (TNF-α) secretion and decreased secretion of a selected group of mediators, including interleukin (IL)-10. In vivo, CpG-challenged Rab27a-null mice show decreased production of type I interferons (IFNs) and IFN-γ, and the IFN-α secretion defect is confirmed in Rab27a-null plasmacytoid dendritic cells. Our findings have significant implications for immunodeficiency, inflammation, and CpG adjuvant vaccination.

2.
Cytokine ; 182: 156730, 2024 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-39133967

RESUMO

Acute myeloid leukemia (AML) is one of the most common and fatal malignancies that affect adults, which can quickly become aggressive if left untreated, and leukemia cells invade the bone marrow. TLR-9 is an innate immune cell receptor sensitive to various PAMPs and encoded by the TLR-9 gene. As is often known, genetic polymorphisms in any gene can help the development of the disease, and these three polymorphisms, rs187084, rs5743836, and rs352140 of TLR-9, have been studied in many different cancer disorders. Therefore, this study aimed to discover the multiple forms of a TLR-9 gene in a sample of Iraqi AML patients. A total of 120 participants in a case-control study were enrolled in the current study. Using CBC, some hematological parameters were evaluated, and the serum level of TLR-9 was assessed using the ELISA technique. DNA was extracted directly from blood, and a high-resolution melting (HRM) analysis was then carried out. The results revealed a significant difference in some blood parameters among patients and healthy control, while WBC and lymphocytes were without an evident difference between the two groups of the current investigation. The serum concentration of TLR-9 showed an elevated level in patients (P value < 0.01). Nonetheless, this increase was not affected by the genotype patterns of polymorphisms. According to the P-value, there was a significant difference in wild genotypes of the three polymorphisms (rs187084, rs5743836, and rs352140). At the same time, the odds ratio revealed the association with the disease as a protective factor. In contrast, there was a significant difference in the heterozygous and mutant genotypes of TLR-9 polymorphisms, though the odds ratio confirmed the association with the AML as a risk factor. The results of rs352140 were compatible with H.W.E since there were no significant differences between the observed and expected values for either patients or healthy controls. In contrast, the result of rs5743836 was not consistent with the HWE. Furthermore, although it corresponds with the healthy one, the finding of rs187084 conflicted with H.W.E. in the patient group. In conclusion, High serum levels of TLR-9 in patients could act as biomarkers for AML. The TLR-9 gene polymorphisms (rs187084, rs5743836, and rs352140) have been linked to an increased risk of AML and may impact the disease progression in the Iraqi population.

3.
Int Immunopharmacol ; 140: 112843, 2024 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-39098224

RESUMO

Neutrophils and macrophages confine pathogens by entrapping them in extracellular traps (ETs) through activating TLR9 function. However, plasmodial parasites secreted TatD-like DNases (TatD) to counteract ETs-mediated immune clearance. We found that TLR9 mutant mice increased susceptibility to rodent malaria, suggesting TLR9 is a key protein for host defense. We found that the proportion of neutrophils and macrophages in response to plasmodial parasite infection in the TLR9 mutant mice was significantly reduced compared to that of the WT mice. Importantly, PbTatD can directly bind to the surface TLR9 (sTLR9) on macrophages, which blocking the phosphorylation of mitogen-activated protein kinase and nuclear factor-κB, negatively regulated the signaling of ETs formation by both macrophages and neutrophils. Such, P. berghei TatD is a parasite virulence factor that can inhibit the proliferation of macrophages and neutrophils through directly binding to TLR9 receptors on the cell surface, thereby blocking the activation of the downstream MyD88-NF-kB pathways.

4.
Adv Exp Med Biol ; 1445: 91-99, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38967752

RESUMO

Liver is the largest internal organ of the body with vital functions. In addition to its endocrine and exocrine activities, liver also plays a pivotal role in the immune system, including haematopoietic functions. Liver parenchymal cells, which are epithelial cells, have been found to possess innate immune functions by expressing pattern-recognition receptors (PRRs), producing complement components, and secreting cytokines. Intriguingly, in recent years, it has been discovered that liver epithelial cells also produce immunoglobulins (Igs), which have long been thought to be produced exclusively by B cells. Notably, even liver epithelial cells from B lymphocyte-deficient mice, including SCID mice and µMT mice, could also produce Igs. Compelling evidence has revealed both the physiological and pathological functions of liver-derived Igs. For instance, liver epithelial cells-derived IgM can serve as a source of natural and specific antibodies that contribute to innate immune responses, while liver-produced IgG can act as a growth factor to promote cell proliferation and survival in normal hepatocytes and hepatocarcinoma. Similar to that in B cells, the toll-like receptor 9 (TLR9)-MyD88 signaling pathway is also actively involved in promoting liver epithelial cells to secrete IgM. Liver-derived Igs could potentially serve as biomarkers, prognostic indicators, and therapeutic targets in the clinical setting, particularly for liver cancers and liver injury. Nevertheless, despite significant advances, much remains unknown about the mechanisms governing Ig transcription in liver cells, as well as the detailed functions of liver-derived Igs and their involvement in diseases and adaptive immunity. Further studies are still needed to reveal these underlying, undefined issues related to the role of liver-derived Igs in both immunity and diseases.


Assuntos
Imunidade Inata , Fígado , Animais , Fígado/metabolismo , Fígado/imunologia , Humanos , Imunoglobulinas/metabolismo , Imunoglobulinas/imunologia , Imunoglobulinas/genética , Transdução de Sinais , Imunoglobulina M/imunologia , Imunoglobulina M/metabolismo , Neoplasias Hepáticas/imunologia , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/metabolismo , Camundongos , Linfócitos B/imunologia , Linfócitos B/metabolismo , Hepatócitos/metabolismo , Hepatócitos/imunologia , Relevância Clínica
5.
Nucleic Acid Ther ; 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39018509

RESUMO

Early characterization of the immunostimulatory potential of therapeutic antisense oligonucleotides (ASOs) is crucial. At present, little is known about the toll-like receptor 9 (TLR9)-mediated immunostimulatory potential of third-generation locked nucleic acid (LNA)-modified ASOs. In this study, we have systematically investigated the TLR9-activating potential of LNA-modified oligonucleotides using different mouse and human cell culture systems. Although it has been reported that LNA modifications as well as cytosine methylation of 5'-cytosine-phosphate-guanine-3' (CpG) motifs can reduce TLR9 stimulation by phosphorothioate (PTO)-modified oligonucleotides, we identified CpG-containing LNA gapmers with substantial TLR9-stimulatory activity. We further identified immunostimulatory LNA gapmers without CpG motifs. Unexpectedly, methylation of cytosines only within the CpG motif did not necessarily reduce but could even increase TLR9 activation. In contrast, systematic methylation of all cytosines reduced or even abrogated TLR9 activation in most cases. Context dependently, the introduction of LNA-modifications into the flanks could either increase or decrease TLR9 stimulation. Overall, our results indicate that TLR9-dependent immunostimulatory potential is an individual feature of an oligonucleotide and needs to be investigated on a case-by-case basis.

6.
Exp Cell Res ; : 114187, 2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-39069152

RESUMO

BACKGROUND: Inflammation in the myocardium plays a critical role in cardiac remodeling and the pathophysiology of heart failure (HF). Previous studies have shown that mitochondrial DNA (mtDNA) can exist in different topological forms. However, the specific influence of the ratio of supercoiled/relaxed mtDNA on the inflammatory response in cardiomyocytes remains poorly understood. The aim of this study was to elucidate the differential effects of different mtDNA types on cardiomyocyte inflammation through regulation of ZBP1. MATERIALS AND METHODS: A mouse model of HF was established by transverse aortic constriction (TAC) or doxorubicin (Doxo) induction. Histopathological changes were assessed by HE staining. ELISA was used to measure cytokine levels (IL-1ß and IL-6). Southern blot analysis was performed to examine the different topology of mtDNA. Pearson correlation analysis was used to determine the correlation between the ratio of supercoiled/relaxed mtDNA and inflammatory cytokines. Reverse transcription quantitative PCR (RT-qPCR) was used to measure the mRNA expression levels of cytokines (IL-1ß, IL-6) and Dloop, as an mtDNA marker. RESULTS: The ratio of supercoiled to relaxed mtDNA was significantly increased in the myocardium of Doxo-induced mice, whereas no significant changes were observed in TAC-induced mice. The levels of IL-1ß and IL-6 were positively correlated with the cytoplasmic mtDNA supercoiled/relaxed circle ratio. Different mtDNA topology has different effects on inflammatory pathways. Low supercoiled mtDNA primarily activates the NF-κB (Ser536) pathway via ZBP1, whereas high supercoiled mtDNA significantly affects the STAT1 and STAT2 pathways. The RIPK3-NF-κB pathway, as a downstream target of ZBP1, mediates the inflammatory response induced by low supercoiled mtDNA. Knockdown of TLR9 enhances the expression of ZBP1, p-NF-κB, and RIPK3 in cardiomyocytes treated with low supercoiled mtDNA, indicating the involvement of TLR9 in the anti-inflammatory role of ZBP1 in low supercoiled mtDNA-induced inflammation. CONCLUSION: Different ratios of supercoiled to relaxed mtDNA influence the inflammatory response of cardiomyocytes and contribute to HF through the involvement of ZBP1. ZBP1, together with its downstream inflammatory mechanisms, mediates the inflammatory response induced by a low ratio of supercoiled mtDNA.

8.
Front Med ; 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39078537

RESUMO

Human cells contain two types of adenosine deaminases (ADA) each with unique properties: ADA1, which is present in all cells where it modulates intracellular functions and extracellular signaling, and ADA2, which is secreted by immune cells. The exact intracellular functions of ADA2 remain undetermined and less defined than those of ADA1. ADA2 has distinct characteristics, such as low adenosine affinity, heparin-binding ability, and putative lysosomal entry. Here, we confirm that ADA2 is a lysosomal protein that binds toll-like receptor 9 (TLR9) agonists, specifically CpG oligodeoxynucleotides (CpG ODNs). We show that interferon-alpha (IFN-α) is secreted in response to TLR9 activation by CpG ODNs and natural DNA and markedly increases when ADA2 expression is downregulated in plasmacytoid dendritic cells (pDCs). Additionally, the pretreatment of pDCs with RNA further stimulates IFN-α secretion by pDCs after activation with CpG ODNs. Our findings indicate that ADA2 regulates TLR9 responses to DNA in activated pDCs. In conclusion, decreasing ADA2 expression or blocking it with specific oligonucleotides can enhance IFN-α secretion from pDCs, improving immune responses against intracellular infections and cancer.

9.
ACS Appl Mater Interfaces ; 16(30): 39153-39164, 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39018481

RESUMO

Temporomandibular joint osteoarthritis (TMJ OA) is characterized by the degeneration of cartilage and subchondral bone. In this study, we observed a significant increase in cell-free DNA (cfDNA) levels during the progression of TMJ OA. Bioinformatics analysis identified TLR9 as a pivotal molecule in TMJ OA pathogenesis. The polyamidoamine (PAMAM) dendrimer characterized by a well-structured, highly branched, and reactive nature, exhibits robust binding and clearance capabilities for cfDNA. However, the abundant amino groups on the surface of PAMAM lead to its inherent toxicity. To mitigate this, PEG-5000 was conjugated to the surface of PAMAM dendrimers, enhancing safety. Our results indicate that PEG-PAMAM effectively inhibits the upregulation of the TLR9 protein in TMJ OA, significantly suppressing the activation of the p-IκBα/p-NF-κB signaling pathway and subsequently decreasing chondrocyte inflammation and apoptosis, as evidenced by both in vivo and in vitro experiments. We conclude that PEG-PAMAM is a safe and effective material for in vivo applications, offering a promising therapeutic strategy for TMJ OA by targeting cfDNA clearance.


Assuntos
Ácidos Nucleicos Livres , Dendrímeros , Osteoartrite , Polietilenoglicóis , Articulação Temporomandibular , Dendrímeros/química , Dendrímeros/farmacologia , Osteoartrite/tratamento farmacológico , Osteoartrite/patologia , Osteoartrite/metabolismo , Animais , Polietilenoglicóis/química , Articulação Temporomandibular/patologia , Articulação Temporomandibular/efeitos dos fármacos , Articulação Temporomandibular/metabolismo , Adsorção , Humanos , Receptor Toll-Like 9/metabolismo , Masculino , Condrócitos/efeitos dos fármacos , Condrócitos/metabolismo , Nylons/química , Nylons/farmacologia , Apoptose/efeitos dos fármacos , Camundongos
10.
Int J Mol Sci ; 25(13)2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-39000140

RESUMO

Renal involvement is an important cause of morbidity and mortality in systemic lupus erythematosus (SLE). The present study included patients with recently diagnosed Class III and Class IV lupus nephritis (LN) treated by Rheumatology who, upon the detection of alterations in their kidney function, were referred to Nephrology for the joint management of both medical specialties. The purpose of this study was to compare the plasma expression of Toll-Like Receptor 7 (TLR7) and TLR9 in healthy control (HC) subjects and newly diagnosed Class III and Class IV LN patients with 12-month follow-ups. The plasma expression of TLR7 and TLR9 proteins was determined by the ELISA method. A significant increase in the expression of TLR7 protein was found in Class III LN in the basal determination compared to the expression in the HC (p = 0.002) and at 12 months of follow-up (p = 0.03) vs. HC. The expression of TLR9 showed a behavior opposite to that of TLR7. TLR9 showed decreased protein expression in LN Class III patients' baseline and final measurements. The result was similar in the basal and final determinations of LN Class IV compared to the expression in HC. A significant decrease in SLEDAI -2K was observed at 12 months of follow-up in patients in Class III (p = 0.01) and Class IV (p = 0.0001) of LN. Complement C3 levels improved significantly at 12-month follow-up in Class IV patients (p = 0.0001). Complement C4 levels decreased significantly at 12-month follow-up in LN Class III compared to baseline (p = 0.01). Anti-DNA antibodies decreased significantly at 12 months of follow-up in Class IV LN (p = 0.01). A significant increase in proteinuria was found at 12 months of follow-up in Class III LN, compared to the baseline determination (p = 0.02). In LN Class IV, proteinuria decreased at 12 months of follow-up compared to baseline (p = 0.0001). Albuminuria decreased at 12 months of follow-up in LN Class IV (p = 0.006). Class IV LN, albuminuria also decreased at 12 months of follow-up (p = 0.009). Hematuria persisted in all patients and the glomerular filtration rate did not change. Three Class IV patients died before 12 months of follow-up from various causes. In conclusion, although the rheumatologic data appeared to improve, the renal function data remained inconsistent. Decreased expression of TLR9 and increased expression of TLR7 could be useful in the early diagnosis of Class III and Class IV LN is correct.


Assuntos
Nefrite Lúpica , Receptor 7 Toll-Like , Receptor Toll-Like 9 , Humanos , Nefrite Lúpica/diagnóstico , Nefrite Lúpica/sangue , Nefrite Lúpica/metabolismo , Receptor 7 Toll-Like/metabolismo , Receptor 7 Toll-Like/genética , Receptor Toll-Like 9/metabolismo , Feminino , Adulto , Masculino , Seguimentos , Pessoa de Meia-Idade , Estudos de Casos e Controles , Adulto Jovem
11.
Front Immunol ; 15: 1354055, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39007143

RESUMO

Recombinant adeno-associated virus (AAV) vectors have emerged as the preferred platform for gene therapy of rare human diseases. Despite the clinical promise, host immune responses to AAV vectors and transgene remain a major barrier to the development of successful AAV-based human gene therapies. Here, we assessed the human innate immune response to AAV9, the preferred serotype for AAV-mediated gene therapy of the CNS. We showed that AAV9 induced type I interferon (IFN) and IL-6 responses in human blood from healthy donors. This innate response was replicated with AAV6, required full viral particles, but was not observed in every donor. Depleting CpG motifs from the AAV transgene or inhibiting TLR9 signaling reduced type I IFN response to AAV9 in responding donors, highlighting the importance of TLR9-mediated DNA sensing for the innate response to AAV9. Remarkably, we further demonstrated that only seropositive donors with preexisting antibodies to AAV9 capsid mounted an innate immune response to AAV9 in human whole blood and that anti-AAV9 antibodies were necessary and sufficient to promote type I IFN release and plasmacytoid dendritic (pDC) cell activation in response to AAV9. Thus, our study reveals a previously unidentified requirement for AAV preexisting antibodies for TLR9-mediated type I IFN response to AAV9 in human blood.


Assuntos
Dependovirus , Vetores Genéticos , Imunidade Humoral , Interferon Tipo I , Receptor Toll-Like 9 , Humanos , Receptor Toll-Like 9/imunologia , Receptor Toll-Like 9/genética , Dependovirus/genética , Dependovirus/imunologia , Interferon Tipo I/imunologia , Vetores Genéticos/genética , Imunidade Inata , Células Dendríticas/imunologia , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Terapia Genética , Interleucina-6/sangue , Interleucina-6/imunologia
12.
Infect Immun ; 92(7): e0006324, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38899879

RESUMO

Toll-like receptor 9 (TLR9) is an innate immune receptor that localizes to endosomes in antigen presenting cells and recognizes single stranded unmethylated CpG sites on bacterial genomic DNA (gDNA). Previous bioinformatic studies have demonstrated that the genome of the human pathogen Chlamydia trachomatis contains TLR9 stimulatory motifs, and correlative studies have implied a link between human TLR9 (hTLR9) genotype variants and susceptibility to infection. Here, we present our evaluation of the stimulatory potential of C. trachomatis gDNA and its recognition by hTLR9- and murine TLR9 (mTLR9)-expressing cells. Utilizing reporter cell lines, we demonstrate that purified gDNA from C. trachomatis can stimulate hTLR9 signaling, albeit at lower levels than gDNA prepared from other Gram-negative bacteria. Interestingly, we found that while C. trachomatis is capable of signaling through hTLR9 and mTLR9 during live infections in HEK293 reporter cell lines, signaling only occurs at later developmental time points. Chlamydia-specific induction of hTLR9 is blocked when protein synthesis is inhibited prior to the RB-to-EB conversion, exacerbated by the inhibition of lipooligosaccharide biosynthesis, and is significantly altered during the induction of aberrance/persistence. Our observations support the hypothesis that chlamydial gDNA is released during the conversion between the pathogen's replicative and infectious forms and during treatment with antibiotics targeting peptidoglycan assembly. Given that C. trachomatis inclusions do not co-localize with TLR9-containing vacuoles in the pro-monocytic cell line U937, our findings also hint that chlamydial gDNA is capable of egress from the inclusion, and traffics to TLR9-containing vacuoles via an as yet unknown pathway.


Assuntos
Infecções por Chlamydia , Chlamydia trachomatis , Transdução de Sinais , Receptor Toll-Like 9 , Chlamydia trachomatis/imunologia , Chlamydia trachomatis/metabolismo , Chlamydia trachomatis/genética , Humanos , Receptor Toll-Like 9/metabolismo , Receptor Toll-Like 9/genética , Animais , Camundongos , Infecções por Chlamydia/microbiologia , Infecções por Chlamydia/imunologia , Infecções por Chlamydia/metabolismo , Células HEK293 , DNA Bacteriano/genética , Linhagem Celular
13.
Cancer Med ; 13(11): e7387, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38864479

RESUMO

BACKGROUND: Promising outcomes have been observed in multiple myeloma (MM) with the use of immunotherapies, specifically chimeric antigen receptor T (CAR-T) cell therapy. However, a portion of MM patients do not respond to CAR-T therapy, and the reasons for this lack of response remain unclear. The objective of this study was to investigate the impact of miR-34a on the immunosuppressive polarization of macrophages obtained from MM patients. METHODS: The levels of miR-34a and TLR9 (Toll-like receptor 9) were examined in macrophages obtained from both healthy individuals and patients with MM. ELISA was employed to investigate the cytokine profiles of the macrophage samples. Co-culture experiments were conducted to evaluate the immunomodulatory impact of MM-associated macrophages on CAR-T cells. RESULTS: There was an observed suppressed activation of macrophages and CD4+ T lymphocytes in the blood samples of MM patients. Overexpression of miR-34a in MM-associated macrophages dampened the TLR9 expression and impaired the inflammatory polarization. In both the co-culture system and an animal model, MM-associated macrophages suppressed the activity and tumoricidal effect of CAR-T cells in a miR-34a-dependent manner. CONCLUSION: The findings imply that targeting the macrophage miR-34a/TLR9 axis could potentially alleviate the immunosuppression associated with CAR-T therapy in MM patients.


Assuntos
MicroRNAs , Mieloma Múltiplo , Transdução de Sinais , Receptor Toll-Like 9 , Mieloma Múltiplo/imunologia , Mieloma Múltiplo/genética , Mieloma Múltiplo/terapia , Mieloma Múltiplo/metabolismo , MicroRNAs/genética , Receptor Toll-Like 9/metabolismo , Receptor Toll-Like 9/genética , Humanos , Animais , Camundongos , Técnicas de Cocultura , Macrófagos Associados a Tumor/imunologia , Macrófagos Associados a Tumor/metabolismo , Macrófagos/imunologia , Macrófagos/metabolismo , Imunoterapia Adotiva/métodos , Masculino , Feminino , Ativação de Macrófagos/imunologia , Ativação de Macrófagos/genética , Linhagem Celular Tumoral
14.
Int J Mol Sci ; 25(11)2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38892317

RESUMO

The bleomycin-induced scleroderma model is a well-established and dependable method for creating a mouse model of SSc (systemic sclerosis). In the field of skin connective tissue diseases, increasing evidence from clinical and animal experiments suggests that TLRs (Toll-like receptors) play an important role in several diseases. This study aimed to determine the role of TLR7 (Toll-like receptor 7) and TLR9 (Toll-like receptor 9) in the mechanisms of immune abnormalities and fibrosis in SSc. This study used TLR7-KO mice (TLR7-knockout mice with a balb/c background) and TLR9-KO mice (TLR9-knockout mice with a balb/c background) as well as WT mice (wild-type balb/c mice). All three kinds of mice were induced by BLM (bleomycin) in a scleroderma model as the experimental group; meanwhile, WT mice treated with PBS (phosphate-buffered saline) were used as the control group. We analyzed the fibrotic phenotype and the immunological abnormality phenotype of TLR7-deficient and TLR9-deficient mice in the SSc disease model using flow cytometry, RT-PCR (reverse transcription-polymerase chain reaction), a histological examination, and IHC (immunohistochemical staining). In a mouse model of SSc disease, the deletion of TLR7 attenuated skin and lung fibrosis, while the deletion of TLR9 exacerbated skin and lung fibrosis. The deletion of TLR7 resulted in a relative decrease in the infiltration and expression of various pro-inflammatory and fibrotic cells and cytokines in the skin. On the other hand, the deletion of TLR9 resulted in a relative increase in the infiltration and expression of various pro-inflammatory and cytokine-inhibiting cells and cytokines in the skin. Under the influence of pDCs (plasmacytoid dendritic cells), the balances of Beff/Breg (IL-6 + CD19 + B cell/IL-10 + CD19 + B cell), Th17/Treg (IL-17A + CD4 + T cell/Foxp3 + CD25 + CD4 + T cell), M1/M2 (CD86 + macrophage/CD206 + macrophage), and Th1/Th2 (TNFα + CD3 + CD4 + T cell/IL-4 + CD3 + CD4 + T cell) were biased towards the suppression of inflammation and fibrosis as a result of the TLR7 deletion. Comparatively, the balance was biased towards promoting inflammation and fibrosis due to the TLR9 deletion. In the SSc model, TLR7 promoted inflammation and fibrosis progression, while TLR9 played a protective role. These results suggest that TLR7 and TLR9 play opposite roles in triggering SSc to produce immune system abnormalities and skin fibrosis.


Assuntos
Modelos Animais de Doenças , Camundongos Knockout , Escleroderma Sistêmico , Receptor 7 Toll-Like , Receptor Toll-Like 9 , Animais , Receptor 7 Toll-Like/metabolismo , Receptor 7 Toll-Like/genética , Escleroderma Sistêmico/metabolismo , Escleroderma Sistêmico/patologia , Escleroderma Sistêmico/imunologia , Escleroderma Sistêmico/genética , Receptor Toll-Like 9/metabolismo , Receptor Toll-Like 9/genética , Camundongos , Bleomicina/efeitos adversos , Camundongos Endogâmicos BALB C , Citocinas/metabolismo , Pele/patologia , Pele/metabolismo , Pele/imunologia , Fibrose , Fibrose Pulmonar/metabolismo , Fibrose Pulmonar/patologia , Fibrose Pulmonar/etiologia , Glicoproteínas de Membrana
15.
Front Immunol ; 15: 1337384, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38827745

RESUMO

Fibroblastic reticular cells (FRCs) are a subpopulation of stromal cells modulating the immune environments in health and disease. We have previously shown that activation of TLR9 signaling in FRC in fat-associated lymphoid clusters (FALC) regulate peritoneal immunity via suppressing immune cell recruitment and peritoneal resident macrophage (PRM) retention. However, FRCs are heterogeneous across tissues and organs. The functions of each FRC subset and the regulation of TLR9 in distinct FRC subsets are unknown. Here, we confirmed that specific deletion of TLR9 in FRC improved bacterial clearance and survival during peritoneal infection. Furthermore, using single-cell RNA sequencing, we found two subsets of FRCs (CD55hi and CD55lo) in the mesenteric FALC. The CD55hi FRCs were enriched in gene expression related to extracellular matrix formation. The CD55lo FRCs were enriched in gene expression related to immune response. Interestingly, we found that TLR9 is dominantly expressed in the CD55lo subset. Activation of TLR9 signaling suppressed proliferation, cytokine production, and retinoid metabolism in the CD55lo FRC, but not CD55hi FRC. Notably, we found that adoptive transfer of Tlr9 -/-CD55lo FRC from mesenteric FALC more effectively improved the survival during peritonitis compared with WT-FRC or Tlr9 -/-CD55hi FRC. Furthermore, we identified CD55hi and CD55lo subsets in human adipose tissue-derived FRC and confirmed the suppressive effect of TLR9 on the proliferation and cytokine production in the CD55lo subset. Therefore, inhibition of TLR9 in the CD55lo FRCs from adipose tissue could be a useful strategy to improve the therapeutic efficacy of FRC-based therapy for peritonitis.


Assuntos
Fibroblastos , Peritonite , Transdução de Sinais , Receptor Toll-Like 9 , Animais , Humanos , Masculino , Camundongos , Modelos Animais de Doenças , Fibroblastos/metabolismo , Fibroblastos/imunologia , Imunomodulação , Camundongos Endogâmicos C57BL , Camundongos Knockout , Peritonite/imunologia , Peritonite/metabolismo , Receptor Toll-Like 9/metabolismo , Receptor Toll-Like 9/genética
16.
Vaccines (Basel) ; 12(6)2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38932378

RESUMO

Oligodeoxynucleotides (ODNs) containing unmethylated cytosine-phosphate-guanosine (CpG) motifs are readily recognized by Toll-like receptor 9 on immune cells, trigger an immunomodulatory cascade, induce a Th1 -biased immune milieu, and have great potential as an adjuvant in cancer vaccines. In this study, a green one-step synthesis process was adopted to prepare an amino-rich metal-organic nanoplatform (FN). The synthesized FN nanoplatform can simultaneously and effectively load model tumor antigens (OVA)/autologous tumor antigens (dLLC) and immunostimulatory CpG ODNs with an unmodified PD backbone and a guanine quadruplex structure to obtain various cancer vaccines. The FN nanoplatform and immunostimulatory CpG ODNs generate synergistic effects to enhance the immunogenicity of different antigens and inhibit the growth of established and distant tumors in both the murine E.G7-OVA lymphoma model and the murine Lewis lung carcinoma model. In the E.G7-OVA lymphoma model, vaccination efficiently increases the CD4+, CD8+, and tetramer+CD8+ T cell populations in the spleens. In the Lewis lung carcinoma model, vaccination efficiently increases the CD3+CD4+ and CD3+CD8+ T cell populations in the spleens and CD3+CD8+, CD3-CD8+, and CD11b+CD80+ cell populations in the tumors, suggesting the alteration of tumor microenvironments from cold to hot tumors.

17.
Intern Emerg Med ; 2024 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-38910224

RESUMO

The aim of this study is to evaluate the relationship between serum TLR (Toll Like Receptor) 4, 9 and Resolvin E1 levels and primary sarcopenia in geriatric patients and to compare the diagnostic accuracy of these biomarkers with the SARC-F score. A total of 88 patients aged 65 years and older were evaluated in the study. Comorbidities and geriatric syndromes were identified and patients with secondary sarcopenia were excluded. EWGSOP2 criteria were used as diagnostic criteria for sarcopenia and SARC-F questionnaire was used to find individuals at risk for sarcopenia. Serum TLR 4, 9 and Resolvin E1 levels were analyzed by ELISA. There were no significant differences between the two groups in terms of age and gender (p = 0.654 and p = 1.000, respectively). SARC-F, serum TLR 9 and Resolvin E1 were significantly higher in the sarcopenia group compared to the non-sarcopenia group (p < 0.001, p < 0.001 and p = 0.040, respectively). Statistically significant parameters were evaluated by multiple regression analysis. TLR 9 and SARC-F score were both found to be associated with sarcopenia in multivariate logistic regression analysis [Odds ratio (OR) 3145, (95%) confidence interval (CI) 5.9-1,652,888.3, p = 0.012; OR 4.788, (95%) CI 2.148-10.672, p < 0.001, respectively]. ROC curve analysis showed that the area under the ROC curve (AUC) for TLR 9 and SARC-F was 0.896 (p < 0.001) and 0.943 (p < 0.001), respectively. Although this study supports the use of the SARC-F questionnaire in daily practice, serum TLR 9 levels may be an alternative to SARC-F in cases where SARC-F is not feasible.

18.
Front Mol Biosci ; 11: 1391046, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38841190

RESUMO

Dendritic cells (DCs) are involved in the initiation and maintenance of immune responses against malignant cells by recognizing conserved pathogen-associated molecular patterns (PAMPs) and damage-associated molecular patterns (DAMPs) through pattern recognition receptors (PRRs). According to recent studies, tumor cell-derived DNA molecules act as DAMPs and are recognized by DNA sensors in DCs. Once identified by sensors in DCs, these DNA molecules trigger multiple signaling cascades to promote various cytokines secretion, including type I IFN, and then to induce DCs mediated antitumor immunity. As one of the potential attractive strategies for cancer therapy, various agonists targeting DNA sensors are extensively explored including the combination with other cancer immunotherapies or the direct usage as major components of cancer vaccines. Moreover, this review highlights different mechanisms through which tumor-derived DNA initiates DCs activation and the mechanisms through which the tumor microenvironment regulates DNA sensing of DCs to promote tumor immune escape. The contributions of chemotherapy, radiotherapy, and checkpoint inhibitors in tumor therapy to the DNA sensing of DCs are also discussed. Finally, recent clinical progress in tumor therapy utilizing agonist-targeted DNA sensors is summarized. Indeed, understanding more about DNA sensing in DCs will help to understand more about tumor immunotherapy and improve the efficacy of DC-targeted treatment in cancer.

19.
Cytokine ; 181: 156670, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38901264

RESUMO

Cytokines may related to intrauterine Hepatitis B virus (HBV) transmission. 205 HBsAg(+) pregnant cases and 74 HBsAg(-) women were included. Neonatal blood samples were taken within 24 h of delivery and before HBV vaccinations. Serological HBV biomarkers and cytokines were detected. 21.9 % of the newborns from HBsAg(+) women were intrauterinally transmitted, including 7.3 % with dominant transmission (DBT) and 14.6 % occult transmission (OBT). HBV DNA load (odd ratio [OR], 1.44; 95 % confidence interval [CI], 1.05-1.98), interferon-γ (IFN-γ) (OR, 1.01; 95 %CI, 1.00-1.02) and toll-like receptor 9 (TLR9) (OR, 1.27; 95 %CI, 1.06-1.52) positively correlated with DBT. Only IFN-γ (OR, 1.01; 95 %CI, 1.00-1.01) positively associated with OBT. According to the generated restricted cubic spline, TLR9 was positively correlates with rise of DBT in a log-shape. It may be possible to develop a nomogram which intercalates these factors to predict intrauterine HBV transmissions. Further research should consider immune processes involved in chorioamnionitis.


Assuntos
Citocinas , Vírus da Hepatite B , Hepatite B , Transmissão Vertical de Doenças Infecciosas , Receptor Toll-Like 9 , Humanos , Feminino , Gravidez , Estudos Transversais , Hepatite B/transmissão , Hepatite B/sangue , Hepatite B/imunologia , China/epidemiologia , Adulto , Citocinas/sangue , Vírus da Hepatite B/imunologia , Recém-Nascido , Antígenos de Superfície da Hepatite B/sangue , Antígenos de Superfície da Hepatite B/imunologia , DNA Viral/sangue , Interferon gama/sangue , Complicações Infecciosas na Gravidez/sangue , Complicações Infecciosas na Gravidez/virologia
20.
Sci Rep ; 14(1): 14595, 2024 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-38918496

RESUMO

There are two known mechanisms by which natural killer (NK) cells recognize and kill diseased targets: (i) direct killing and (ii) antibody-dependent cell-mediated cytotoxicity (ADCC). We investigated an indirect NK cell activation strategy for the enhancement of human NK cell killing function. We did this by leveraging the fact that toll-like receptor 9 (TLR9) agonism within pools of human peripheral blood mononuclear cells (PBMCs) results in a robust interferon signaling cascade that leads to NK cell activation. After TLR9 agonist stimulation, NK cells were enriched and incorporated into assays to assess their ability to kill tumor cell line targets. Notably, differential impacts of TLR9 agonism were observed-direct killing was enhanced while ADCC was not increased. To ensure that the observed differential effects were not attributable to differences between human donors, we recapitulated the observation using our Natural Killer-Simultaneous ADCC and Direct Killing Assay (NK-SADKA) that controls for human-to-human differences. Next, we observed a treatment-induced decrease in NK cell surface CD16-known to be shed by NK cells post-activation. Given the essential role of CD16 in ADCC, such shedding could account for the observed differential impact of TLR9 agonism on NK cell-mediated killing capacity.


Assuntos
Citotoxicidade Celular Dependente de Anticorpos , Células Matadoras Naturais , Receptor Toll-Like 9 , Humanos , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/efeitos dos fármacos , Células Matadoras Naturais/metabolismo , Citotoxicidade Celular Dependente de Anticorpos/efeitos dos fármacos , Receptor Toll-Like 9/agonistas , Receptor Toll-Like 9/metabolismo , Leucócitos Mononucleares/metabolismo , Leucócitos Mononucleares/imunologia , Leucócitos Mononucleares/efeitos dos fármacos , Ativação Linfocitária/efeitos dos fármacos , Ativação Linfocitária/imunologia , Receptores de IgG/metabolismo , Receptores de IgG/imunologia , Linhagem Celular Tumoral , Citotoxicidade Imunológica/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA