Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
FEBS J ; 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38857249

RESUMO

Almost all mitochondrial proteins are encoded by nuclear genes and synthesized in the cytosol as precursor proteins. Signals in the amino acid sequence of these precursors ensure their targeting and translocation into mitochondria. However, in many cases, only a certain fraction of a specific protein is transported into mitochondria, while the rest either remains in the cytosol or undergoes reverse translocation to the cytosol, and can populate other cellular compartments. This phenomenon is called dual localization which can be instigated by different mechanisms. These include alternative start or stop codons, differential transcripts, and ambiguous or competing targeting sequences. In many cases, dual localization might serve as an economic strategy to reduce the number of required genes; for example, when the same groups of enzymes are required both in mitochondria and chloroplasts or both in mitochondria and the nucleus/cytoplasm. Such cases frequently employ ambiguous targeting sequences to distribute proteins between both organelles. However, alternative localizations can also be used for signaling, for example when non-imported precursors serve as mitophagy signals or when they represent transcription factors in the nucleus to induce the mitochondrial unfolded stress response. This review provides an overview regarding the mechanisms and the physiological consequences of dual targeting.

3.
Front Physiol ; 14: 1263420, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38028797

RESUMO

Most mitochondrial proteins are targeted to the organelle by N-terminal mitochondrial targeting sequences (MTSs, or "presequences") that are recognized by the import machinery and subsequently cleaved to yield the mature protein. MTSs do not have conserved amino acid compositions, but share common physicochemical properties, including the ability to form amphipathic α-helical structures enriched with basic and hydrophobic residues on alternating faces. The lack of strict sequence conservation implies that some polypeptides can be mistargeted to mitochondria, especially under cellular stress. The pathogenic accumulation of proteins within mitochondria is implicated in many aging-related neurodegenerative diseases, including Alzheimer's, Parkinson's, and Huntington's diseases. Mechanistically, these diseases may originate in part from mitochondrial interactions with amyloid-ß precursor protein (APP) or its cleavage product amyloid-ß (Aß), α-synuclein (α-syn), and mutant forms of huntingtin (mHtt), respectively, that are mediated in part through their associations with the mitochondrial protein import machinery. Emerging evidence suggests that these amyloidogenic proteins may present cryptic targeting signals that act as MTS mimetics and can be recognized by mitochondrial import receptors and transported into different mitochondrial compartments. Accumulation of these mistargeted proteins could overwhelm the import machinery and its associated quality control mechanisms, thereby contributing to neurological disease progression. Alternatively, the uptake of amyloidogenic proteins into mitochondria may be part of a protein quality control mechanism for clearance of cytotoxic proteins. Here we review the pathomechanisms of these diseases as they relate to mitochondrial protein import and effects on mitochondrial function, what features of APP/Aß, α-syn and mHtt make them suitable substrates for the import machinery, and how this information can be leveraged for the development of therapeutic interventions.

4.
Methods Mol Biol ; 2643: 391-404, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36952201

RESUMO

Most soluble proteins enclosed in peroxisomes encode either type-1 or type-2 peroxisomal targeting signals (PTS1 or PTS2), which act as postal codes and define the proteins' intracellular destination. Thus, various computational programs have been developed to evaluate the probability of specific peptide sequences for being a functional PTS or to scan the primary sequence of proteins for such signals. Among these prediction algorithms the PTS1-predictor ( https://mendel.imp.ac.at/pts1/ ) has been amply used, but the research logic of this and other PTS1 prediction tools is occasionally misjudged giving rise to characteristic pitfalls. Here, a proper utilization of the PTS1-predictor is introduced together with a framework of additional tests to increase the validity of the interpretation of results. Moreover, a list of possible causes for a mismatch between results of such predictions and experimental outcomes is provided. However, the foundational arguments apply to other prediction tools for PTS1 motifs as well.


Assuntos
Algoritmos , Sinais de Orientação para Peroxissomos , Peroxissomos , Sinais de Orientação para Peroxissomos/genética , Sinais de Orientação para Peroxissomos/fisiologia , Peroxissomos/metabolismo , Animais , Transporte Proteico , Sequência Consenso
5.
Hum Cell ; 35(1): 163-178, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34643933

RESUMO

The integral membrane, Kunitz-type, serine protease inhibitors, HAI-1 and HAI-2, closely resemble one another structurally and with regard to their specificity and potency against proteases. Structural complementarity between the Kunitz domains and serine protease domains renders the membrane-associated serine proteases, matriptase and prostasin, the primary target proteases of the HAIs. The shared biochemical enzyme-inhibitor relationships are, however, at odds with their behavior at the cellular level, where HAI-1 appears to be the default inhibitor of these proteases and HAI-2 a cell-type-selective inhibitor, even though they are widely co-expressed. The limited motility of these proteins caused by their membrane anchorages may require their co-localization within a certain distance to allow the establishment of a cellular level functional relationship between the proteases and the inhibitors. The differences in their subcellular localization with HAI-1 both inside the cell and on the cell surface, compared to HAI-2 predominately in intracellular granules has, therefore, been implicated in the differential manner of their control of matriptase and prostasin proteolysis. The targeting signals present in the intracellular domains of the HAIs are systematically investigated herein. Studies involving domain swap and point mutation, in combination with immunocytochemistry and cell surface biotinylation/avidin depletion, reveal that the different subcellular localization between the HAIs can largely be attributed to differences in the intracellular Arg/Lys-rich and EHLVY motifs. These intrinsic differences in the targeting signal render the HAIs as two independent rather than redundant proteolysis regulators.


Assuntos
Motivos de Aminoácidos , Arginina/metabolismo , Membrana Celular/metabolismo , Espaço Intracelular/metabolismo , Lisina/metabolismo , Glicoproteínas de Membrana/metabolismo , Proteínas Secretadas Inibidoras de Proteinases/metabolismo , Avidina/metabolismo , Biotinilação , Células Cultivadas , Grânulos Citoplasmáticos/metabolismo , Humanos , Domínios Proteicos , Proteólise , Serina Endopeptidases/metabolismo
6.
Front Genet ; 11: 607812, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33324450

RESUMO

At the time of translation, nascent proteins are thought to be sorted into their final subcellular localization sites, based on the part of their amino acid sequences (i.e., sorting or targeting signals). Thus, it is interesting to computationally recognize these signals from the amino acid sequences of any given proteins and to predict their final subcellular localization with such information, supplemented with additional information (e.g., k-mer frequency). This field has a long history and many prediction tools have been released. Even in this era of proteomic atlas at the single-cell level, researchers continue to develop new algorithms, aiming at accessing the impact of disease-causing mutations/cell type-specific alternative splicing, for example. In this article, we overview the entire field and discuss its future direction.

7.
Mitochondrion ; 52: 100-107, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32109602

RESUMO

Despite a conserved set of core mitochondrial functions, animal mitochondrial proteomes show a large variation in size. We analyzed putative mechanisms behind and functional significance of this variation by performing comparative analysis of the experimentally-verified mitochondrial proteomes of four bilaterian animals (human, mouse, Caenorhabditis elegans, and Drosophila melanogaster) and two non-animal outgroups (Acanthamoeba castellanii and Saccharomyces cerevisiae). We found that of several factors affecting mitochondrial proteome size, evolution of novel mitochondrial proteins in mammals and loss of ancestral proteins in protostomes were the main contributors. Interestingly, the gain and loss of the N-terminal mitochondrial targeting signal was not a major factor in the proteome size evolution.


Assuntos
Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Proteômica/métodos , Acanthamoeba castellanii/metabolismo , Animais , Caenorhabditis elegans/metabolismo , Drosophila melanogaster/metabolismo , Evolução Molecular , Tamanho do Genoma , Humanos , Camundongos , Saccharomyces cerevisiae/metabolismo
8.
Biochim Biophys Acta Mol Cell Res ; 1867(2): 118609, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31751594

RESUMO

The type-2 peroxisomal targeting signal (PTS2) is one of two peptide motifs destining soluble proteins for peroxisomes. This signal acts as amphiphilic α-helix exposing the side chains of all conserved residues to the same side. PTS2 motifs are recognized by a bipartite protein complex consisting of the receptor PEX7 and a co-receptor. Cargo-loaded receptor complexes are translocated across the peroxisomal membrane by a transient pore and inside peroxisomes, cargo proteins are released and processed in many, but not all species. The components of the bipartite receptor are re-exported into the cytosol by a ubiquitin-mediated and ATP-driven export mechanism. Structurally, PTS2 motifs resemble other N-terminal targeting signals, whereas the functional relation to the second peroxisomal targeting signal (PTS1) is unclear. Although only a few PTS2-carrying proteins are known in humans, subjects lacking a functional import mechanism for these proteins suffer from the severe inherited disease rhizomelic chondrodysplasia punctata.


Assuntos
Receptor 2 de Sinal de Orientação para Peroxissomos/metabolismo , Motivos de Aminoácidos , Condrodisplasia Punctata Rizomélica/metabolismo , Condrodisplasia Punctata Rizomélica/patologia , Humanos , Proteínas de Membrana/metabolismo , Receptor 2 de Sinal de Orientação para Peroxissomos/química , Receptor 2 de Sinal de Orientação para Peroxissomos/genética , Peroxissomos/metabolismo , Domínios Proteicos , Estrutura Quaternária de Proteína , Transporte Proteico
9.
Elife ; 82019 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-31264965

RESUMO

Intrinsically disordered regions make up a large part of the proteome, but the sequence-to-function relationship in these regions is poorly understood, in part because the primary amino acid sequences of these regions are poorly conserved in alignments. Here we use an evolutionary approach to detect molecular features that are preserved in the amino acid sequences of orthologous intrinsically disordered regions. We find that most disordered regions contain multiple molecular features that are preserved, and we define these as 'evolutionary signatures' of disordered regions. We demonstrate that intrinsically disordered regions with similar evolutionary signatures can rescue function in vivo, and that groups of intrinsically disordered regions with similar evolutionary signatures are strongly enriched for functional annotations and phenotypes. We propose that evolutionary signatures can be used to predict function for many disordered regions from their amino acid sequences.


Assuntos
Proteínas Intrinsicamente Desordenadas/metabolismo , Proteoma/metabolismo , Sequência de Aminoácidos , Reparo do DNA , Evolução Molecular , Ontologia Genética , Proteínas Intrinsicamente Desordenadas/química , Mitocôndrias/metabolismo , Anotação de Sequência Molecular , Sinais Direcionadores de Proteínas , Proteoma/química , Saccharomyces cerevisiae/metabolismo
10.
Protein J ; 38(3): 330-342, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30868341

RESUMO

Mitochondria are essential organelles of eukaryotic cells. They consist of hundreds of different proteins that exhibit crucial activities in respiration, catabolic metabolism and the synthesis of amino acids, lipids, heme and iron-sulfur clusters. With the exception of a handful of hydrophobic mitochondrially encoded membrane proteins, all these proteins are synthesized on cytosolic ribosomes, targeted to receptors on the mitochondrial surface, and transported across or inserted into the outer and inner mitochondrial membrane before they are folded and assembled into their final native structure. This review article provides a comprehensive overview of the mechanisms and components of the mitochondrial protein import systems with a particular focus on recent developments in the field.


Assuntos
Proteínas de Transporte/metabolismo , Mitocôndrias/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Chaperonas Moleculares/metabolismo , Humanos , Transporte Proteico , Leveduras/metabolismo
11.
Subcell Biochem ; 89: 125-138, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30378021

RESUMO

Our knowledge of the proteome of plant peroxisomes is far from being complete, and the functional complexity and plasticity of this cell organelle are amazingly high particularly in plants, as exemplified by the model species Arabidopsis thaliana. Plant-specific peroxisome functions that have been uncovered only recently include, for instance, the participation of peroxisomes in phylloquinone and biotin biosynthesis. Experimental proteome studies have been proved very successful in defining the proteome of Arabidopsis peroxisomes but this approach also faces significant challenges and limitations. Complementary to experimental approaches, computational methods have emerged as important powerful tools to define the proteome of soluble matrix proteins of plant peroxisomes. Compared to other cell organelles such as mitochondria, plastids and the ER, the simultaneous operation of two major import pathways for soluble proteins in peroxisomes is rather atypical. Novel machine learning prediction approaches have been developed for peroxisome targeting signals type 1 (PTS1) and revealed high sensitivity and specificity, as validated by in vivo subcellular targeting analyses in diverse transient plant expression systems. Accordingly, the algorithms allow the correct prediction of many novel peroxisome-targeted proteins from plant genome sequences and the discovery of additional organelle functions. In contrast, the prediction of PTS2 proteins largely remains restricted to genome searches by conserved patterns contrary to more advanced machine learning methods. Here, we summarize and discuss the capabilities and accuracies of available prediction algorithms for PTS1 and PTS2 carrying proteins.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/citologia , Arabidopsis/metabolismo , Peroxissomos/química , Peroxissomos/metabolismo , Arabidopsis/química , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Genoma de Planta/genética , Peroxissomos/genética , Sinais Direcionadores de Proteínas/genética , Sinais Direcionadores de Proteínas/fisiologia , Transporte Proteico , Proteoma/análise , Proteoma/genética
12.
Methods Mol Biol ; 1829: 381-394, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29987735

RESUMO

The in silico identification of proteins targeting to secondary plastids is a difficult task. Such plastids are complex in structure and can be surrounded by up to four membranes, which have to be crossed during import. Nucleus-encoded plastidial preproteins in organisms with secondary plastids contain specific N-terminal targeting signals, the so-called bipartite targeting signal (BTS) sequences consisting of a classical signal peptide followed by a transit peptide-like sequence, mediating this intricate process. As these signal sequences differ significantly from transit peptides of plastid preproteins in plants and other organisms with primary plastids, existing in silico tools for primary plastid targeting prediction are not directly suitable to detect nucleus-encoded proteins destined for the import into secondary plastids. In this chapter I describe the current state-of-the-art methods to reliably predict proteins that might be imported into secondary plastids of red- and green-algal origin using either the "classical" approach, which involves a combination of bits of information produced by existing in silico tools, or, if available, via consulting specifically developed algorithms.


Assuntos
Biologia Computacional/métodos , Proteínas de Plantas/metabolismo , Plastídeos/metabolismo , Transporte Proteico , Clorófitas/metabolismo , Simulação por Computador , Proteínas de Plantas/genética , Rodófitas/metabolismo , Software
13.
Bio Protoc ; 8(17): e2474, 2018 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-34395785

RESUMO

Mitochondria contain hundreds of proteins which are encoded by the nuclear genome and synthesized in the cytosol from where they are imported into the organelle. Sorting signals encoded in the primary and secondary sequence of these proteins mediate the recognition of newly synthesized precursor proteins and their subsequent translocation through the mitochondrial TOM and TIM translocases. Proteins of the mitochondrial matrix employ aminoterminal matrix targeting signals (MTSs), also called presequences, that are necessary and sufficient for their import into mitochondria. In most cases, these MTSs are proteolytically removed from the mature part of precursor proteins subsequent to their translocation into the matrix. Recently, internal MTS-like sequences (iMTS-Ls) were discovered in the mature region of many precursor proteins. Although these sequences are not sufficient for matrix targeting, they strongly increase the import competence of precursors by supporting their interaction with mitochondrial surface receptors. Due to their similarity to N-terminal MTSs, these iMTS-Ls can be identified using mitochondrial targeting prediction tools such as TargetP which was initially trained to recognize MTSs. In this protocol we describe how TargetP can be used to identify iMTS-Ls in protein sequences.

14.
Methods Mol Biol ; 1595: 213-219, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28409465

RESUMO

Peroxisomes are essential intracellular organelles that catalyze a number of essential metabolic pathways including ß-oxidation of very long chain fatty acids, synthesis of plasmalogen, bile acids, and generation and degradation of hydrogen peroxide. These peroxisomal functions are accomplished by strictly and spatiotemporally regulated compartmentalization of the enzymes catalyzing these reactions. Defects in peroxisomal protein import result in inherited peroxisome biogenesis disorders in humans. Peroxisomal matrix and membrane proteins are synthesized on free ribosomes and transported to peroxisomes in a manner dependent on their specific targeting signals and their receptors. Peroxisomal protein import can be analyzed using a semi-intact assay system, in which targeting efficiency is readily monitored by immunofluorescence microscopy. Furthermore, cytosolic factors required for peroxisomal protein import can be manipulated, suggesting that the semi-intact system is a useful and convenient system to uncover the molecular mechanisms of peroxisomal protein import.


Assuntos
Membranas Intracelulares/metabolismo , Proteínas de Membrana/metabolismo , Peroxissomos/metabolismo , Animais , Células CHO , Cricetulus , Células HeLa , Humanos , Microscopia de Fluorescência , Transtornos Peroxissômicos , Transporte Proteico , Transdução de Sinais
15.
Methods Mol Biol ; 1595: 319-327, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28409474

RESUMO

Cell mutants with a genetic defect affecting various cellular phenotypes are widely utilized as a powerful tool in genetic, biochemical, and cell biological research. More than a dozen complementation groups of animal somatic mutant cells defective in peroxisome biogenesis have been successfully isolated in Chinese hamster ovary (CHO) cells and used as a model system reflecting fatal human severe genetic disorders named peroxisome biogenesis disorders (PBD). Isolation and characterization of peroxisome-deficient CHO cell mutants has allowed the identification of PEX genes and the gene products peroxins, which directly leads to the accomplishment of isolation of pathogenic genes responsible for human PBDs, as well as elucidation of their functional roles in peroxisome biogenesis. Here, we describe the procedure to isolate peroxisome-deficient mammalian cell mutants from CHO cells, by making use of an effective, photo-sensitized selection method.


Assuntos
Proteínas de Membrana/genética , Mutação , Peroxissomos/genética , Animais , Células CHO , Cricetinae , Cricetulus , Técnicas de Inativação de Genes , Humanos , Proteínas de Membrana/deficiência , Proteínas de Membrana/metabolismo , Endopeptidase Neutra Reguladora de Fosfato PHEX/genética , Endopeptidase Neutra Reguladora de Fosfato PHEX/metabolismo , Transtornos Peroxissômicos/genética , Transporte Proteico
16.
Cell Tissue Res ; 367(1): 73-81, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27595151

RESUMO

Mitochondria play a key role in several metabolic and cell biological pathways and have attracted increasing attention due to their implication in life-span, ageing and human diseases. Mitochondrial proteases have a special role in these multiple biological functions, as they are involved in the regulation of various processes, e.g., mitochondrial protein biogenesis and quality control, mitochondrial dynamics, mitophagy and programmed cell death. The mitochondrial presequence processing machinery serves the particular purpose of maturing the majority of incoming precursor proteins by presequence cleavage, to ensure a stable mature protein by trimming of intermediate N-termini and to remove free toxic targeting peptides.


Assuntos
Mitocôndrias/metabolismo , Proteínas Mitocondriais/química , Processamento de Proteína Pós-Traducional , Sequência de Aminoácidos , Animais , Doença , Humanos , Proteínas Mitocondriais/metabolismo , Peptídeo Hidrolases/metabolismo
17.
Exp Parasitol ; 166: 97-107, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27060615

RESUMO

TbFlabarin is the Trypanosoma brucei orthologue of the Leishmania flagellar protein LdFlabarin but its sequence is 33% shorter than LdFlabarin, as it lacks a C-terminal domain that is indispensable for LdFlabarin to localize to the Leishmania flagellum. TbFlabarin is mainly expressed in the procyclic forms of the parasite and localized to the flagellum, but only when two palmitoylable cysteines at positions 3 and 4 are present. TbFlabarin is more strongly attached to the membrane fraction than its Leishmania counterpart, as it resists complete solubilization with as much as 0.5% NP-40. Expression ablation by RNA interference did not change parasite growth in culture, its morphology or apparent motility. Heterologous expression showed that neither TbFlabarin in L. amazonensis nor LdFlabarin in T. brucei localized to the flagellum, revealing non-cross-reacting targeting signals between the two species.


Assuntos
Flagelos/química , Proteínas de Protozoários/química , Trypanosoma brucei brucei/química , Sequência de Aminoácidos , DNA de Protozoário/isolamento & purificação , Eletroporação , Flagelina/química , Leishmania/química , Estrutura Secundária de Proteína , Proteínas de Protozoários/genética , Proteínas de Protozoários/fisiologia , Interferência de RNA , RNA de Protozoário/isolamento & purificação , Alinhamento de Sequência , Trypanosoma brucei brucei/genética , Trypanosoma brucei brucei/ultraestrutura
18.
Biochim Biophys Acta ; 1863(5): 870-80, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26392202

RESUMO

The importance of peroxisomes is highlighted by severe inherited human disorders linked to impaired peroxisomal biogenesis. Besides the simple architecture of these ubiquitous and dynamic organelles, their biogenesis is surprisingly complex and involves specialized proteins, termed peroxins, which mediate targeting and insertion of peroxisomal membrane proteins (PMPs) into the peroxisomal bilayer, and the import of soluble proteins into the protein-dense matrix of the organelle. The long-standing paradigm that all peroxisomal proteins are imported directly into preexisting peroxisomes has been challenged by the detection of PMPs inside the endoplasmic reticulum (ER). New models propose that the ER originates peroxisomal biogenesis by mediating PMP trafficking to the peroxisomes via budding vesicles. However, the relative contribution of this ER-derived pathway to the total peroxisome population in vivo, and the detailed mechanisms of ER entry and exit of PMPs are controversially discussed. This review aims to summarize present knowledge about how PMPs are targeted to the ER, instead of being inserted directly into preexisting peroxisomes. Moreover, molecular mechanisms that facilitate bilayer insertion of PMPs among different species are discussed.


Assuntos
Retículo Endoplasmático/metabolismo , Proteínas de Membrana/metabolismo , Peroxissomos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Animais , Retículo Endoplasmático/química , Células Eucarióticas/química , Células Eucarióticas/metabolismo , Regulação da Expressão Gênica , Humanos , Proteínas de Membrana/química , Proteínas de Membrana/genética , Peroxinas , Peroxissomos/química , Plantas/química , Plantas/metabolismo , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Transporte Proteico , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Transdução de Sinais
19.
Front Physiol ; 6: 259, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26441678

RESUMO

The proper distribution of proteins between the cytosol and various membrane-bound compartments is crucial for the functionality of eukaryotic cells. This requires the cooperation between protein transport machineries that translocate diverse proteins from the cytosol into these compartments and targeting signal(s) encoded within the primary sequence of these proteins that define their cellular destination. The mechanisms exerting protein translocation differ remarkably between the compartments, but the predominant targeting signals for mitochondria, chloroplasts and the ER share the N-terminal position, an α-helical structural element and the removal from the core protein by intraorganellar cleavage. Interestingly, similar properties have been described for the peroxisomal targeting signal type 2 mediating the import of a fraction of soluble peroxisomal proteins, whereas other peroxisomal matrix proteins encode the type 1 targeting signal residing at the extreme C-terminus. The structural similarity of N-terminal targeting signals poses a challenge to the specificity of protein transport, but allows the generation of ambiguous targeting signals that mediate dual targeting of proteins into different compartments. Dual targeting might represent an advantage for adaptation processes that involve a redistribution of proteins, because it circumvents the hierarchy of targeting signals. Thus, the co-existence of two equally functional import pathways into peroxisomes might reflect a balance between evolutionary constant and flexible transport routes.

20.
Structure ; 23(10): 1783-1800, 2015 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-26365798

RESUMO

The eukaryotic cell is defined by compartments that allow specialization of function. This compartmental structure generates a new concept in cell biology compared with the simpler prokaryotic cell structure, namely the specific targeting of proteins to intracellular compartments. Protein targeting is achieved by the action of specialized signals on proteins destined for organelles that are recognized by cognate receptors. An understanding of the specificity of targeting signal recognition leading to import requires an understanding of the receptor structures. Here, we focus on the structures of receptors of different import machineries located on the outer membrane of three organelles: peroxisomes, mitochondria, and chloroplasts. This review provides an overview of the structural features of outer membrane import receptors that recognize targeting signals. Finally, we briefly discuss combinatorial approaches that might aid in understanding the structural factors mediating receptor targeting signal recognition.


Assuntos
Cloroplastos/metabolismo , Células Eucarióticas/metabolismo , Mitocôndrias/metabolismo , Peroxissomos/metabolismo , Proteínas de Plantas/química , Receptores Citoplasmáticos e Nucleares/química , Compartimento Celular , Cloroplastos/ultraestrutura , Células Eucarióticas/citologia , Expressão Gênica , Humanos , Membranas Intracelulares/metabolismo , Membranas Intracelulares/ultraestrutura , Mitocôndrias/ultraestrutura , Modelos Moleculares , Peroxissomos/ultraestrutura , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Sinais Direcionadores de Proteínas , Transporte Proteico , Receptores Citoplasmáticos e Nucleares/genética , Receptores Citoplasmáticos e Nucleares/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA