Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 182
Filtrar
1.
Front Genet ; 15: 1425370, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39092429

RESUMO

Background: Genome-wide association studies (GWASs) have identified 38 loci associated with ulcerative colitis (UC) susceptibility, but the risk genes and their biological mechanisms remained to be comprehensively elucidated. Methods: Multi-marker analysis of genomic annotation (MAGMA) software was used to annotate genes on GWAS summary statistics of UC from FinnGen database. Genetic analysis was performed to identify risk genes. Cross-tissue transcriptome-wide association study (TWAS) using the unified test for molecular signatures (UTMOST) was performed to compare GWAS summary statistics with gene expression matrix (from Genotype-Tissue Expression Project) for data integration. Subsequently, we used FUSION software to select key genes from the individual tissues. Additionally, conditional and joint analysis was conducted to improve our understanding on UC. Fine-mapping of causal gene sets (FOCUS) software was employed to accurately locate risk genes. The results of the four genetic analyses (MAGMA, UTMOST, FUSION and FOCUS) were combined to obtain a set of UC risk genes. Finally, Mendelian randomization (MR) analysis and Bayesian colocalization analysis were conducted to determine the causal relationship between the risk genes and UC. To test the robustness of our findings, the same approaches were taken to verify the GWAS data of UC on IEU. Results: Multiple correction tests screened PIM3 as a risk gene for UC. The results of Bayesian colocalization analysis showed that the posterior probability of hypothesis 4 was 0.997 and 0.954 in the validation dataset. MR was conducted using the inverse variance weighting method and two single nucleotide polymorphisms (SNPs, rs28645887 and rs62231924) were included in the analysis (p < 0.001, 95%CI: 1.45-1.89). In the validation dataset, MR result was p < 0.001, 95%CI: 1.19-1.72, indicating a clear causal relationship between PIM3 and UC. Conclusion: Our study validated PIM3 as a key risk gene for UC and its expression level may be related to the risk of UC, providing a novel reference for further improving the current understanding on the genetic structure of UC.

2.
EBioMedicine ; 107: 105305, 2024 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-39180788

RESUMO

BACKGROUND: Tissue-specific analysis of the transcriptome is critical to elucidating the molecular basis of complex traits, but central tissues are often not accessible. We propose a methodology, Multi-mOdal-based framework to bridge the Transcriptome between PEripheral and Central tissues (MOTPEC). METHODS: Multi-modal regulatory elements in peripheral blood are incorporated as features for gene expression prediction in 48 central tissues. To demonstrate the utility, we apply it to the identification of BMI-associated genes and compare the tissue-specific results with those derived directly from surrogate blood. FINDINGS: MOTPEC models demonstrate superior performance compared with both baseline models in blood and existing models across the 48 central tissues. We identify a set of BMI-associated genes using the central tissue MOTPEC-predicted transcriptome data. The MOTPEC-based differential gene expression (DGE) analysis of BMI in the central tissues (including brain caudate basal ganglia and visceral omentum adipose tissue) identifies 378 genes overlapping the results from a TWAS of BMI, while only 162 overlapping genes are identified using gene expression in blood. Cellular perturbation analysis further supports the utility of MOTPEC for identifying trait-associated gene sets and narrowing the effect size divergence between peripheral blood and central tissues. INTERPRETATION: The MOTPEC framework improves the gene expression prediction accuracy for central tissues and enhances the identification of tissue-specific trait-associated genes. FUNDING: This research is supported by the National Natural Science Foundation of China 82204118 (D.Z.), the seed funding of the Key Laboratory of Intelligent Preventive Medicine of Zhejiang Province (2020E10004), the National Institutes of Health (NIH) Genomic Innovator Award R35HG010718 (E.R.G.), NIH/NHGRI R01HG011138 (E.R.G.), NIH/NIA R56AG068026 (E.R.G.), NIH Office of the Director U24OD035523 (E.R.G.), and NIH/NIGMS R01GM140287 (E.R.G.).

3.
Ecotoxicol Environ Saf ; 284: 116939, 2024 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-39191137

RESUMO

Air pollution, particularly fine particulate matter and gaseous pollutants including NO2 and NOx, presents significant public health challenges. While the harmful effects of these pollutants are well-documented, the molecular mechanisms underlying their impact on health remain incompletely understood. In this study, we utilized genome-wide association study (GWAS) data from the UK Biobank, expression quantitative trait loci (eQTL) data from the Genotype-Tissue Expression (GTEx) project, and protein quantitative trait loci (pQTL) data from the Atherosclerosis Risk in Communities (ARIC) study to conduct comprehensive analyses using the Unified Test for Molecular Signatures (UTMOST), Transcriptome-wide Association Studies (TWAS), and Proteome-wide Association Studies (PWAS). To integrate and synthesize these analyses, we developed the AirSigOmniTWP Hub, a specialized platform designed to consolidate and interpret the results from UTMOST, TWAS, and PWAS. TWAS analysis identified a significant association between PM10 exposure and the gene INO80E in females (P = 4.37×10⁻5, FDR = 0.0383), suggesting a potential role in chromatin remodeling. PWAS analysis revealed a significant association between NOx exposure and the gene PIP in females (P = 2.28×10⁻5, FDR = 0.0299), implicating its involvement in inflammatory pathways. Additionally, UTMOST analyses uncovered significant associations between various pollutants and genes including NCOA4P3 and SPATS2L with PM2.5 exposure, indicating potential mechanisms related to transcriptional regulation and gene-environment interactions.

4.
Am J Hum Genet ; 2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-39137781

RESUMO

We performed a series of integrative analyses including transcriptome-wide association studies (TWASs) and proteome-wide association studies (PWASs) of renal cell carcinoma (RCC) to nominate and prioritize molecular targets for laboratory investigation. On the basis of a genome-wide association study (GWAS) of 29,020 affected individuals and 835,670 control individuals and prediction models trained in transcriptomic reference models, our TWAS across four kidney transcriptomes (GTEx kidney cortex, kidney tubules, TCGA-KIRC [The Cancer Genome Atlas kidney renal clear-cell carcinoma], and TCGA-KIRP [TCGA kidney renal papillary cell carcinoma]) identified 38 gene associations (false-discovery rate <5%) in at least two of four transcriptomic panels and identified 12 genes that were independent of GWAS susceptibility regions. Analyses combining TWAS associations across 48 tissues from GTEx identified associations that were replicable in tumor transcriptomes for 23 additional genes. Analyses by the two major histologic types (clear-cell RCC and papillary RCC) revealed subtype-specific associations, although at least three gene associations were common to both subtypes. PWAS identified 13 associated proteins, all mapping to GWAS-significant loci. TWAS-identified genes were enriched for active enhancer or promoter regions in RCC tumors and hypoxia-inducible factor binding sites in relevant cell lines. Using gene expression correlation, common cancers (breast and prostate) and RCC risk factors (e.g., hypertension and BMI) display genetic contributions shared with RCC. Our work identifies potential molecular targets for RCC susceptibility for downstream functional investigation.

5.
Front Ophthalmol (Lausanne) ; 4: 1362350, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38984127

RESUMO

Introduction: Cataract is the leading cause of blindness among the elderly worldwide. Twin and family studies support an important role for genetic factors in cataract susceptibility with heritability estimates up to 58%. To date, 55 loci for cataract have been identified by genome-wide association studies (GWAS), however, much work remains to identify the causal genes. Here, we conducted a transcriptome-wide association study (TWAS) of cataract to prioritize causal genes and identify novel ones, and examine the impact of their expression. Methods: We performed tissue-specific and multi-tissue TWAS analyses to assess associations between imputed gene expression from 54 tissues (including 49 from the Genotype Tissue Expression (GTEx) Project v8) with cataract using FUSION software. Meta-analyzed GWAS summary statistics from 59,944 cataract cases and 478,571 controls, all of European ancestry and from two cohorts (GERA and UK Biobank) were used. We then examined the expression of the novel genes in the lens tissue using the iSyTE database. Results: Across tissue-specific and multi-tissue analyses, we identified 99 genes for which genetically predicted gene expression was associated with cataract after correcting for multiple testing. Of these 99 genes, 20 (AC007773.1, ANKH, ASIP, ATP13A2, CAPZB, CEP95, COQ6, CREB1, CROCC, DDX5, EFEMP1, EIF2S2, ESRRB, GOSR2, HERC4, INSRR, NIPSNAP2, PICALM, SENP3, and SH3YL1) did not overlap with previously reported cataract-associated loci. Tissue-specific analysis identified 202 significant gene-tissue associations for cataract, of which 166 (82.2%), representing 9 unique genes, were attributed to the previously reported 11q13.3 locus. Tissue-enrichment analysis revealed that gastrointestinal tissues represented one of the highest proportions of the Bonferroni-significant gene-tissue associations (21.3%). Moreover, this gastrointestinal tissue type was the only anatomical category significantly enriched in our results, after correcting for the number of tissue donors and imputable genes for each reference panel. Finally, most of the novel cataract genes (e.g., Capzb) were robustly expressed in iSyTE lens data. Discussion: Our results provide evidence of the utility of imputation-based TWAS approaches to characterize known GWAS risk loci and identify novel candidate genes that may increase our understanding of cataract etiology. Our findings also highlight the fact that expression of genes associated with cataract susceptibility is not necessarily restricted to lens tissue.

6.
Front Genet ; 15: 1404456, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39071775

RESUMO

Background: Although genome-wide association studies (GWAS) have identified 14 loci associated with frailty index (FI) susceptibility, the underlying causative genes and biological mechanisms remain elusive. Methods: A cross-tissue transcriptome-wide association study (TWAS) was conducted utilizing the Unified Test for Molecular Markers (UTMOST), which integrates GWAS summary statistics from 164,610 individuals of European ancestry and 10,616 Swedish participants, alongside gene expression matrices from the Genotype-Tissue Expression (GTEx) Project. Validation of the significant genes was performed through three distinct methods: FUSION, FOCUS, and Multiple Marker Analysis of Genome-wide Annotation (MAGMA). Exploration of tissue and functional enrichment for FI-associated SNPs was conducted using MAGMA. Conditional and joint analyses, along with fine mapping, were employed to enhance our understanding of FI's genetic architecture. Mendelian randomization was employed to ascertain causal relationships between significant genes and FI, and co-localization analysis was utilized to investigate shared SNPs between significant genes and FI. Results: In this study, two novel susceptibility genes associated with the risk of FI were identified through the application of four TWAS methods. Mendelian randomization demonstrated that HTT may elevate the risk of developing frailty, whereas LRPPRC could offer protection against the onset of frailty. Additionally, co-localization analysis identified a shared SNP between LRPPRC and FI. Tissue enrichment analyses revealed that genomic regions linked to SNPs associated with frailty were predominantly enriched in various brain regions, including the frontal cortex, cerebral cortex, and cerebellar hemispheres. Conditional, combined analyses, and fine mapping collectively identified two genetic regions associated with frailty: 2p21 and 4q16.3. Functional enrichment analyses revealed that the pathways associated with frailty were primarily related to the MHC complex, PD-1 signaling, cognition, inflammatory response to antigenic stimuli, and the production of second messenger molecules. Conclusion: This investigation uncovers two newly identified genes with forecasted expression levels associated with the risk of FI, offering new perspectives on the genetic architecture underlying FI.

7.
Am J Hum Genet ; 111(8): 1782-1795, 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39053457

RESUMO

In Mendelian randomization, two single SNP-trait correlation-based methods have been developed to infer the causal direction between an exposure (e.g., a gene) and an outcome (e.g., a trait), called MR Steiger's method and its recent extension called Causal Direction-Ratio (CD-Ratio). Here we propose an approach based on R2, the coefficient of determination, to combine information from multiple (possibly correlated) SNPs to simultaneously infer the presence and direction of a causal relationship between an exposure and an outcome. Our proposed method generalizes Steiger's method from using a single SNP to multiple SNPs as IVs. It is especially useful in transcriptome-wide association studies (TWASs) (and similar applications) with typically small sample sizes for gene expression (or another molecular trait) data, providing a more flexible and powerful approach to inferring causal directions. It can be applied to GWAS summary data with a reference panel. We also discuss the influence of invalid IVs and introduce a new approach called R2S to select and remove invalid IVs (if any) to enhance the robustness. We compared the performance of the proposed method with existing methods in simulations to demonstrate its advantages. We applied the methods to identify causal genes for high/low-density lipoprotein cholesterol (HDL/LDL) using the individual-level GTEx gene expression data and UK Biobank GWAS data. The proposed method was able to confirm some well-known causal genes while identifying some novel ones. Additionally, we illustrated an application of the proposed method to GWAS summary to infer causal relationships between HDL/LDL and stroke/coronary artery disease (CAD).


Assuntos
Estudo de Associação Genômica Ampla , Polimorfismo de Nucleotídeo Único , Transcriptoma , Humanos , Estudo de Associação Genômica Ampla/métodos , Transcriptoma/genética , Análise da Randomização Mendeliana/métodos , Modelos Genéticos , LDL-Colesterol/genética , LDL-Colesterol/sangue , Fenótipo
8.
CNS Neurosci Ther ; 30(7): e14812, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38970158

RESUMO

OBJECTIVE: Air pollutants have been reported to have a potential relationship with amyotrophic lateral sclerosis (ALS). The causality and underlying mechanism remained unknown despite several existing observational studies. We aimed to investigate the potential causality between air pollutants (PM2.5, NOX, and NO2) and the risk of ALS and elucidate the underlying mechanisms associated with this relationship. METHODS: The data utilized in our study were obtained from publicly available genome-wide association study data sets, in which single nucleotide polymorphisms (SNPs) were employed as the instrumental variantswith three principles. Two-sample Mendelian randomization and transcriptome-wide association (TWAS) analyses were conducted to evaluate the effects of air pollutants on ALS and identify genes associated with both pollutants and ALS, followed by regulatory network prediction. RESULTS: We observed that exposure to a high level of PM2.5 (OR: 2.40 [95% CI: 1.26-4.57], p = 7.46E-3) and NOx (OR: 2.35 [95% CI: 1.32-4.17], p = 3.65E-3) genetically increased the incidence of ALS in MR analysis, while the effects of NO2 showed a similar trend but without sufficient significance. In the TWAS analysis, TMEM175 and USP35 turned out to be the genes shared between PM2.5 and ALS in the same direction. CONCLUSION: Higher exposure to PM2.5 and NOX might causally increase the risk of ALS. Avoiding exposure to air pollutants and air cleaning might be necessary for ALS prevention.


Assuntos
Poluentes Atmosféricos , Esclerose Lateral Amiotrófica , Estudo de Associação Genômica Ampla , Análise da Randomização Mendeliana , Polimorfismo de Nucleotídeo Único , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/epidemiologia , Humanos , Polimorfismo de Nucleotídeo Único/genética , Poluentes Atmosféricos/efeitos adversos , Poluentes Atmosféricos/toxicidade , Predisposição Genética para Doença/genética , Material Particulado/efeitos adversos
9.
Genet Epidemiol ; 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38887957

RESUMO

Instrumental variable (IV) analysis has been widely applied in epidemiology to infer causal relationships using observational data. Genetic variants can also be viewed as valid IVs in Mendelian randomization and transcriptome-wide association studies. However, most multivariate IV approaches cannot scale to high-throughput experimental data. Here, we leverage the flexibility of our previous work, a hierarchical model that jointly analyzes marginal summary statistics (hJAM), to a scalable framework (SHA-JAM) that can be applied to a large number of intermediates and a large number of correlated genetic variants-situations often encountered in modern experiments leveraging omic technologies. SHA-JAM aims to estimate the conditional effect for high-dimensional risk factors on an outcome by incorporating estimates from association analyses of single-nucleotide polymorphism (SNP)-intermediate or SNP-gene expression as prior information in a hierarchical model. Results from extensive simulation studies demonstrate that SHA-JAM yields a higher area under the receiver operating characteristics curve (AUC), a lower mean-squared error of the estimates, and a much faster computation speed, compared to an existing approach for similar analyses. In two applied examples for prostate cancer, we investigated metabolite and transcriptome associations, respectively, using summary statistics from a GWAS for prostate cancer with more than 140,000 men and high dimensional publicly available summary data for metabolites and transcriptomes.

10.
Alzheimers Res Ther ; 16(1): 120, 2024 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-38824563

RESUMO

BACKGROUND: Transcriptome-wide association study (TWAS) is an influential tool for identifying genes associated with complex diseases whose genetic effects are likely mediated through transcriptome. TWAS utilizes reference genetic and transcriptomic data to estimate effect sizes of genetic variants on gene expression (i.e., effect sizes of a broad sense of expression quantitative trait loci, eQTL). These estimated effect sizes are employed as variant weights in gene-based association tests, facilitating the mapping of risk genes with genome-wide association study (GWAS) data. However, most existing TWAS of Alzheimer's disease (AD) dementia are limited to studying only cis-eQTL proximal to the test gene. To overcome this limitation, we applied the Bayesian Genome-wide TWAS (BGW-TWAS) method to leveraging both cis- and trans- eQTL of brain and blood tissues, in order to enhance mapping risk genes for AD dementia. METHODS: We first applied BGW-TWAS to the Genotype-Tissue Expression (GTEx) V8 dataset to estimate cis- and trans- eQTL effect sizes of the prefrontal cortex, cortex, and whole blood tissues. Estimated eQTL effect sizes were integrated with the summary data of the most recent GWAS of AD dementia to obtain BGW-TWAS (i.e., gene-based association test) p-values of AD dementia per gene per tissue type. Then we used the aggregated Cauchy association test to combine TWAS p-values across three tissues to obtain omnibus TWAS p-values per gene. RESULTS: We identified 85 significant genes in prefrontal cortex, 82 in cortex, and 76 in whole blood that were significantly associated with AD dementia. By combining BGW-TWAS p-values across these three tissues, we obtained 141 significant risk genes including 34 genes primarily due to trans-eQTL and 35 mapped risk genes in GWAS Catalog. With these 141 significant risk genes, we detected functional clusters comprised of both known mapped GWAS risk genes of AD in GWAS Catalog and our identified TWAS risk genes by protein-protein interaction network analysis, as well as several enriched phenotypes related to AD. CONCLUSION: We applied BGW-TWAS and aggregated Cauchy test methods to integrate both cis- and trans- eQTL data of brain and blood tissues with GWAS summary data, identifying 141 TWAS risk genes of AD dementia. These identified risk genes provide novel insights into the underlying biological mechanisms of AD dementia and potential gene targets for therapeutics development.


Assuntos
Doença de Alzheimer , Teorema de Bayes , Encéfalo , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Locos de Características Quantitativas , Transcriptoma , Humanos , Doença de Alzheimer/genética , Doença de Alzheimer/sangue , Estudo de Associação Genômica Ampla/métodos , Encéfalo/metabolismo , Predisposição Genética para Doença/genética , Locos de Características Quantitativas/genética , Polimorfismo de Nucleotídeo Único , Perfilação da Expressão Gênica/métodos
11.
HGG Adv ; 5(3): 100317, 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-38851890

RESUMO

Chronic inflammatory demyelinating polyneuropathy (CIDP) is a rare, immune-mediated disorder in which an aberrant immune response causes demyelination and axonal damage of the peripheral nerves. Genetic contribution to CIDP is unclear and no genome-wide association study (GWAS) has been reported so far. In this study, we aimed to identify CIDP-related risk loci, genes, and pathways. We first focused on CIDP, and 516 CIDP cases and 403,545 controls were included in the GWAS analysis. We also investigated genetic risk for inflammatory polyneuropathy (IP), in which we performed a GWAS study using FinnGen data and combined the results with GWAS from the UK Biobank using a fixed-effect meta-analysis. A total of 1,261 IP cases and 823,730 controls were included in the analysis. Stratified analyses by gender were performed. Mendelian randomization (MR), colocalization, and transcriptome-wide association study (TWAS) analyses were performed to identify associated genes. Gene-set analyses were conducted to identify associated pathways. We identified one genome-wide significant locus at 20q13.33 for CIDP risk among women, the top variant located at the intron region of gene CDH4. Sex-combined MR, colocalization, and TWAS analyses identified three candidate pathogenic genes for CIDP and five genes for IP. MAGMA gene-set analyses identified a total of 18 pathways related to IP or CIDP. Sex-stratified analyses identified three genes for IP among males and two genes for IP among females. Our study identified suggestive risk genes and pathways for CIDP and IP. Functional analyses should be conducted to further confirm these associations.


Assuntos
Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Polirradiculoneuropatia Desmielinizante Inflamatória Crônica , Humanos , Polirradiculoneuropatia Desmielinizante Inflamatória Crônica/genética , Feminino , Masculino , Polimorfismo de Nucleotídeo Único , Estudos de Casos e Controles , Análise da Randomização Mendeliana
12.
Cell Genom ; 4(6): 100582, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38870908

RESUMO

Epiretinal membrane (ERM) is a common retinal condition characterized by the presence of fibrocellular tissue on the retinal surface, often with visual distortion and loss of visual acuity. We studied European American (EUR), African American (AFR), and Latino (admixed American, AMR) ERM participants in the Million Veteran Program (MVP) for genome-wide association analysis-a total of 38,232 case individuals and 557,988 control individuals. We completed a genome-wide association study (GWAS) in each population separately, and then results were meta-analyzed. Genome-wide significant (GWS) associations were observed in all three populations studied: 31 risk loci in EUR subjects, 3 in AFR, and 2 in AMR, with 48 in trans-ancestry meta-analysis. Many results replicated in the FinnGen sample. Several GWS variants associate to alterations in gene expression in the macula. ERM showed significant genetic correlation to multiple traits. Pathway enrichment analyses implicated collagen and collagen-adjacent mechanisms, among others. This well-powered ERM GWAS identified novel genetic associations that point to biological mechanisms for ERM.


Assuntos
Membrana Epirretiniana , Estudo de Associação Genômica Ampla , Humanos , Membrana Epirretiniana/genética , Feminino , Predisposição Genética para Doença , Masculino , População Branca/genética , Polimorfismo de Nucleotídeo Único , Negro ou Afro-Americano/genética , Loci Gênicos/genética , Idoso , Estados Unidos/epidemiologia , Hispânico ou Latino/genética , Pessoa de Meia-Idade
13.
Plant Commun ; : 101010, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38918950

RESUMO

A genome-wide association study (GWAS) identifies trait-associated loci, but identifying the causal genes can be a bottleneck, due in part to slow decay of linkage disequilibrium (LD). A transcriptome-wide association study (TWAS) addresses this issue by identifying gene expression-phenotype associations or integrating gene expression quantitative trait loci with GWAS results. Here, we used self-pollinated soybean (Glycine max [L.] Merr.) as a model to evaluate the application of TWAS to the genetic dissection of traits in plant species with slow LD decay. We generated RNA sequencing data for a soybean diversity panel and identified the genetic expression regulation of 29 286 soybean genes. Different TWAS solutions were less affected by LD and were robust to the source of expression, identifing known genes related to traits from different tissues and developmental stages. The novel pod-color gene L2 was identified via TWAS and functionally validated by genome editing. By introducing a new exon proportion feature, we significantly improved the detection of expression variations that resulted from structural variations and alternative splicing. As a result, the genes identified through our TWAS approach exhibited a diverse range of causal variations, including SNPs, insertions or deletions, gene fusion, copy number variations, and alternative splicing. Using this approach, we identified genes associated with flowering time, including both previously known genes and novel genes that had not previously been linked to this trait, providing insights complementary to those from GWAS. In summary, this study supports the application of TWAS for candidate gene identification in species with low rates of LD decay.

14.
J Headache Pain ; 25(1): 94, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38840241

RESUMO

BACKGROUND: Migraine is a common neurological disorder with a strong genetic component. Despite the identification of over 100 loci associated with migraine susceptibility through genome-wide association studies (GWAS), the underlying causative genes and biological mechanisms remain predominantly elusive. METHODS: The FinnGen R10 dataset, consisting of 333,711 subjects (20,908 cases and 312,803 controls), was utilized in conjunction with the Genotype-Tissue Expression Project (GTEx) v8 EQTls files to conduct cross-tissue transcriptome association studies (TWAS). Functional Summary-based Imputation (FUSION) was employed to validate these findings in single tissues. Additionally, candidate susceptibility genes were screened using Gene Analysis combined with Multi-marker Analysis of Genomic Annotation (MAGMA). Subsequent Mendelian randomization (MR) and colocalization analyses were conducted. Furthermore, GeneMANIA analysis was employed to enhance our understanding of the functional implications of these susceptibility genes. RESULTS: We identified a total of 19 susceptibility genes associated with migraine in the cross-tissue TWAS analysis. Two novel susceptibility genes, REV1 and SREBF2, were validated through both single tissue TWAS and MAGMA analysis. Mendelian randomization and colocalization analyses further confirmed these findings. REV1 may reduce the migraine risk by regulating DNA damage repair, while SREBF2 may increase the risk of migraine by regulating cholesterol metabolism. CONCLUSION: Our study identified two novel genes whose predicted expression was associated with the risk of migraine, providing new insights into the genetic framework of migraine.


Assuntos
Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Transtornos de Enxaqueca , Transcriptoma , Humanos , Transtornos de Enxaqueca/genética , Predisposição Genética para Doença/genética , Transcriptoma/genética , Análise da Randomização Mendeliana , Polimorfismo de Nucleotídeo Único/genética
15.
Am J Hum Genet ; 111(8): 1573-1587, 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-38925119

RESUMO

Recent studies have highlighted the essential role of RNA splicing, a key mechanism of alternative RNA processing, in establishing connections between genetic variations and disease. Genetic loci influencing RNA splicing variations show considerable influence on complex traits, possibly surpassing those affecting total gene expression. Dysregulated RNA splicing has emerged as a major potential contributor to neurological and psychiatric disorders, likely due to the exceptionally high prevalence of alternatively spliced genes in the human brain. Nevertheless, establishing direct associations between genetically altered splicing and complex traits has remained an enduring challenge. We introduce Spliced-Transcriptome-Wide Associations (SpliTWAS) to integrate alternative splicing information with genome-wide association studies to pinpoint genes linked to traits through exon splicing events. We applied SpliTWAS to two schizophrenia (SCZ) RNA-sequencing datasets, BrainGVEX and CommonMind, revealing 137 and 88 trait-associated exons (in 84 and 67 genes), respectively. Enriched biological functions in the associated gene sets converged on neuronal function and development, immune cell activation, and cellular transport, which are highly relevant to SCZ. SpliTWAS variants impacted RNA-binding protein binding sites, revealing potential disruption of RNA-protein interactions affecting splicing. We extended the probabilistic fine-mapping method FOCUS to the exon level, identifying 36 genes and 48 exons as putatively causal for SCZ. We highlight VPS45 and APOPT1, where splicing of specific exons was associated with disease risk, eluding detection by conventional gene expression analysis. Collectively, this study supports the substantial role of alternative splicing in shaping the genetic basis of SCZ, providing a valuable approach for future investigations in this area.


Assuntos
Processamento Alternativo , Éxons , Estudo de Associação Genômica Ampla , Esquizofrenia , Transcriptoma , Humanos , Esquizofrenia/genética , Processamento Alternativo/genética , Éxons/genética , Predisposição Genética para Doença , Splicing de RNA/genética , Polimorfismo de Nucleotídeo Único
16.
Plant J ; 119(2): 844-860, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38812347

RESUMO

Transcriptome-wide association studies (TWAS) can provide single gene resolution for candidate genes in plants, complementing genome-wide association studies (GWAS) but efforts in plants have been met with, at best, mixed success. We generated expression data from 693 maize genotypes, measured in a common field experiment, sampled over a 2-h period to minimize diurnal and environmental effects, using full-length RNA-seq to maximize the accurate estimation of transcript abundance. TWAS could identify roughly 10 times as many genes likely to play a role in flowering time regulation as GWAS conducted data from the same experiment. TWAS using mature leaf tissue identified known true-positive flowering time genes known to act in the shoot apical meristem, and trait data from a new environment enabled the identification of additional flowering time genes without the need for new expression data. eQTL analysis of TWAS-tagged genes identified at least one additional known maize flowering time gene through trans-eQTL interactions. Collectively these results suggest the gene expression resource described here can link genes to functions across different plant phenotypes expressed in a range of tissues and scored in different experiments.


Assuntos
Flores , Regulação da Expressão Gênica de Plantas , Estudo de Associação Genômica Ampla , Locos de Características Quantitativas , Transcriptoma , Zea mays , Zea mays/genética , Zea mays/fisiologia , Flores/genética , Flores/fisiologia , Locos de Características Quantitativas/genética , Genótipo , Fenótipo , Genes de Plantas/genética , Folhas de Planta/genética , Folhas de Planta/fisiologia , Folhas de Planta/metabolismo , Perfilação da Expressão Gênica
17.
Eur Thyroid J ; 13(3)2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38805593

RESUMO

Introduction: Thyroid hormones have systemic effects on the human body and play a key role in the development and function of virtually all tissues. They are regulated via the hypothalamic-pituitary-thyroid (HPT) axis and have a heritable component. Using genetic information, we applied tissue-specific transcriptome-wide association studies (TWAS) and plasma proteome-wide association studies (PWAS) to elucidate gene products related to thyrotropin (TSH) and free thyroxine (FT4) levels. Results: TWAS identified 297 and 113 transcripts associated with TSH and FT4 levels, respectively (25 shared), including transcripts not identified by genome-wide association studies (GWAS) of these traits, demonstrating the increased power of this approach. Testing for genetic colocalization revealed a shared genetic basis of 158 transcripts with TSH and 45 transcripts with FT4, including independent, FT4-associated genetic signals within the CAPZB locus that were differentially associated with CAPZB expression in different tissues. PWAS identified 18 and ten proteins associated with TSH and FT4, respectively (HEXIM1 and QSOX2 with both). Among these, the cognate genes of five TSH- and 7 FT4-associated proteins mapped outside significant GWAS loci. Colocalization was observed for five plasma proteins each with TSH and FT4. There were ten TSH and one FT4-related gene(s) significant in both TWAS and PWAS. Of these, ANXA5 expression and plasma annexin A5 levels were inversely associated with TSH (PWAS: P = 1.18 × 10-13, TWAS: P = 7.61 × 10-12 (whole blood), P = 6.40 × 10-13 (hypothalamus), P = 1.57 × 10-15 (pituitary), P = 4.27 × 10-15 (thyroid)), supported by colocalizations. Conclusion: Our analyses revealed new thyroid function-associated genes and prioritized candidates in known GWAS loci, contributing to a better understanding of transcriptional regulation and protein levels relevant to thyroid function.


Assuntos
Estudo de Associação Genômica Ampla , Sistema Hipotálamo-Hipofisário , Proteoma , Glândula Tireoide , Tireotropina , Tiroxina , Transcriptoma , Humanos , Glândula Tireoide/metabolismo , Proteoma/genética , Proteoma/metabolismo , Sistema Hipotálamo-Hipofisário/metabolismo , Tireotropina/sangue , Tireotropina/metabolismo , Tiroxina/sangue , Tiroxina/metabolismo , Perfilação da Expressão Gênica
18.
Am J Hum Genet ; 111(7): 1448-1461, 2024 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-38821058

RESUMO

Both trio and population designs are popular study designs for identifying risk genetic variants in genome-wide association studies (GWASs). The trio design, as a family-based design, is robust to confounding due to population structure, whereas the population design is often more powerful due to larger sample sizes. Here, we propose KnockoffHybrid, a knockoff-based statistical method for hybrid analysis of both the trio and population designs. KnockoffHybrid provides a unified framework that brings together the advantages of both designs and produces powerful hybrid analysis while controlling the false discovery rate (FDR) in the presence of linkage disequilibrium and population structure. Furthermore, KnockoffHybrid has the flexibility to leverage different types of summary statistics for hybrid analyses, including expression quantitative trait loci (eQTL) and GWAS summary statistics. We demonstrate in simulations that KnockoffHybrid offers power gains over non-hybrid methods for the trio and population designs with the same number of cases while controlling the FDR with complex correlation among variants and population structure among subjects. In hybrid analyses of three trio cohorts for autism spectrum disorders (ASDs) from the Autism Speaks MSSNG, Autism Sequencing Consortium, and Autism Genome Project with GWAS summary statistics from the iPSYCH project and eQTL summary statistics from the MetaBrain project, KnockoffHybrid outperforms conventional methods by replicating several known risk genes for ASDs and identifying additional associations with variants in other genes, including the PRAME family genes involved in axon guidance and which may act as common targets for human speech/language evolution and related disorders.


Assuntos
Transtorno do Espectro Autista , Estudo de Associação Genômica Ampla , Desequilíbrio de Ligação , Locos de Características Quantitativas , Estudo de Associação Genômica Ampla/métodos , Humanos , Transtorno do Espectro Autista/genética , Predisposição Genética para Doença , Polimorfismo de Nucleotídeo Único , Simulação por Computador , Modelos Genéticos
19.
Am J Hum Genet ; 111(6): 1084-1099, 2024 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-38723630

RESUMO

Transcriptome-wide association studies (TWASs) have investigated the role of genetically regulated transcriptional activity in the etiologies of breast and ovarian cancer. However, methods performed to date have focused on the regulatory effects of risk-associated SNPs thought to act in cis on a nearby target gene. With growing evidence for distal (trans) regulatory effects of variants on gene expression, we performed TWASs of breast and ovarian cancer using a Bayesian genome-wide TWAS method (BGW-TWAS) that considers effects of both cis- and trans-expression quantitative trait loci (eQTLs). We applied BGW-TWAS to whole-genome and RNA sequencing data in breast and ovarian tissues from the Genotype-Tissue Expression project to train expression imputation models. We applied these models to large-scale GWAS summary statistic data from the Breast Cancer and Ovarian Cancer Association Consortia to identify genes associated with risk of overall breast cancer, non-mucinous epithelial ovarian cancer, and 10 cancer subtypes. We identified 101 genes significantly associated with risk with breast cancer phenotypes and 8 with ovarian phenotypes. These loci include established risk genes and several novel candidate risk loci, such as ACAP3, whose associations are predominantly driven by trans-eQTLs. We replicated several associations using summary statistics from an independent GWAS of these cancer phenotypes. We further used genotype and expression data in normal and tumor breast tissue from the Cancer Genome Atlas to examine the performance of our trained expression imputation models. This work represents an in-depth look into the role of trans eQTLs in the complex molecular mechanisms underlying these diseases.


Assuntos
Neoplasias da Mama , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Neoplasias Ovarianas , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Humanos , Feminino , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/patologia , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Teorema de Bayes , Transcriptoma , Regulação Neoplásica da Expressão Gênica
20.
BMC Genomics ; 25(1): 445, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38711039

RESUMO

BACKGROUND: Characterization of regulatory variants (e.g., gene expression quantitative trait loci, eQTL; gene splicing QTL, sQTL) is crucial for biologically interpreting molecular mechanisms underlying loci associated with complex traits. However, regulatory variants in dairy cattle, particularly in specific biological contexts (e.g., distinct lactation stages), remain largely unknown. In this study, we explored regulatory variants in whole blood samples collected during early to mid-lactation (22-150 days after calving) of 101 Holstein cows and analyzed them to decipher the regulatory mechanisms underlying complex traits in dairy cattle. RESULTS: We identified 14,303 genes and 227,705 intron clusters expressed in the white blood cells of 101 cattle. The average heritability of gene expression and intron excision ratio explained by cis-SNPs is 0.28 ± 0.13 and 0.25 ± 0.13, respectively. We identified 23,485 SNP-gene expression pairs and 18,166 SNP-intron cluster pairs in dairy cattle during early to mid-lactation. Compared with the 2,380,457 cis-eQTLs reported to be present in blood in the Cattle Genotype-Tissue Expression atlas (CattleGTEx), only 6,114 cis-eQTLs (P < 0.05) were detected in the present study. By conducting colocalization analysis between cis-e/sQTL and the results of genome-wide association studies (GWAS) from four traits, we identified a cis-e/sQTL (rs109421300) of the DGAT1 gene that might be a key marker in early to mid-lactation for milk yield, fat yield, protein yield, and somatic cell score (PP4 > 0.6). Finally, transcriptome-wide association studies (TWAS) revealed certain genes (e.g., FAM83H and TBC1D17) whose expression in white blood cells was significantly (P < 0.05) associated with complex traits. CONCLUSIONS: This study investigated the genetic regulation of gene expression and alternative splicing in dairy cows during early to mid-lactation and provided new insights into the regulatory mechanisms underlying complex traits of economic importance.


Assuntos
Lactação , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Animais , Bovinos/genética , Lactação/genética , Feminino , Splicing de RNA , Estudo de Associação Genômica Ampla , Perfilação da Expressão Gênica , Íntrons , Transcriptoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA