Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
1.
Int J Mol Sci ; 25(9)2024 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-38732037

RESUMO

Mitochondria are the energy factories of a cell, and depending on the metabolic requirements, the mitochondrial morphology, quantity, and membrane potential in a cell change. These changes are frequently assessed using commercially available probes. In this study, we tested the suitability of three commercially available probes-namely 5',6,6'-tetrachloro-1,1',3,3'-tetraethylbenzimidazolo-carbocyanine iodide (JC-1), MitoTracker Red CMX Rox (CMXRos), and tetramethylrhodamine methyl ester (TMRM)-for assessing the mitochondrial quantity, morphology, and membrane potential in living human mesoangioblasts in 3D with confocal laser scanning microscope (CLSM) and scanning disk confocal microscope (SDCM). Using CLSM, JC-1, and CMXRos-but not TMRM-uncovered considerable background and variation. Using SDCM, the background signal only remained apparent for the JC-1 monomer. Repetitive imaging of CMXRos and JC-1-but not TMRM-demonstrated a 1.5-2-fold variation in signal intensity between cells using CLSM. The use of SDCM drastically reduced this variation. The slope of the relative signal intensity upon repetitive imaging using CLSM was lowest for TMRM (-0.03) and highest for CMXRos (0.16). Upon repetitive imaging using SDCM, the slope varied from 0 (CMXRos) to a maximum of -0.27 (JC-1 C1). Conclusively, our data show that TMRM staining outperformed JC-1 and CMXRos dyes in a (repetitive) 3D analysis of the entire mitochondrial quantity, morphology, and membrane potential in living cells.


Assuntos
Imageamento Tridimensional , Microscopia Confocal , Mitocôndrias , Humanos , Mitocôndrias/metabolismo , Microscopia Confocal/métodos , Imageamento Tridimensional/métodos , Corantes Fluorescentes/química , Potencial da Membrana Mitocondrial , Carbocianinas/química , Rodaminas/química
2.
Biochim Biophys Acta Bioenerg ; 1865(2): 149027, 2024 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-38109971

RESUMO

Mitochondrial membrane potential (Δψ) and morphology are considered key readouts of mitochondrial functional state. This morphofunction can be studied using fluorescent dyes ("probes") like tetramethylrhodamine methyl ester (TMRM) and Mitotrackers (MTs). Although these dyes are broadly used, information comparing their performance in mitochondrial morphology quantification and Δψ-sensitivity in the same cell model is still scarce. Here we applied epifluorescence microscopy of primary human skin fibroblasts to evaluate TMRM, Mitotracker Red CMXros (CMXros), Mitotracker Red CMH2Xros (CMH2Xros), Mitotracker Green FM (MG) and Mitotracker Deep Red FM (MDR). All probes were suited for automated quantification of mitochondrial morphology parameters when Δψ was normal, although they did not deliver quantitatively identical results. The mitochondrial localization of TMRM and MTs was differentially sensitive to carbonyl cyanide-4-phenylhydrazone (FCCP)-induced Δψ depolarization, decreasing in the order: TMRM ≫ CHM2Xros = CMXros = MDR > MG. To study the effect of reversible Δψ changes, the impact of photo-induced Δψ "flickering" was studied in cells co-stained with TMRM and MG. During a flickering event, individual mitochondria displayed subsequent TMRM release and uptake, whereas this phenomenon was not observed for MG. Spatiotemporal and computational analysis of the flickering event provided evidence that TMRM redistributes between adjacent mitochondria by a mechanism dependent on Δψ and TMRM concentration. In summary, this study demonstrates that: (1) TMRM and MTs are suited for automated mitochondrial morphology quantification, (2) numerical data obtained with different probes is not identical, and (3) all probes are sensitive to FCCP-induced Δψ depolarization, with TMRM and MG displaying the highest and lowest sensitivity, respectively. We conclude that TMRM is better suited for integrated analysis of Δψ and mitochondrial morphology than the tested MTs under conditions that Δψ is not substantially depolarized.


Assuntos
Aldeídos , Mitocôndrias , Humanos , Carbonil Cianeto p-Trifluormetoxifenil Hidrazona/farmacologia , Aldeídos/metabolismo , Aldeídos/farmacologia , Fibroblastos/metabolismo , Compostos Orgânicos
3.
Cells ; 12(7)2023 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-37048162

RESUMO

Recent proteomic, metabolomic, and transcriptomic studies have highlighted a connection between changes in mitochondria physiology and cellular pathophysiological mechanisms. Secondary assays to assess the function of these organelles appear fundamental to validate these -omics findings. Although mitochondrial membrane potential is widely recognized as an indicator of mitochondrial activity, high-content imaging-based approaches coupled to multiparametric to measure it have not been established yet. In this paper, we describe a methodology for the unbiased high-throughput quantification of mitochondrial membrane potential in vitro, which is suitable for 2D to 3D models. We successfully used our method to analyze mitochondrial membrane potential in monolayers of human fibroblasts, neural stem cells, spheroids, and isolated muscle fibers. Moreover, by combining automated image analysis and machine learning, we were able to discriminate melanoma cells from macrophages in co-culture and to analyze the subpopulations separately. Our data demonstrated that our method is a widely applicable strategy for large-scale profiling of mitochondrial activity.


Assuntos
Microscopia , Proteômica , Humanos , Potencial da Membrana Mitocondrial , Mitocôndrias/metabolismo , Fibroblastos/metabolismo
4.
Front Physiol ; 13: 977431, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36091398

RESUMO

The temperature of a living cell is a crucial parameter for cellular events, such as cell division, gene expressions, enzyme activities and metabolism. We previously developed a quantifiable mitochondrial thermometry 1.0 based on rhodamine B methyl ester (RhB-ME) and rhodamine 800 (Rh800), and the theory for mitochondrial thermogenesis. Given that the synthesized RhB-ME is not readily available, thus, a convenient mitochondrial thermometry 2.0 based on tetra-methyl rhodamine methyl ester (TMRM) and Rh800 for the thermogenic study of brown adipocyte was further evolved. The fluorescence of TMRM is more sensitive (∼1.4 times) to temperature than that of RhB-ME, then the TMRM-based mito-thermometry 2.0 was validated and used for the qualitatively dynamic profiles for mitochondrial thermogenic responses and mitochondrial membrane potential in living cells simultaneously. Furthermore, our results demonstrated that the heterogenous thermogenesis evoked by ß3 adrenoceptor agonist only used overall up to ∼46% of the thermogenic capacity evoked by CCCP stimulation. On the other hand, the results demonstrated that the maximum thermogenesis evoked by NE and oligomycin A used up to ∼79% of the thermogenic capacity, which suggested the maximum thermogenic capacity under physiological conditions by inhibiting the proton-ATPase function of the mitochondrial complex V, such as under the cold activation of sympathetic nerve and the co-release of sympathetic transmitters.

5.
JHEP Rep ; 4(8): 100510, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35845295

RESUMO

Background & Aims: In cirrhosis, astrocytic swelling is believed to be the principal mechanism of ammonia neurotoxicity leading to hepatic encephalopathy (HE). The role of neuronal dysfunction in HE is not clear. We aimed to explore the impact of hyperammonaemia on mitochondrial function in primary co-cultures of neurons and astrocytes and in acute brain slices of cirrhotic rats using live cell imaging. Methods: To primary cocultures of astrocytes and neurons, low concentrations (1 and 5 µM) of NH4Cl were applied. In rats with bile duct ligation (BDL)-induced cirrhosis, a model known to induce hyperammonaemia and minimal HE, acute brain slices were studied. One group of BDL rats was treated twice daily with the ammonia scavenger ornithine phenylacetate (OP; 0.3 g/kg). Fluorescence measurements of changes in mitochondrial membrane potential (Δψm), cytosolic and mitochondrial reactive oxygen species (ROS) production, lipid peroxidation (LP) rates, and cell viability were performed using confocal microscopy. Results: Neuronal cultures treated with NH4Cl exhibited mitochondrial dysfunction, ROS overproduction, and reduced cell viability (27.8 ± 2.3% and 41.5 ± 3.7%, respectively) compared with untreated cultures (15.7 ± 1.0%, both p <0.0001). BDL led to increased cerebral LP (p = 0.0003) and cytosolic ROS generation (p <0.0001), which was restored by OP (both p <0.0001). Mitochondrial function was severely compromised in BDL, resulting in hyperpolarisation of Δψm with consequent overconsumption of adenosine triphosphate and augmentation of mitochondrial ROS production. Administration of OP restored Δψm. In BDL animals, neuronal loss was observed in hippocampal areas, which was partially prevented by OP. Conclusions: Our results elucidate that low-grade hyperammonaemia in cirrhosis can severely impact on brain mitochondrial function. Profound neuronal injury was observed in hyperammonaemic conditions, which was partially reversible by OP. This points towards a novel mechanism of HE development. Lay summary: The impact of hyperammonaemia, a common finding in patients with liver cirrhosis, on brain mitochondrial function was investigated in this study. The results show that ammonia in concentrations commonly seen in patients induces severe mitochondrial dysfunction, overproduction of damaging oxygen molecules, and profound injury and death of neurons in rat brain cells. These findings point towards a novel mechanism of ammonia-induced brain injury in liver failure and potential novel therapeutic targets.

6.
Methods Mol Biol ; 2497: 1-10, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35771432

RESUMO

Assessment of mitochondrial metabolism is multidimensional and time consuming, usually requiring specific training. Respiration, NADH generation, and mitochondrial membrane potential (ΔΨm) are dynamic readouts of the metabolism and bioenergetics of mitochondria. Methodologies available to determine functional parameters in isolated mitochondria and permeabilized cells are sometimes of limited use or inapplicable to studies in live cells. In particular, the sequential assessment of the activity of each complex in the electron transport chain has not been reported in intact cells. Here, we describe a novel approach to sequentially assess electron flow through all respiratory complexes in permeabilized and intact cells by respirometry. We also describe a highly sensitive and fast method to assess ΔΨm and NADH generation in live cells using plate reader assays. Thus, our combined method allows a relatively inexpensive and fast determination of three major readouts of mitochondrial function in a few hours, using equipment that is frequently available in many laboratories worldwide.


Assuntos
NAD , Consumo de Oxigênio , Respiração Celular , Metabolismo Energético , Mitocôndrias/metabolismo , NAD/metabolismo
7.
Methods Mol Biol ; 2497: 11-61, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35771433

RESUMO

The mitochondrial membrane potential (ΔψM) is the major component of the bioenergetic driving force responsible for most cellular ATP produced, and it controls a host of biological processes. In intact cells, assay readouts with commonly used fluorescence ΔψM probes are distorted by factors other than ΔψM. Here, we describe a protocol to calculate both ΔψM and plasma membrane potential (ΔψP) in absolute millivolts in intact single cells, or in populations of adherent, cultured cells. Our approach generates unbiased data that allows comparison of ΔψM between cell types with different geometry and ΔψP, and to follow ΔψM in time when ΔψP fluctuates. The experimental paradigm results in fluorescence microscopy time courses using a pair of cationic and anionic probes with internal calibration points that are subsequently computationally converted to millivolts on an absolute scale. The assay is compatible with wide field, confocal or two-photon microscopy. The method given here is optimized for a multiplexed, partial 96-well microplate format to record ΔψP and ΔψM responses for three consecutive treatment additions.


Assuntos
Corantes Fluorescentes , Mitocôndrias , Células Cultivadas , Corantes Fluorescentes/metabolismo , Potencial da Membrana Mitocondrial , Microscopia de Fluorescência/métodos , Mitocôndrias/metabolismo
8.
Methods Mol Biol ; 2497: 319-324, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35771453

RESUMO

The mitochondrial membrane potential (ΔΨm) generated by proton pumps (Complexes I, III, and IV) is an essential component in the process of energy generation during oxidative phosphorylation. Tetramethylrhodamine, methyl ester, perchlorate (TMRM) is one of the most commonly used fluorescent reporters of ΔΨm. TMRM is routinely employed in a steady state for the measurement of membrane potential. However, it can also be utilized with time-lapse fluorescence imaging to effectively monitor the changes in membrane potential in response to a given stimulus by analyzing the change in distribution of the dye with time.


Assuntos
Mitocôndrias , Imagem Óptica , Células Cultivadas , Potencial da Membrana Mitocondrial , Mitocôndrias/metabolismo , Imagem com Lapso de Tempo
9.
Membranes (Basel) ; 12(5)2022 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-35629820

RESUMO

The mitochondrial permeability transition pore (mPTP) is a non-selective pore in the inner mitochondrial membrane (IMM) which causes depolarization when it opens under conditions of oxidative stress and high concentrations of Ca2+. In this study, a stochastic computational model was developed to better understand the dynamics of mPTP opening and closing associated with elevated reactive oxygen species (ROS) in cardiomyocytes. The data modeled are from "photon stress" experiments in which the fluorescent dye TMRM (tetramethylrhodamine methyl ester) is both the source of ROS (induced by laser light) and sensor of the electrical potential difference across the IMM. Monte Carlo methods were applied to describe opening and closing of the pore along with the Hill Equation to account for the effect of ROS levels on the transition probabilities. The amplitude distribution of transient mPTP opening events, the number of transient mPTP opening events per minute in a cell, the time it takes for recovery after transient depolarizations in the mitochondria, and the change in TMRM fluorescence during the transition from transient to permanent mPTP opening events were analyzed. The model suggests that mPTP transient open times have an exponential distribution that are reflected in TMRM fluorescence. A second multiple pore model in which individual channels have no permanent open state suggests that 5-10 mPTP per mitochondria would be needed for sustained mitochondrial depolarization at elevated ROS with at least 1 mPTP in the transient open state.

10.
Bio Protoc ; 12(23)2022 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-36620081

RESUMO

Entosis is a process where a living cell launches an invasion into another living cell's cytoplasm. These inner cells can survive inside outer cells for a long period of time, can undergo cell division, or can be released. However, the fate of most inner cells is lysosomal degradation by entotic cell death. Entosis can be detected by imaging a combination of membrane, cytoplasmic, nuclear, and lysosomal staining in the cells. Here, we provide a protocol for detecting entosis events and measuring the kinetics of entotic cell death by time-lapse imaging using tetramethylrhodamine methyl ester (TMRM) staining. This protocol was validated in: J Cell Biol (2021), DOI: 10.1083/jcb.202010030.

11.
FASEB J ; 35(1): e21148, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33196122

RESUMO

Mitochondrial membrane potential (ΔΨm) is a global indicator of mitochondrial function. Previous reports on heterogeneity of ΔΨm were qualitative or semiquantitative. Here, we quantified intercellular differences in ΔΨm in unsynchronized human cancer cells, cells synchronized in G1, S, and G2, and human fibroblasts. We assessed ΔΨm using a two-pronged microscopy approach to measure relative fluorescence of tetramethylrhodamine methyl ester (TMRM) and absolute values of ΔΨm. We showed that ΔΨm is more heterogeneous in cancer cells compared to fibroblasts, and it is maintained throughout the cell cycle. The effect of chemical inhibition of the respiratory chain and ATP synthesis differed between basal, low and high ΔΨm cells. Overall, our results showed that intercellular heterogeneity of ΔΨm is mainly modulated by intramitochondrial factors, it is independent of the ΔΨm indicator and it is not correlated with intercellular heterogeneity of plasma membrane potential or the phases of the cell cycle.


Assuntos
Ciclo Celular , Potencial da Membrana Mitocondrial , Mitocôndrias/metabolismo , Membranas Mitocondriais/metabolismo , Neoplasias/metabolismo , Células Hep G2 , Humanos , Mitocôndrias/patologia , Neoplasias/patologia
12.
Int J Mol Sci ; 21(20)2020 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-33050449

RESUMO

Adult human cardiac mesenchymal progenitor cells (hCmPC) are multipotent resident populations involved in cardiac homeostasis and heart repair. Even if the mechanisms have not yet been fully elucidated, the stem cell differentiation is guided by the mitochondrial metabolism; however, mitochondrial approaches to identify hCmPC with enhanced stemness and/or differentiation capability for cellular therapy are not established. Here we demonstrated that hCmPCs sorted for low and high mitochondrial membrane potential (using a lipophilic cationic dye tetramethylrhodamine methyl ester, TMRM), presented differences in energy metabolism from preferential glycolysis to oxidative rates. TMRM-high cells are highly efficient in terms of oxygen consumption rate, basal and maximal respiration, and spare respiratory capacity compared to TMRM-low cells. TMRM-high cells showed characteristics of pre-committed cells and were associated with higher in vitro differentiation capacity through endothelial, cardiac-like, and, to a lesser extent, adipogenic and chondro/osteogenic cell lineage, when compared with TMRM-low cells. Conversely, TMRM-low showed higher self-renewal potential. To conclude, we identified two hCmPC populations with different metabolic profile, stemness maturity, and differentiation potential. Our findings suggest that metabolic sorting can isolate cells with higher regenerative capacity and/or long-term survival. This metabolism-based strategy to select cells may be broadly applicable to therapies.


Assuntos
Potencial da Membrana Mitocondrial , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Miócitos Cardíacos/citologia , Miócitos Cardíacos/metabolismo , Biomarcadores , Diferenciação Celular , Metabolismo Energético , Regulação da Expressão Gênica , Humanos , Imunofenotipagem , Mitocôndrias/genética , Mitocôndrias/metabolismo , Desenvolvimento Muscular/genética , Osteogênese/genética
13.
Methods Mol Biol ; 2184: 197-213, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32808227

RESUMO

The proton electrochemical gradient generated by respiratory chain activity accounts for over 90% of all available ATP and, as such, its evaluation and accurate measurements regarding its total values and fluctuations is an invaluable component in the understanding of mitochondrial functions. Consequently, alterations in electric potential across the inner mitochondrial membrane generated by differential protonic accumulations and transport are known as the mitochondrial membrane potential, or Δψ, and are reflective of the functional metabolic status of mitochondria. There are several experimental approaches to measure Δψ, ranging from fluorometric evaluations to electrochemical probes. Here we discuss the advantages and disadvantages of several of these methods, ranging from one that is dependent on the movement of a particular ion (tetraphenylphosphonium (TPP+) with a selective electrode) to the selection of a fluorescent dye from various types to achieve the same goal. The evaluation of the accumulation and movements of TPP+ across the inner mitochondrial membrane, or the fluorescence of accumulated dye particles, is a sensitive and accurate method of evaluating the Δψ in respiring mitochondria (either isolated or still inside the cell).


Assuntos
Cátions/metabolismo , Permeabilidade da Membrana Celular/fisiologia , Corantes Fluorescentes/metabolismo , Potencial da Membrana Mitocondrial/fisiologia , Mitocôndrias/metabolismo , Mitocôndrias/fisiologia , Oniocompostos/metabolismo , Compostos Organofosforados/metabolismo , Animais , Células Cultivadas , Eletrodos , Membranas Mitocondriais/metabolismo , Membranas Mitocondriais/fisiologia , Prótons
14.
Methods Cell Biol ; 155: 221-245, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32183960

RESUMO

Assessment of the mitochondrial membrane potential (Δψ) in living cells, although not trivial, can be used to estimate mitochondrial bioenergetic state. For this purpose, fluorescent lipophilic cations are broadly applied. These cations enter cells and accumulate primarily in the mitochondrial matrix in a Δψ-dependent manner. Here, we describe the use of the cations tetramethylrhodamine methyl ester (TMRM) and rhodamine 123 (Rhod123) for semi-quantitative Δψ analysis in living mammalian cells. Two different strategies are presented: (1) steady-state measurements that are suited to compare Δψ between different conditions (i.e., for comparing disease states or treatments) and (2) dynamic measurements allowing temporal monitoring of Δψ changes (i.e., to assess the effect of acute perturbations). We discuss the rationale for the use of TMRM and Rhod123 in their non-quenching/redistribution and quenching mode, how these modes are associated with different fluorescence responses, and how data can be interpreted. Practically, three experimental protocols are provided describing the use of TMRM and/or Rhod123 to assess Δψ in primary human skin fibroblasts (PHSFs) and neuron/astrocyte co-cultures by live-cell fluorescence microscopy.


Assuntos
Técnicas Citológicas/métodos , Mamíferos/metabolismo , Potencial da Membrana Mitocondrial , Animais , Células Cultivadas , Fibroblastos/metabolismo , Fluorescência , Humanos , Rodamina 123/metabolismo , Rodaminas/metabolismo , Pele/citologia
15.
Indian J Med Res ; 152(5): 498-507, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33707392

RESUMO

BACKGROUND & OBJECTIVES: Parkinson's disease (PD) is a motor disorder that affects movement. More than 24 loci and 28 associated genes have been identified to be associated with this disease. The present study accounts for the contribution of two candidates, leucine-rich repeat kinase 2 ( LRRK2) and parkin RBR E3 ubiquitin protein ligase ( PRKN) in the PD patients, and their characterization in silico and in vitro. METHODS: A total of 145 sporadic PD cases and 120 ethnically matched healthy controls were enrolled with their informed consent. Mutation screening was performed by direct DNA sequencing of the targeted exons of LRRK2 and all exons flanking introns of PRKN. The effect of the pathogenic PRKN variants on a drug (MG-132) induced loss of mitochondrial membrane potential (△ΨM) was measured by a fluorescent dye tetramethylrhodamine methyl ester (TMRM). RESULTS: Twelve and 20 genetic variants were identified in LRRK2 and PRKN, respectively. Interestingly, five out of seven exonic LRRK2 variants were synonymous. Further assessment in controls confirmed the rarity of two such p.Y1527 and p.V1615. Among the pathogenic missense variations (as predicted in silico) in PRKN, two were selected (p.R42H and p.A82E) for their functional study in vitro, which revealed the reduced fluorescence intensity of TMRM as compared to wild type, in case of p.R42H but not the other. INTERPRETATION & CONCLUSIONS: About 6.2 per cent of the cases (9/145) in the studied patient cohort were found to carry pathogenic (as predicted in silico) missense variations in PRKN in heterozygous condition but not in case of LRRK2 which was rare. The presence of two rare synonymous variants of LRRK2 (p.Y1527 and p.V1615) may support the phenomenon of codon bias. Functional characterization of selected PRKN variations revealed p.R42H to cause disruption of mitochondrial membrane potential (△ΨM) rendering cells more susceptible to cellular stress.


Assuntos
Doença de Parkinson , Humanos , Leucina , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/genética , Mutação , Doença de Parkinson/genética , Ubiquitina-Proteína Ligases/genética
16.
Mol Hum Reprod ; 25(11): 695-705, 2019 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-31579926

RESUMO

Mitochondria are highly dynamic organelles and their distribution, structure and activity affect a wide range of cellular functions. Mitochondrial membrane potential (∆Ψm) is an indicator of mitochondrial activity and plays a major role in ATP production, redox balance, signaling and metabolism. Despite the absolute reliance of oocyte and early embryo development on mitochondrial function, there is little known about the spatial and temporal aspects of ΔΨm during oocyte maturation. The one exception is that previous findings using a ΔΨm indicator, JC-1, report that mitochondria in the cortex show a preferentially increased ΔΨm, relative to the rest of the cytoplasm. Using live-cell imaging and a new ratiometric approach for measuring ΔΨm in mouse oocytes, we find that ΔΨm increases through the time course of oocyte maturation and that mitochondria in the vicinity of the first meiotic spindle show an increase in ΔΨm, compared to other regions of the cytoplasm. We find no evidence for an elevated ΔΨm in the oocyte cortex. These findings suggest that mitochondrial activity is adaptive and responsive to the events of oocyte maturation at both a global and local level. In conclusion, we have provided a new approach to reliably measure ΔΨm that has shed new light onto the spatio-temporal regulation of mitochondrial function in oocytes and early embryos.


Assuntos
Potencial da Membrana Mitocondrial/fisiologia , Oócitos/crescimento & desenvolvimento , Oogênese/fisiologia , Análise Espaço-Temporal , Fuso Acromático/metabolismo , Animais , Técnicas de Cultura Embrionária , Desenvolvimento Embrionário , Feminino , Fertilização in vitro , Técnicas de Maturação in Vitro de Oócitos , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/metabolismo
17.
Stem Cell Res ; 40: 101573, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31539857

RESUMO

The role of mitochondria in the fate determination of hematopoietic stem and progenitor cells (HSPCs) is not solely limited to the switch from glycolysis to oxidative phosphorylation, but also involves alterations in mitochondrial features and properties, including mitochondrial membrane potential (ΔΨmt). HSPCs have a high ΔΨmt even when the rates of respiration and phosphorylation are low, and we have previously shown that the minimum proton flow through ATP synthesis (or complex V) enables high ΔΨmt in HSPCs. Here we show that HSPCs sustain a unique equilibrium between electron transport chain (ETC) complexes and ATP production. HSPCs exhibit high expression of ETC complex II, which sustains complex III in proton pumping, although the expression levels of complex I or V are relatively low. Complex II inhibition by TTFA caused a substantial decrease of ΔΨmt, particularly in HSPCs, while the inhibition of complex I by Rotenone mainly affected mature populations. Functionally, pharmacological inhibition of complex II reduced in vitro colony-replating capacity but this was not observed when complex I was inhibited, which supports the distinct roles of complex I and II in HSPCs. Taken together, these data highlight complex II as a key regulator of ΔΨmt in HSPCs and open new and interesting questions regarding the precise mechanisms that regulate mitochondrial control to maintain hematopoietic stem cell self-renewal.


Assuntos
Linhagem Celular/citologia , Complexo II de Transporte de Elétrons/metabolismo , Células-Tronco Hematopoéticas/metabolismo , Mitocôndrias/metabolismo , Animais , Diferenciação Celular , Linhagem Celular/metabolismo , Células Cultivadas , Transporte de Elétrons , Complexo II de Transporte de Elétrons/genética , Glicólise , Células-Tronco Hematopoéticas/citologia , Potencial da Membrana Mitocondrial , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/genética , Fosforilação Oxidativa
18.
Methods Mol Biol ; 1928: 69-76, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30725451

RESUMO

The mitochondrial membrane potential (Δψm) drives the generation of ATP by mitochondria. Interestingly, Δψm is higher in many cancer cells comparted to healthy noncancerous cell types, providing a unique metabolic marker. This feature has also been exploited for therapeutic use by utilizing drugs that specifically accumulate in the mitochondria of cancer cells with high Δψm. As such, the assessment of Δψm can provide very useful information as to the metabolic state of a cancer cell, as well as its potential for malignancy. In addition, the measurement of Δψm can also be used to test the ability of novel anticancer therapies to disrupt mitochondrial metabolism and cause cell death.Here, we outline two methods for assessing Δψm in cancer cells using confocal microscopy and the potentiometric fluorescent dye tetramethylrhodamine methyl ester (TMRM). In the first protocol, we describe a technique to quantitatively measure Δψm, which can be used to compare Δψm between different cell types. In the second protocol, we describe a technique for assessing changes to Δψm over time, which can be used to determine the effectiveness of different therapeutic compounds or drugs in modulating mitochondrial function.


Assuntos
Corantes Fluorescentes , Potencial da Membrana Mitocondrial , Microscopia de Fluorescência , Rodaminas , Corantes Fluorescentes/metabolismo , Humanos , Processamento de Imagem Assistida por Computador , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Microscopia Confocal , Microscopia de Fluorescência/métodos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Neoplasias/metabolismo , Rodaminas/metabolismo
19.
JACC Basic Transl Sci ; 3(2): 265-276, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30062212

RESUMO

Sunitinib, a multitargeted oral tyrosine kinase inhibitor, used widely to treat solid tumors, results in hypertension in up to 47% and left ventricular dysfunction in up to 19% of treated individuals. The relative contribution of afterload toward inducing cardiac dysfunction with sunitinib treatment remains unknown. We created a preclinical model of sunitinib cardiotoxicity using engineered microtissues that exhibited cardiomyocyte death, decreases in force generation, and spontaneous beating at clinically relevant doses. Simulated increases in afterload augmented sunitinib cardiotoxicity in both rat and human microtissues, which suggest that antihypertensive therapy may be a strategy to prevent left ventricular dysfunction in patients treated with sunitinib.

20.
J Neurosurg ; 129(5): 1151-1159, 2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-29219755

RESUMO

The authors performed morphological and functional studies of the mitochondria in particular blood cells, i.e., endothelial colony-forming cells (ECFCs), from patients with moyamoya disease. The results indicated that the mitochondria of these ECFCs exhibit morphological and functional abnormalities, which may present new insights into the pathogenesis of moyamoya disease.


Assuntos
Células Progenitoras Endoteliais/metabolismo , Mitocôndrias/metabolismo , Doença de Moyamoya/metabolismo , Adolescente , Adulto , Criança , Pré-Escolar , Células Progenitoras Endoteliais/patologia , Feminino , Humanos , Lactente , Masculino , Mitocôndrias/patologia , Doença de Moyamoya/patologia , Consumo de Oxigênio/fisiologia , Espécies Reativas de Oxigênio/metabolismo , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA