Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Breast Cancer ; 2024 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-39122876

RESUMO

BACKGROUND: Targeted treatment of different types of cancers through highly expressed cancer cell surface receptors by fusion proteins is an efficient method for cancer therapy. The HER2 receptor is a member of the tyrosine kinase receptors family, which plays a notable role in breast cancer tumor development. About 25-30% of breast cancers overexpress human epidermal growth factor receptor 2 (HER2). METHODS: In this study, we evaluated the particulars of a designed recombinant protein formed by HER2-specific Mab Herceptin linked with Arazyme on a HER2-overexpressing breast cancer cell line (SKBR3). Arazyme, a metalloprotease produced by Serratia proteamaculans was fused to the variable area of light and heavy chains of the Herceptin. The cytotoxic assay of the Arazyme-linker-Herceptin in the SKBR3 and MDA-MB-468 cells was evaluated by the MTT and flow cytometry techniques. The Caspase­3 activity determination and adhesion assay were performed to evaluate the antitumor activity of the Arazyme-linker-Herceptin against SKBR3 cells. Furthermore, RT-PCR was used to measure the expression levels of the Bcl-2, Bax, MMP2, MMP9, and RIP3 genes. RESULTS: The Arazyme-linker-Herceptin showed higher cytotoxicity in SKBR3 cells compared to MDA-MB-468 cells. In addition, flow cytometry results revealed that the Arazyme-linker-Herceptin can significantly induce apoptosis in the HER2-overexpressing breast cancer cell line (SKBR3), which was confirmed by Bax upregulation and the decrease in adhesion of tumor cells and MMP2/MMP9. CONCLUSION: The findings of this study demonstrated that the Arazyme-linker-Herceptin induced apoptosis and decreased metastatic genes in SKBR3 cells; however, further research is required to confirm the effectiveness of the fusion protein.

2.
Mikrochim Acta ; 191(9): 541, 2024 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-39150483

RESUMO

The solid tumors provide a series of biological barriers in cellular microenvironment for designing drug delivery methods based on advanced stimuli-responsive materials. These intertumoral and intratumoral barriers consist of perforated endotheliums, tumor cell crowding, vascularity, lymphatic drainage blocking effect, extracellular matrix (ECM) proteins, hypoxia, and acidosis. Triggering opportunities have been drawn for solid tumor therapies based on single and dual stimuli-responsive drug delivery systems (DDSs) that not only improved drug targeting in deeper sites of the tumor microenvironments, but also facilitated the antitumor drug release efficiency. Single and dual stimuli-responsive materials which are known for their lowest side effects can be categorized in 17 main groups which involve to internal and external stimuli anticancer drug carriers in proportion to microenvironments of targeted solid tumors. Development of such drug carriers can circumvent barriers in clinical trial studies based on their superior capabilities in penetrating into more inaccessible sites of the tumor tissues. In recent designs, key characteristics of these DDSs such as fast response to intracellular and extracellular factors, effective cytotoxicity with minimum side effect, efficient permeability, and rate and location of drug release have been discussed as core concerns of designing paradigms of these materials.


Assuntos
Antineoplásicos , Sistemas de Liberação de Medicamentos , Neoplasias , Microambiente Tumoral , Humanos , Neoplasias/tratamento farmacológico , Antineoplásicos/química , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Microambiente Tumoral/efeitos dos fármacos , Sistemas de Liberação de Medicamentos/métodos , Portadores de Fármacos/química , Animais , Nanomedicina Teranóstica/métodos
3.
Curr Pharm Des ; 30(27): 2129-2141, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38963114

RESUMO

INTRODUCTION: Luteolin (LUT), a naturally occurring flavonoid found in vegetables, fruits, and herbal medicines, has been extensively studied for its pharmacological activities, including anti-proliferative and anticancer effects on various cancer lines. It also exhibits potent antioxidant properties and pro-apoptotic activities against human cancers. However, its therapeutic potential is hindered by its poor solubility in water (5 µg/ml at 45°C) and low bioavailability. This research on the development of luteolin-loaded nanocarrier aims to overcome these limitations, thereby opening up new possibilities in cancer treatment. METHODS: This paper covers several nanoformulations studied to increase the solubility and bioavailability of LUT. The physicochemical characteristics of the nanoformulation that influence luteolin's solubility and bioavailability have been the subject of more in-depth investigation. Furthermore, it examines how LUT's anti-inflammatory and antioxidant properties aid in lessening the side effects of chemotherapy. RESULTS: Most nanoformulations, including phytosomes, lipid nanoparticles, liposomes, protein nanoparticles, polymer micelles, nanoemulsions, and metal nanoparticles, have shown promising results in improving the solubility and bioavailability of LUT. This is a significant step forward in enhancing the therapeutic potential of LUT in cancer treatment. Furthermore, the study found that LUT's ability to scavenge free radicals can significantly reduce the side effects of cancer treatment, further highlighting its potential to improve patient outcomes. CONCLUSION: Nanoformulations, because of their unique surface and physiochemical properties, improve the solubility and bioavailability of LUT. However, poor in-vitro and in-vivo correlation and scalability of nanoformulations need to be addressed to achieve good clinical performance of LUT in oncology.


Assuntos
Antineoplásicos , Portadores de Fármacos , Luteolina , Nanopartículas , Neoplasias , Humanos , Luteolina/farmacologia , Luteolina/química , Luteolina/administração & dosagem , Luteolina/farmacocinética , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Nanopartículas/química , Portadores de Fármacos/química , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/administração & dosagem , Animais , Sistemas de Liberação de Medicamentos , Solubilidade , Disponibilidade Biológica
4.
Colloids Surf B Biointerfaces ; 238: 113909, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38599076

RESUMO

Nasopharyngeal carcinoma (NPC) is a common head and neck malignancy, which is characterized by high incidence and aggression with poor diagnosis and limited therapeutic opportunity. The innovative strategy for achieving precise NPC active-targeting drug delivery has emerged as a prominent focus in clinical research. Here, a minimalist cancer cell membrane (CCM) shielded biomimetic nanoparticle (NP) was designed for NPC active-targeting therapy. Chemotherapeutant model drug doxorubicin (DOX) was loaded in polyamidoamine (PAMAM) dendrimer. The PAMAM/DOX (PD) NP was further shielded by human CNE-2 NPC CCM. Characterization results verified that the biomimetic PAMAM/DOX@CCM (abbreviated as PDC) NPs had satisfactory physical properties with high DOX-loading and excellent stability. Cell experiments demonstrated that the CNE-2 membrane-cloaked PDC NPs presented powerful cellular uptake in the sourcing cells by homologous targeting and adhesive interaction. Further in vivo results confirmed that this biomimetic nanoplatform had extended circulation and remarkable tumor-targeting capability, and the PDC NPs effectively suppressed the progression of CNE-2 tumors by systemic administration. This CCM-shielded biomimetic NP displayed a minimalist paradigm nanoplatform for precise NPC therapy, and the strategy of CCM-shielded biomimetic drug delivery system (DDS) has great potential for extensive cancer active-targeting therapy.


Assuntos
Materiais Biomiméticos , Membrana Celular , Doxorrubicina , Nanopartículas , Carcinoma Nasofaríngeo , Neoplasias Nasofaríngeas , Humanos , Doxorrubicina/farmacologia , Doxorrubicina/química , Nanopartículas/química , Carcinoma Nasofaríngeo/tratamento farmacológico , Carcinoma Nasofaríngeo/patologia , Materiais Biomiméticos/química , Materiais Biomiméticos/farmacologia , Membrana Celular/química , Membrana Celular/metabolismo , Membrana Celular/efeitos dos fármacos , Animais , Neoplasias Nasofaríngeas/tratamento farmacológico , Neoplasias Nasofaríngeas/patologia , Dendrímeros/química , Camundongos , Linhagem Celular Tumoral , Sistemas de Liberação de Medicamentos , Antibióticos Antineoplásicos/farmacologia , Antibióticos Antineoplásicos/química , Antibióticos Antineoplásicos/administração & dosagem , Proliferação de Células/efeitos dos fármacos , Camundongos Nus , Camundongos Endogâmicos BALB C , Biomimética , Tamanho da Partícula
5.
Exp Hematol Oncol ; 13(1): 6, 2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38254219

RESUMO

Cancer immunotherapy has emerged as a promising strategy in the treatment of colorectal cancer, and relapse after tumor immunotherapy has attracted increasing attention. Cancer stem cells (CSCs), a small subset of tumor cells with self-renewal and differentiation capacities, are resistant to traditional therapies such as radiotherapy and chemotherapy. Recently, CSCs have been proven to be the cells driving tumor relapse after immunotherapy. However, the mutual interactions between CSCs and cancer niche immune cells are largely uncharacterized. In this review, we focus on colorectal CSCs, CSC-immune cell interactions and CSC-based immunotherapy. Colorectal CSCs are characterized by robust expression of surface markers such as CD44, CD133 and Lgr5; hyperactivation of stemness-related signaling pathways, such as the Wnt/ß-catenin, Hippo/Yap1, Jak/Stat and Notch pathways; and disordered epigenetic modifications, including DNA methylation, histone modification, chromatin remodeling, and noncoding RNA action. Moreover, colorectal CSCs express abnormal levels of immune-related genes such as MHC and immune checkpoint molecules and mutually interact with cancer niche cells in multiple tumorigenesis-related processes, including tumor initiation, maintenance, metastasis and drug resistance. To date, many therapies targeting CSCs have been evaluated, including monoclonal antibodies, antibody‒drug conjugates, bispecific antibodies, tumor vaccines adoptive cell therapy, and small molecule inhibitors. With the development of CSC-/niche-targeting technology, as well as the integration of multidisciplinary studies, novel therapies that eliminate CSCs and reverse their immunosuppressive microenvironment are expected to be developed for the treatment of solid tumors, including colorectal cancer.

6.
Adv Healthc Mater ; 12(21): e2203252, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37154112

RESUMO

Gene therapy holds great promise as an effective treatment for many diseases of genetic origin. Gene therapy works by employing cationic polymers, liposomes, and nanoparticles to condense DNA into polyplexes via electronic interactions. Then, a therapeutic gene is introduced into target cells, thereby restoring or changing cellular function. However, gene transfection efficiency remains low in vivo due to high protein binding, poor targeting ability, and substantial endosomal entrapment. Artificial sheaths containing PEG, anions, or zwitterions can be introduced onto the surface of gene carriers to prevent interaction with proteins; however, they reduce the cellular uptake efficacy, endosomal escape, targeting ability, thereby, lowering gene transfection. Here, it is reported that linking dipicolylamine-zinc (DPA-Zn) ions onto polyplex nanoparticles can produce a strong hydration water layer around the polyplex, mimicking the function of PEGylation to reduce protein binding while targeting cancer cells, augmenting cellular uptake and endosomal escape. The polyplexes with a strong hydration water layer on the surface can achieve a high gene transfection even in a 50% serum environment. This strategy provides a new solution for preventing protein adsorption while improving cellular uptake and endosomal escape.


Assuntos
Neoplasias , Zinco , Ligação Proteica , Polímeros/metabolismo , DNA/metabolismo , Cátions , Transfecção , Técnicas de Transferência de Genes , Polietilenoglicóis/metabolismo , Neoplasias/terapia
7.
J Theor Biol ; 549: 111207, 2022 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-35772491

RESUMO

Non Small Cell Lung Cancer (NSCLC) is the most common type of lung cancer, and represents the leading cause of cancer-related deaths worldwide. Experimental studies have shown that these solid cancers are heavily infiltrated with macrophages: anti-tumour M1 macrophages, pro-tumour M2 macrophages, and macrophage subtypes sharing both M1 and M2 properties. In this study we aim to investigate qualitatively the role of macrophages with different functional phenotypes (especially those with mixed phenotypes) on cancer dynamics and the success of different immunotherapies for cancer. To this end, we start with two time-evolving mathematical models for cancer-immune interactions that consider: (i) the effect of the two extreme phenotypes, M1 and M2 cells; (ii) the effect of M1 and M2 cells, as well as a macrophage sub-population with a mixed phenotype (throughout this theoretical study we call these cells "M12 cells"). We compare the dynamics of the two models using computational approaches, paying particular attention to the effect of different anti-cancer immunotherapies that focus on macrophages. Since data available for NSCLC and macrophage interactions are incomplete, we perform a global sensitivity analysis to see the influence of input parameters on model outcomes. Finally, we consider extensions of the previous two models to include also the spatial movement of cells, and investigate the role of macrophages with extreme phenotypes and with mixed phenotypes, on the invasion of cancer cells into the surrounding extracellular matrix (ECM). We use numerical simulations to investigate the macrophages phenotypes at the tumour center versus the invasive margin. Again, we examine the impact of immunotherapies for cancer on the spatial dynamics of cancers and immune cells, and observe a shift in the phenotype of macrophages distributed at the tumour center and invasive margin.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Carcinoma Pulmonar de Células não Pequenas/terapia , Humanos , Imunoterapia , Neoplasias Pulmonares/terapia , Macrófagos/metabolismo
8.
ACS Appl Mater Interfaces ; 14(14): 16100-16107, 2022 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-35377593

RESUMO

N-Acetylneuraminic acid (Neu5Ac), one of the abundant types of sialic acid, is an emerging anticancer agent owing to its ability to target selectins in the plasma membrane of cancer cells. Considering the functionality of Neu5Ac, obtaining novel Neu5Ac-conjugated materials with a selective and an enhanced antitumor activity has remained a challenge. Herein, we report the supramolecular materials of three novel amphiphiles composed of Neu5Ac as a hydrophilic segment and pyrene or adamantane as a hydrophobic segment. The synthetic amphiphiles 1, 2, and 3 self-assembled into ribbons, vesicles, and irregular aggregates in an aqueous solution, respectively. Among the materials, vesicles of amphiphile 2 showed the most substantial selectivity toward cancer cells, followed by cell death due to the production of reactive oxygen species by the pyrene group. The dual advantage of Neu5Ac-selectivity and the pyrene-cytotoxicity of vesicles of amphiphile 2 can provide a strategy for effective anticancer materials.


Assuntos
Ácido N-Acetilneuramínico , Membrana Celular/metabolismo , Interações Hidrofóbicas e Hidrofílicas , Ácido N-Acetilneuramínico/metabolismo
9.
Int J Biol Macromol ; 194: 811-818, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34843818

RESUMO

It is a huge challenge to construct a nanoprobe that can convert temperature stimulation into monochromatic signal with "turn-on" function. Here, a drug delivery system of berberine (BBR)-loaded hyaluronic acid (HA)-modified-L-cysteine (Cys) grafted (N-isopropylacrylamide) (PNIPAM) was structured. HA-Cys-PN/BBR does not need to introduce other substances or external stimuli, by adjusting the temperature of this system, the fluorescence responsive intensity and reversible reciprocating control of the nanohydrogel with aggregation induced emission (AIE) performance can be realized. In addition, CD44-HA interaction can be used as targeting the delivery of cancer cells, thus, there is a great interest in development of targeting and imaging agents as payloads for tumor tissue therapy. Therefore, it can provide a side of the development with self-released drugs in the therapy of cancers or bacterial infections. Thus, HA-Cys-PN/BBR as AIE reversible nanogel has longer-term applications in biomedical applications.


Assuntos
Resinas Acrílicas/química , Ácido Hialurônico/química , Hidrogéis/química , Nanogéis/química , Fenômenos Químicos , Técnicas de Química Sintética , Portadores de Fármacos , Humanos , Hidrogéis/síntese química , Imagem Molecular , Estrutura Molecular , Temperatura
10.
Biomaterials ; 276: 121024, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34280825

RESUMO

In recent years, directly damaging cell membrane therapeutic modalities have attracted great attention in the field of cancer therapy due to their critical role in guaranteeing essential cellular function. In this study, the transformable nanoassembly PEG-Ce6@PAEMA, consisting of the photosensitizer polyethylene glycol-chlorin-e6 (PEG-Ce6) and tumor pH-sensitive polymer poly(2-azepane ethyl methacrylate) (PAEMA), was developed for highly efficient membrane-targeted photodynamic therapy. The PAEMA core is rapidly protonated at the acidic tumor pH, resulting in the disassembly of PEG-Ce6@PAEMA and regeneration of PEG-Ce6. Subsequently, the resultant PEG-Ce6 with a very small size (~2.6 kDa) ensures deep penetration into tumor tissue and direct and rapid anchoring to the cancer cell membrane, eventually achieving superior tumor growth inhibition under light irradiation. Thus, this tumor acidity-driven transformable polymeric nanoassembly provides a simple but efficient strategy for membrane targeting cancer therapy.


Assuntos
Nanopartículas , Fotoquimioterapia , Porfirinas , Linhagem Celular Tumoral , Fármacos Fotossensibilizantes , Polietilenoglicóis , Polímeros
11.
Curr Issues Mol Biol ; 43(2): 558-589, 2021 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-34287243

RESUMO

Although cancer is still one of the most significant global challenges facing public health, the world still lacks complementary approaches that would significantly enhance the efficacy of standard anticancer therapies. One of the essential strategies during cancer treatment is following a healthy diet program. The ketogenic diet (KD) has recently emerged as a metabolic therapy in cancer treatment, targeting cancer cell metabolism rather than a conventional dietary approach. The ketogenic diet (KD), a high-fat and very-low-carbohydrate with adequate amounts of protein, has shown antitumor effects by reducing energy supplies to cells. This low energy supply inhibits tumor growth, explaining the ketogenic diet's therapeutic mechanisms in cancer treatment. This review highlights the crucial mechanisms that explain the ketogenic diet's potential antitumor effects, which probably produces an unfavorable metabolic environment for cancer cells and can be used as a promising adjuvant in cancer therapy. Studies discussed in this review provide a solid background for researchers and physicians to design new combination therapies based on KD and conventional therapies.


Assuntos
Dieta Cetogênica , Neoplasias/dietoterapia , Neoplasias/prevenção & controle , Animais , Biomarcadores , Gerenciamento Clínico , Suscetibilidade a Doenças , Ingestão de Alimentos , Metabolismo Energético , Epigênese Genética , Regulação Neoplásica da Expressão Gênica , Humanos , Redes e Vias Metabólicas , Neoplasias/epidemiologia , Neoplasias/etiologia , Transdução de Sinais , Resultado do Tratamento
12.
J Drug Target ; 29(10): 1063-1079, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-33775187

RESUMO

In recent years, remarkable progress was registered in the field of cancer research. Though, cancer still represents a major cause of death and cancer metastasis a problem seeking for urgent solutions as it is the main reason for therapeutic failure. Unfortunately, the most common chemotherapeutic agents are non-selective and can damage healthy tissues and cause side effects that affect dramatically the quality of life of the patients. Targeted therapy with molecules that act specifically at the tumour sites interacting with overexpressed cancer receptors is a very promising strategy for achieving the specific delivery of anticancer drugs, radioisotopes or imaging agents. This review aims to give an overview on different strategies for targeting cancer cell receptors localised either at the extracellular matrix or at the cell membrane. Molecules like antibodies, aptamers and peptides targeting the cell surface are presented with advantages and disadvantages, with emphasis on peptides. The most representative peptides are described, including cell penetrating peptides, homing and anticancer peptides with particular consideration on recent discoveries.


Assuntos
Antineoplásicos/administração & dosagem , Neoplasias/tratamento farmacológico , Peptídeos/química , Animais , Antineoplásicos/efeitos adversos , Peptídeos Penetradores de Células/metabolismo , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos , Humanos , Neoplasias/diagnóstico , Qualidade de Vida
13.
Curr Drug Deliv ; 18(2): 147-161, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32394833

RESUMO

Currently, despite many active compounds have been introduced to the treatment, cancer remains one of the most vital causes of mortality and reduced quality of life. Conventional cancer treatments may have undesirable consequences due to the continuous differentiating, dynamic and heterogeneous nature of cancer. Recent advances in the field of cancer treatment have promoted the development of several novel nanoformulations. Among them, the lipid coated nanosized drug delivery systems have gained an increasing attention by the researchers in this field owing to the attractive properties such as high stability and biocompatibility, prolonged circulation time, high drug loading capacity and superior in vivo efficacy. They possess the advantages of both the liposomes and polymeric nanoparticles which makes them a chosen one in the field of drug delivery and targeting. Core-shell type lipid-coated nanoparticle systems, which provide the most prominent advantages of both liposomes such as biocompatibility and polymeric/inorganic nanoparticles such as mechanic properties, offer a new approach to cancer treatment. This review discusses design and production procedures used to prepare lipid-coated nanoparticle drug delivery systems, their advantages and multifunctional role in cancer therapy and diagnosis, as well as the applications they have been used in.


Assuntos
Nanopartículas/química , Neoplasias , Portadores de Fármacos , Sistemas de Liberação de Medicamentos , Lipídeos/química , Neoplasias/tratamento farmacológico , Qualidade de Vida
14.
Chem Biol Drug Des ; 95(6): 610-623, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32147880

RESUMO

Using a minimalist approach, an 11-residue peptide (Peptide 1) tagged with rhodamine fluorophore was designed and synthesized for selective detection of cancer cells. Peptide 1 contains RGD and NGR motifs to bind, respectively, integrins and aminopeptidase CD13, which are over expressed in cancer cells. Surface tension measurements revealed that peptide 1 possess surface-active property owing to the overall hydrophobicity and cationic nature of the peptide. Peptide 1 displays cancer cell-selective binding at ≤5.0 µM concentrations, while peptide 2 (randomized sequence of 1) shows non-selective binding to normal and cancer cells. Fluorescence microscopy and FACS analysis demonstrated the intracellular localization of peptide 1 in three different cancer cell lines, confirming the role of RGD and NGR motifs. Cytotoxicity assay exhibited the viability of normal and cancer cells up to 100 µM concentrations of peptide 1. Steady-state fluorescence measurements disclosed the preferential interactions of the peptide 1 with anionic POPC/POPG bilayers rather than with zwitterionic POPC lipid bilayers. Circular dichroism studies showed minimal changes in the secondary structure of peptide 1 upon binding with the anionic lipid bilayers. Peptide 1 is largely unordered, non-toxic, and useful for identification of cancer cells. Peptide 1 provides a template for designing drug-loaded peptides for targeted delivery into cancer cells.


Assuntos
Antígenos CD13/química , Citometria de Fluxo/métodos , Integrinas/química , Peptídeos/química , Sequência de Aminoácidos , Antígenos CD13/metabolismo , Linhagem Celular Tumoral , Corantes Fluorescentes/química , Humanos , Interações Hidrofóbicas e Hidrofílicas , Integrinas/metabolismo , Bicamadas Lipídicas/química , Imagem Óptica , Peptídeos/metabolismo , Fosfatidilcolinas/química , Estrutura Secundária de Proteína , Rodaminas/química , Relação Estrutura-Atividade , Especificidade por Substrato , Lipossomas Unilamelares/metabolismo
15.
Methods Mol Biol ; 2108: 297-303, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31939190

RESUMO

TNBC is an aggressive and metastatic subtype of breast cancer in which TP53 mutation occurs frequently and is associated with particularly poor outcome. Mutations in TP53 can disrupt the intrinsic function of the tumor suppressor as well as acquire oncogenic gain-of-function (GOF) activities. However, little is known about its oncogenic GOF mediators and functions. Targeted therapy for TNBC patients is thus one of the most urgent needs in breast cancer therapeutics, and identifying genes that have synthetic lethal interactions with mutant TP53 may be a promising approach. In this chapter, we present procedures on sequential analysis of RNA-seq followed by high-throughput RNA interference screening (HTS-RNAi screening). This approach has been utilized to identify genes with synthetic lethality of mutant TP53, providing a promising strategy for the treatment of mutant TP53 in TNBC and determining its impact on tumorigenesis.


Assuntos
Mutação com Ganho de Função , Regulação Neoplásica da Expressão Gênica , Interferência de RNA , Mutações Sintéticas Letais , Neoplasias de Mama Triplo Negativas/genética , Proteína Supressora de Tumor p53/genética , Linhagem Celular Tumoral , Biologia Computacional/métodos , Feminino , Perfilação da Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Transcriptoma
16.
Materials (Basel) ; 12(12)2019 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-31248197

RESUMO

Nanomaterials extensively studied by nanotechnology scientists have been extensively applied in biomedicine, chemistry, physics and other fields nowadays. Magnetic nanoparticles, surpassing nano applications, are found to possess many advantages over nonmagnetic nanomaterials. Graphene oxide (GO), in particular, draws growing scholarly attention due to its large surface area, good water solubility and biocompatibility, rich surface functional group and easy-to-modify property. In this paper, we modify the Polyethylene mide (PEI) molecule on the surface of GO to increase its biocompatibility. The Au-Fe3O4 nanoparticles and folic acid molecules on the ligand make the resulting composite applicable both in magnetic resonance imaging and in cancer cell targeting. In addition, the π-π accumulation of doxorubicin used to load the anticancer drug can release the drug under the acid condition of the cancer cells, detect the cancer cells by fluorescence and realize the multi-mode detection of cancer cells.

17.
Int J Nanomedicine ; 13: 4699-4709, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30154655

RESUMO

3-Bromopyruvate (3BP) is a promising powerful general anticancer agent. Unfortunately, 3BP release faces many practical and biochemical problems in clinical human oncology, for example, 3BP induces burning venous sensation (during intravenous infusion) and rapid inactivation by thiol groups of glutathione and proteins. 3BP exhibits resistance in glutathione-rich tumors without being able to exert selective targeting. 3BP does not cross the blood-brain barrier and cannot treat nervous system tumors. Importantly, 3BP cannot persist in tumor tissues due to the phenomenon of enhanced permeability and retention effect. Here, the author presents the practical solutions for clinical problems facing 3BP use in clinical oncology, based on over 10 years of experience in 3BP research. Crude (unformulated 3BP that is purchased from chemical companies without being formulated in liposomes or other nanocarriers) should not be administered in clinical oncology. Instead, 3BP is better formulated with liposomes, polyethylene glycol (PEG), PEGylated liposomes (stealth liposomes) or perillyl alcohol that are used currently with many chemotherapeutics for treating clinical tumors in cancer patients. Formulating 3BP with targeted liposomes, for example, with folate, transferrin or other ligands, improves tumor targeting. Formulating 3BP with liposomes, PEG, stealth liposomes or perillyl alcohol may improve its pharmacokinetics, hide it from thiols in the circulation, protect it from serum proteins and enzymes, prevent burning sensation, prolong 3BP's longevity and facilitate crossing the BBB. Formulating 3BP with stealth liposomes protects 3BP from the reticuloendothelial cells. Liposomal 3BP formulations may retain 3BP better inside the relatively large tumor capillary pores (abolish enhanced permeability and retention effect) sparing normal tissues, facilitate new delivery routes for 3BP (eg, topical and intranasal 3BP administration using perillyl alcohol) and improve cancer cytotoxicity. Formulating 3BP may be promising in overcoming many obstacles in clinical oncology.


Assuntos
Inibidores Enzimáticos/uso terapêutico , Lipossomos/química , Neoplasias/tratamento farmacológico , Polietilenoglicóis/química , Piruvatos/uso terapêutico , Pesquisa Translacional Biomédica/normas , Animais , Humanos
18.
Onco Targets Ther ; 9: 4441-51, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27499638

RESUMO

BACKGROUND: Breast cancer (BC) is one of the leading cancers in women. Recent progress has enabled BC to be cured with high efficiency. However, late detection or metastatic disease often renders the disease untreatable. Additionally, relapse is the main cause of death in BC patients. Breast cancer stem cells (BCSCs) are considered to cause the development of BC and are thought to be responsible for metastasis and relapse. This study aimed to target BCSCs using dendritic cells (DCs) to treat tumor-bearing humanized mice models. MATERIALS AND METHODS: NOD/SCID mice were used to produce the humanized mice by transplantation of human hematopoietic stem cells. Human BCSCs were injected into the mammary fat pad to produce BC humanized mice. Both hematopoietic stem cells and DCs were isolated from the human umbilical cord blood, and immature DCs were produced from cultured mononuclear cells. DCs were matured by BCSC-derived antigen incubation for 48 hours. Mature DCs were vaccinated to BC humanized mice with a dose of 10(6) cells/mice, and the survival percentage was monitored in both treated and untreated groups. RESULTS: The results showed that DC vaccination could target BCSCs and reduce the tumor size and prolong survival. CONCLUSION: These results suggested that targeting BCSCs with DCs is a promising therapy for BC.

19.
Stem Cells Cloning ; 9: 17-29, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27217783

RESUMO

Breast cancer, the leading cause of cancer among females, is supported by the presence of a rare subset of undifferentiated cells within the tumor, identified as breast cancer stem cells (BCSCs). BCSCs underlie the mechanisms of tumor initiation and sustenance and are implicated in the dissemination of the primary tumor to metastatic sites, as they have been found circulating in the blood of breast cancer patients. The discovery of BCSCs has generated a great amount of interest among the scientific community toward their isolation, molecular characterization, and therapeutic targeting. In this review, after summarizing the literature on molecular characterization of BCSCs and methodologies used for their isolation, we will focus on recent data supporting their molecular and functional heterogeneity. Additionally, following a synopsis of the latest approaches for BCSC targeting, we will specifically emphasize on the therapeutic use of naïve or engineered normal stem cells in the treatment of breast cancer and present contradictory findings challenging their safety.

20.
Melanoma Manag ; 2(2): 179-188, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26594315

RESUMO

Tumors are incredibly diverse and contain many different subpopulations of cells. The cancer stem cell (CSC) subpopulation is responsible for many aspects of tumorigenesis and has been shown to play an important role in melanoma development, progression, drug resistance and metastasis. However, it is becoming clear that tumor cell populations are dynamic and can be influenced by many factors, such as signals from the tumor microenvironment and somatic evolution. This review will present the current understanding of CSCs and the challenges of identifying and characterizing this dynamic cell population. The known characteristics and functions of melanoma stem cells, and the potential for therapeutic targeting of these cells in melanoma, will be discussed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA