Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.522
Filtrar
1.
J Mol Histol ; 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39017855

RESUMO

Long non-coding RNAs (LncRNAs) play a substantial role in the process of cerebral ischemia-reperfusion injury (CIRI). The present work aimed to determine the probable mechanism by which LncRNA TUG1 exacerbates CIRI via the miR-340-5p/phosphatase and tensin homolog (PTEN) pathway. After developing a middle cerebral artery occlusion/reperfusion (MCAO/R) model, pcDNA-TUG1 together with miR-340-5p agomir were administrated in vivo. Furthermore, the neurologic defects in rats were assessed by a modified neurological severity score. Moreover, 2,3,5-Triphenyl-2 H-tetrazolium chloride stain-step was performed to determine the brain's infarct size. In addition, western blotting, immunohistochemistry, and qRT-PCR experiments were utilized for gauging the proteomic/genomic expression-profiles. Luciferase reporter assay validated correlations across TUG1, miR-340-5p, together with PTEN. The results indicated relatively reduced miR-340-5p levels in MCAO/R models, while upregulated TUG1 levels. The pcDNA-TUG1-treated rats indicated increasing neurological dysfunction, whereas the miR-340-5p agomir-treated rats showed improvement. Furthermore, miR-340-5p was determined to be the expected and confirmed TUG1 target. All things considered, the findings suggested that PTEN can serve as the target of miR-340-5p. In addition, TUG1 served as a miR-340-5p ceRNA, which promotes PTEN modulation. Furthermore, TUG1 overexpression decreased miR-340-5p's capacity to fend against CIRI. Conclusively, this work proved that in CIRI, targeting the TUG1/miR-340-5p/PTEN regulatory axis is a viable approach for the treatment of ischemic stroke.

2.
J Proteome Res ; 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39024330

RESUMO

Ferroptosis adversely affects the viability, differentiation, and metabolic integrity of C2C12 myoblasts, contributing to the decline in skeletal muscle health. The intricate mechanisms behind this process are not fully understood. In this study, we induced ferroptosis in myoblasts using targeted inducers and found a marked decrease in specific redox metabolites, particularly taurine. Taurine supplementation effectively reversed the deleterious effects of ferroptosis, significantly increased cellular glutathione levels, reduced MDA and ROS levels, and rejuvenated impaired myogenic differentiation. Furthermore, taurine downregulated HO-1 expression and decreased intracellular Fe2+ levels, thereby stabilizing the labile iron pool. Using NMR metabolomic analysis, we observed that taurine profoundly promoted glycerophospholipid metabolism, which is critical for cell membrane repair, and enhanced mitochondrial bioenergetics, thereby increasing the energy reserves essential for muscle satellite cell regeneration. These results suggest that taurine is a potent ferroptosis inhibitor that attenuates key drivers of this process, strengthens oxidative defenses, and improves redox homeostasis. This combined effect protects cells from ferroptosis-induced damage. This study highlights the potential of taurine as a valuable ferroptosis inhibitor that protects skeletal muscle from ferroptosis-induced damage and provides a basis for therapeutic strategies to rejuvenate and facilitate the regeneration of aging skeletal muscle.

3.
J Biomed Phys Eng ; 14(3): 287-298, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-39027706

RESUMO

Background: Radiotherapy, a highly effective method of radiation-based treating cancers, can reduce the size of tumors and affect healthy tissues. Radiation-induced lymphopenia as a side effect of radiation therapy can reduce the effectiveness of the treatment. Objective: This study aimed to examine how taurine can protect peripheral blood lymphocytes from radiation-based apoptosis. Material and Methods: In this experimental study, the effects of the taurine on lymphocytes were studied, and blood samples were divided into three groups: a negative control group that was not treated, a positive control group that was treated with cysteine (100 µg/ml), and a group that was treated with taurine (100 µg. mL-1) in three different doses (4, 8 & 12 Gy) before irradiation. The percentage of apoptotic and necrotic lymphocytes was measured using flow cytometry 48 and 72 hours after the irradiation, respectively. Results: According to the groups treated with taurine, the number of lymphocytes undergoing apoptosis was lower and higher compared to the negative and positive control groups, respectively. The decrease in this value was more pronounced 48 hours after radiation compared to 72 hours. Furthermore, there was a slight increase in the number of apoptotic lymphocytes with increasing radiation dose. Conclusion: Taurine effectively protects human peripheral blood lymphocytes from radiation-based apoptosis.

4.
Int J Mol Sci ; 25(13)2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-39000444

RESUMO

The taurine transporter (TauT, SLC6A6) is a member of the solute carrier 6 (SLC6) family, which plays multiple physiological roles. The SLC6 family is divided into four subfamilies: GABA (γ-aminobutyric acid), monoamine, glycine and neutral amino acid transporters. Proteins from the GABA group, including the taurine transporter, are primarily considered therapeutic targets for treating central nervous system disorders. However, recent studies have suggested that inhibitors of SLC6A6 could also serve as anticancer agents. Overexpression of TauT has been associated with the progression of colon and gastric cancer. The pool of known ligands of this transporter is limited and the exact spatial structure of taurine transporter remains unsolved. Understanding its structure could aid in the development of novel inhibitors. Therefore, we utilized homology modelling techniques to create models of TauT. Docking studies and molecular dynamics simulations were conducted to describe protein-ligand interactions. We compared the obtained information for TauT with literature data on other members of the GABA transporter group. Our in silico analysis allowed us to characterize the transporter structure and point out amino acids crucial for ligand binding: Glu406, Gly62 and Tyr138. The significance of selected residues was confirmed through structural studies of mutants. These results will aid in the development of novel taurine transporter inhibitors, which can be explored as anticancer agents.


Assuntos
Proteínas da Membrana Plasmática de Transporte de GABA , Proteínas de Membrana Transportadoras , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Humanos , Proteínas da Membrana Plasmática de Transporte de GABA/metabolismo , Proteínas da Membrana Plasmática de Transporte de GABA/química , Proteínas da Membrana Plasmática de Transporte de GABA/genética , Proteínas de Membrana Transportadoras/química , Proteínas de Membrana Transportadoras/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Neoplasias/genética , Glicoproteínas de Membrana/metabolismo , Glicoproteínas de Membrana/química , Glicoproteínas de Membrana/antagonistas & inibidores , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/uso terapêutico , Ligantes , Sequência de Aminoácidos , Ligação Proteica
5.
Front Nutr ; 11: 1359958, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38974810

RESUMO

Background: Ahiflower oil from the seeds of Buglossoides arvensis is rich in α-linolenic acid (ALA) and stearidonic acid (SDA). ALA and SDA are potential precursor fatty acids for the endogenous synthesis of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), which are n3-long chain polyunsaturated fatty acids (n3-LC-PUFAS), in humans. Since taurine, an amino sulfonic acid, is often associated with tissues rich in n3-LC-PUFAS (e.g., in fatty fish, human retina), taurine may play a role in EPA- and DHA-metabolism. Objective: To examine the capacity of the plant-derived precursor fatty acids (ALA and SDA) and of the potential fatty acid metabolism modulator taurine to increase n3-LC-PUFAS and their respective oxylipins in human plasma and cultivated hepatocytes (HepG2 cells). Methods: In a monocentric, randomized crossover study 29 healthy male volunteers received three sequential interventions, namely ahiflower oil (9 g/day), taurine (1.5 g/day) and ahiflower oil (9 g/day) + taurine (1.5 g/day) for 20 days. In addition, cultivated HepG2 cells were treated with isolated fatty acids ALA, SDA, EPA, DHA as well as taurine alone or together with SDA. Results: Oral ahiflower oil intake significantly improved plasma EPA levels (0.2 vs. 0.6% of total fatty acid methyl esters (FAMES)) in humans, whereas DHA levels were unaffected by treatments. EPA-levels in SDA-treated HepG2 cells were 65% higher (5.1 vs. 3.0% of total FAMES) than those in ALA-treated cells. Taurine did not affect fatty acid profiles in human plasma in vivo or in HepG2 cells in vitro. SDA-rich ahiflower oil and isolated SDA led to an increase in EPA-derived oxylipins in humans and in HepG2 cells, respectively. Conclusion: The consumption of ahiflower oil improves the circulating levels of EPA and EPA-derived oxylipins in humans. In cultivated hepatocytes, EPA and EPA-derived oxylipins are more effectively increased by SDA than ALA.

6.
Artigo em Inglês | MEDLINE | ID: mdl-38976556

RESUMO

Introduction: The lens's metabolic demands are met through a continuous circulation of aqueous humor, encompassing a spectrum of components such as organic and inorganic ions, carbohydrates, glutathione, urea, amino acids, proteins, oxygen, carbon dioxide, and water. Metabolomics is a pivotal tool, offering an initial insight into the complexities of integrated metabolism. In this investigative study, we systematically scrutinize the composition of intraocular fluid in individuals afflicted with cataracts. Methods: The investigation involved a comprehensive analysis of aqueous humor samples from a cohort comprising 192 patients. These individuals were stratified by utilizing the SPONCS classification system, delineating distinct groups characterized by the hardness of cataracts. The analytical approach employed targeted quantitative metabolite analysis using HILIC-based liquid chromatography coupled with high-resolution mass spectrometric detection. The metabolomics data analysis was performed with MetaboAnalyst 5.0. Results: The results of the enrichment analysis have facilitated the inference that the discerned disparities among groups arise from disruptions in taurine and hypotaurine metabolism, variations in tryptophan metabolism, and modifications in mitochondrial beta-oxidation of short-chain saturated fatty acids and pyrimidine metabolism. Conclusion: A decline in taurine concentration precipitates diminished glutathione activity, prompting an elevated requirement for NAD+ and instigating tryptophan metabolism along the kynurenine pathway. Activation of this pathway is additionally prompted by interferon-gamma and UV radiation, leading to the induction of IDO. Concurrently, heightened mitochondrial beta-oxidation signifies a distinctive scenario in translocating fatty acids into the mitochondria, enhancing energy production.

7.
FEBS Open Bio ; 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39030877

RESUMO

Epithelial-to-mesenchymal transition (EMT) contributes to the poor prognosis of patients with cancer by promoting distant metastasis and anti-cancer drug resistance. Several distinct metabolic alterations have been identified as key EMT phenotypes. In the present study, we further characterize the role of transforming growth factor-ß (TGF-ß)-induced EMT in non-small-cell lung cancer. Our study revealed that TGF-ß plays a role in EMT functions by upregulation of cytidine 5'-triphosphate synthetase 1 (CTPS), a vital enzyme for CTP biosynthesis in the pyrimidine metabolic pathway. Both knockdown and enzymatic inhibition of CTPS reduced TGF-ß-induced changes in EMT marker expression, chemoresistance and migration in vitro. Moreover, CTPS knockdown counteracted the TGF-ß-mediated downregulation of UDP-glucuronate, glutarate, creatine, taurine and nicotinamide. These findings indicate that CTPS plays a multifaceted role in EMT metabolism, which is crucial for the malignant transformation of cancer through EMT, and underline its potential as a promising therapeutic target for preventing drug resistance and metastasis in non-small-cell lung cancer.

8.
Hypertens Res ; 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38926588

RESUMO

Fetal malnutrition has been reported to induce hypertension and renal injury in adulthood. We hypothesized that this hypertension and renal injury would be associated with abnormal epigenetic memory of stem and progenitor cells contributing to organization in offspring due to fetal malnutrition. We measured blood pressure (BP) for 60 weeks in offspring of pregnant rats fed a normal protein diet (Control), low-protein diet (LP), and LP plus taurine (LPT) in the fetal period. We used western blot analysis to evaluate the expression of αSMA and renin in CD44-positive renal mesenchymal stem cells (MSCs) during differentiation by TGF-ß1. We measured kidney label-retaining cells (LRCs) at 11 weeks of age and formation of endothelial progenitor cells (EPCs) at 60 weeks of age from the offspring with fetal malnutrition. Epigenetics of the renal MSCs at 14 weeks were investigated by ATAC-sequence and RNA-sequence analyses. BP was significantly higher in LP than that in Control and LPT after 45-60 weeks of age. Numbers of LRCs and EPC colonies were significantly lower in LP than in Control. Renal MSCs from LP already showed expression of h-caldesmon, αSMA, LXRα, and renin before their differentiation. Epigenetic analyses identified PAR2, Chac1, and Tspan6 genes in the abnormal differentiation of renal MSCs. These findings suggested that epigenetic abnormalities of stem and progenitor cell memory cause hypertension and renal injury that appear in adulthood of offspring with fetal malnutrition.

9.
Cureus ; 16(5): e60997, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38910611

RESUMO

Alzheimer's disease (AD) stands as one of the predominant neurodegenerative disorders, often culminating in dementia. Taurine, an endogenous amino acid, holds pivotal regulatory functions within the physiological milieu. Emerging evidence suggests that taurine may confer protection against the onset and progression of AD through diverse mechanistic pathways. This systematic review aims to comprehensively elucidate the multifaceted role of taurine in Alzheimer's disease. The primary objective is to assess taurine's potential as a preventative and therapeutic intervention for Alzheimer's, based on studies from 2004 to 2022. A rigorous search strategy was implemented, targeting English-language articles accessible in full text. Eligible studies were meticulously sourced from renowned databases including PubMed, PubMed Central, Science Direct, Cochrane Library, and Medline Plus. Inclusion criteria were limited to studies explicitly investigating the role of taurine in Alzheimer's disease. Our review encompasses a wealth of experimental studies conducted on murine models, collectively indicating taurine's capacity to ameliorate symptomatic presentations of Alzheimer's disease. Encouraged by these promising preclinical findings, the imperative for clinical trials in human subjects emerges. Taurine emerges as a prospective agent, offering potential mitigation of the cognitive and memory-related debility synonymous with Alzheimer's disease. This systematic review delineates a compelling body of evidence underscoring the putative neuroprotective role of taurine in Alzheimer's disease. However, it is incumbent upon the scientific community to bridge the translational gap through robust clinical investigations. Such endeavors hold promise in revolutionizing the therapeutic landscape for individuals grappling with the formidable challenges posed by Alzheimer's disease.

10.
Behav Brain Res ; 471: 115086, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38825024

RESUMO

The effects of intra-hippocampal manipulation of glycine receptors on the reconsolidation of recent and late long-term spatial memory were evaluated and assessed in the Morris water maze. The results obtained from the intra-hippocampal infusion of glycine and taurine demonstrated that taurine at a 100 nmol/side dose impaired the reconsolidation of recent and late long-term spatial memory. In comparison, at a dose of 10 nmol/side, it only affected the reconsolidation of late long-term spatial memory, reinforcing that there are differences between molecular mechanisms underlying recent and late long-term memory reconsolidation. On the other hand, glycine impaired the reconsolidation of early and late spatial memory when infused at a dose of 10 nmol/side, but not at a dose of 100 nmol/side, unless it is co-infused with an allosteric site antagonist of the NMDA receptor. Altogether these results show that glycine acting in situ in the hippocampal CA1 region exerts a pharmacological effect on U-curve, which can be explained by its concomitant action on its ionotropic receptor GlyR and on its NMDA receptor co-agonist site.

11.
Int J Biol Macromol ; 273(Pt 2): 132762, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38876232

RESUMO

Wound dressing diligently facilitate healing by fostering hemostasis, immunoregulation, the angiogenesis, and collagen deposition. Our methodology entails fabricating chitosan-taurine nanoparticles (CS-Tau) through an ionic gelation method. The morphology of CS-Tau was observed utilizing Transmission electron microscopy (TEM), scanning electron microscopy (SEM) and Dynamic Light Scattering (DLS). The nanoparticles are subsequently incorporated into carboxymethyl chitosan hydrogels for crosslinking by EDC-NHS, yielding hydrogel dressings (CMCS-CS-Tau) designed to extend the duration of taurine release. In vitro investigations confirmed that these innovative compound dressings displayed superior biodegradation, biocompatibility, cytocompatibility, and non-toxicity, in addition to possessing anti-inflammatory properties, and stimulating the proliferation and mobility of human umbilical vein endothelial cells (HUVECs). Experiments conducted on mice models with full-thickness skin removal demonstrated that CMCS-CS-Tau efficaciously aided in wound healing by spurring angiogenesis, and encouraging collagen deposition. CMCS-CS-Tau can also minimize inflammation and promote collagen deposition in chronic diabetic wound. Hence, CMCS-CS-Tau promotes both acute and chronic diabetic wound healing. Furthermore, the sustained release mechanism of CMCS-CS-Tau on taurine reveals promising potential for extending its clinical utility in relation to various biological effects of taurine.


Assuntos
Quitosana , Células Endoteliais da Veia Umbilical Humana , Hidrogéis , Nanopartículas , Taurina , Cicatrização , Quitosana/química , Quitosana/análogos & derivados , Quitosana/farmacologia , Cicatrização/efeitos dos fármacos , Animais , Nanopartículas/química , Humanos , Camundongos , Hidrogéis/química , Hidrogéis/farmacologia , Taurina/análogos & derivados , Taurina/química , Taurina/farmacologia , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Diabetes Mellitus Experimental/tratamento farmacológico , Proliferação de Células/efeitos dos fármacos , Masculino , Reagentes de Ligações Cruzadas/química
12.
Foods ; 13(12)2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38928892

RESUMO

Imidazole dipeptides (IDPs) and taurine (Tau) have several health benefits and are known to be contained in natural seafoods. However, their levels vary widely in different natural seafoods, making their simultaneous determination desirable. Herein, we employ a liquid chromatography-tandem mass spectrometry approach using a novel amino group derivatization reagent, succinimidyl 2-(3-((benzyloxy)carbonyl)-1-methyl-5-oxoimidazolidin-4-yl) acetate ((R)-CIMa-OSu), for the simultaneous quantification of IDPs (carnosine (Car) and anserine (Ans)), their related amino acids, and Tau in natural seafoods. Each seafood sample contained different concentrations of IDPs (Car: ND to 1.48 mmol/100 g-wet, Ans: ND to 4.67 mmol/100 g-wet). The Car levels were considerably higher in eel, while Tau was more abundant in squid, boiled octopus, and scallop. Thus, the derivatization reagent (R)-CIMa-OSu provides a new approach to accurately assess the nutritional composition of seafoods, thereby providing valuable insight into its dietary benefits.

13.
Antioxidants (Basel) ; 13(6)2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38929159

RESUMO

Redox modifications to the plasma protein albumin have the potential to be used as biomarkers of disease progression and treatment efficacy in pathologies associated with inflammation and oxidative stress. One such pathology is Duchenne muscular dystrophy (DMD), a fatal childhood disease characterised by severe muscle wasting. We have previously shown in the mdx mouse model of DMD that plasma albumin thiol oxidation is increased; therefore, the first aim of this paper was to establish that albumin thiol oxidation in plasma reflects levels within mdx muscle tissue. We therefore developed a method to measure tissue albumin thiol oxidation. We show that albumin thiol oxidation was increased in both mdx muscle and plasma, with levels correlated with measures of dystropathology. In dystrophic muscle, albumin content was associated with areas of myonecrosis. The second aim was to test the ability of plasma thiol oxidation to track acute changes in dystropathology: we therefore subjected mdx mice to a single treadmill exercise session (known to increase myonecrosis) and took serial blood samples. This acute exercise caused a transient increase in total plasma albumin oxidation and measures of dystropathology. Together, these data support the use of plasma albumin thiol oxidation as a biomarker to track active myonecrosis in DMD.

14.
Nutrients ; 16(12)2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38931326

RESUMO

Taurine (2-aminoethanesulfonic acid) is a non-protein ß-amino acid essential for cellular homeostasis, with antioxidant, anti-inflammatory, and cytoprotective properties that are crucial for life maintenance. This study aimed to evaluate the effects of taurine administration on hippocampal neurogenesis, neuronal preservation, or reverse damage in rats exposed to forced ethanol consumption in an animal model. Wistar rats were treated with ethanol (EtOH) for a 28-day period (5% in the 1st week, 10% in the 2nd week, and 20% in the 3rd and 4th weeks). Two taurine treatment protocols (300 mg/kg i.p.) were implemented: one during ethanol consumption to analyze neuroprotection, and another after ethanol consumption to assess the reversal of ethanol-induced damage. Overall, the results demonstrated that taurine treatment was effective in protecting against deficits induced by ethanol consumption in the dentate gyrus. The EtOH+TAU group showed a significant increase in cell proliferation (145.8%) and cell survival (54.0%) compared to the EtOH+Sal group. The results also indicated similar effects regarding the reversal of ethanol-induced damage 28 days after the cessation of ethanol consumption. The EtOH+TAU group exhibited a significant increase (41.3%) in the number of DCX-immunoreactive cells compared to the EtOH+Sal group. However, this amino acid did not induce neurogenesis in the tissues of healthy rats, implying that its activity may be contingent upon post-injury stimuli.


Assuntos
Proteína Duplacortina , Etanol , Hipocampo , Neurogênese , Fármacos Neuroprotetores , Ratos Wistar , Taurina , Animais , Taurina/farmacologia , Neurogênese/efeitos dos fármacos , Masculino , Fármacos Neuroprotetores/farmacologia , Ratos , Hipocampo/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Giro Denteado/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Modelos Animais de Doenças
15.
bioRxiv ; 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38915512

RESUMO

Dysbiosis of the microbiome correlates with many neurological disorders, yet very little is known about the chemistry that controls the production of neuromodulatory molecules by gut microbes. Here, we found that an enzyme glutamate decarboxylase (BfGAD) of a gut microbe Bacteroides fragilis forms multiple neuromodulatory molecules such as γ-aminobutyric acid (GABA), hypotaurine, taurine, homotaurine, and ß-alanine. We evolved BfGAD and doubled its taurine productivity. Additionally, we increased its specificity towards the substrate L-glutamate. Here, we provide a chemical strategy via which the BfGAD activity could be fine-tuned. In future, this strategy could be used to modulate the production of neuromodulatory molecules by gut microbes.

16.
Biochem Pharmacol ; 226: 116386, 2024 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-38909788

RESUMO

Taurine is a sulfur-containing amino acid found in many cell organelles that plays a wide range of biological roles, including bile salt production, osmoregulation, oxidative stress reduction, and neuromodulation. Taurine treatments have also been shown to ameliorate the onset and development of many diseases, including hypertension, fatty liver, neurodegenerative diseases and ischemia-reperfusion injury, by exerting antioxidant, anti-inflammatory, and antiapoptotic effects. The endoplasmic reticulum (ER) is a dynamic organelle involved in a wide range of cellular functions, including lipid metabolism, calcium storage and protein stabilization. Under stress, the disruption of the ER environment leads to the accumulation of misfolded proteins and a characteristic stress response called the unfolded protein response (UPR). The UPR protects cells from stress and helps to restore cellular homeostasis, but its activation promotes cell death under prolonged ER stress. Recent studies have shown that ER stress is closely related to the onset and development of many diseases. This article reviews the beneficial effects and related mechanisms of taurine by regulating the ER in different physiological and pathological states, with the aim of providing a reference for further research and clinical applications.

17.
Front Vet Sci ; 11: 1393276, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38915889

RESUMO

High temperature induces heat stress, adversely affecting the growth and lactation performance of cows. Research has shown the protective effect of taurine against hepatotoxicity both in vivo and in vitro. This study aimed to investigate the effect of taurine on the metabolomics of mammary epithelial cells of dairy cows under high-temperature conditions. Mammary epithelial cells were exposed to 0 mmol/L (HS, control), 8 mmol/L (HT-8), and 32 mmol/L (HT-32) of taurine, then incubated at 42°C for 6 h. Metabolomics analysis was conducted using Liquid Chromatograph Mass Spectrometer (LC-MS). Compared with the HS group, 2,873 and 3,243 metabolites were detected in the HT-8 group in positive and negative ion modes. Among these, 108 and 97 metabolites were significantly upregulated in positive and negative ion modes, while 60 and 166 metabolites were downregulated. Notably, 15 different metabolites such as palmitic acid, adenine and hypoxanthine were screened out in the HT-8 group. Compared with the HS group, 2,873 and 3,243 metabolites were, respectively, detected in the HT-32 group in the positive and negative ion modes. Among those metabolites, 206 metabolites were significantly up-regulated, while 206 metabolites were significantly downregulated in the positive mode. On the other hand, 497 metabolites were significantly upregulated in the negative mode, while 517 metabolites were reported to be downregulated. Noteworthy, 30 distinct metabolites, such as palmitic acid, phytosphingosine, hypoxanthine, nonanoic acid, and octanoic acid, were screened out in the HT-32 group. KEGG enrichment analysis showed that these metabolites were mainly involved in lipid metabolism, purine metabolism and other biological processes. Overall, our study indicates that taurine supplementation alters the metabolites primarily associated with purine metabolism, lipid metabolism and other pathways to alleviate heat stress in bovine mammary epithelial cells.

18.
Nutrients ; 16(12)2024 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-38931171

RESUMO

Taurine, a non-proteogenic amino acid and commonly used nutritional supplement, can protect various tissues from degeneration associated with the action of the DNA-damaging chemotherapeutic agent cisplatin. Whether and how taurine protects human ovarian cancer (OC) cells from DNA damage caused by cisplatin is not well understood. We found that OC ascites-derived cells contained significantly more intracellular taurine than cell culture-modeled OC. In culture, elevation of intracellular taurine concentration to OC ascites-cell-associated levels suppressed proliferation of various OC cell lines and patient-derived organoids, reduced glycolysis, and induced cell protection from cisplatin. Taurine cell protection was associated with decreased DNA damage in response to cisplatin. A combination of RNA sequencing, reverse-phase protein arrays, live-cell microscopy, flow cytometry, and biochemical validation experiments provided evidence for taurine-mediated induction of mutant or wild-type p53 binding to DNA, activation of p53 effectors involved in negative regulation of the cell cycle (p21), and glycolysis (TIGAR). Paradoxically, taurine's suppression of cell proliferation was associated with activation of pro-mitogenic signal transduction including ERK, mTOR, and increased mRNA expression of major DNA damage-sensing molecules such as DNAPK, ATM and ATR. While inhibition of ERK or p53 did not interfere with taurine's ability to protect cells from cisplatin, suppression of mTOR with Torin2, a clinically relevant inhibitor that also targets DNAPK and ATM/ATR, broke taurine's cell protection. Our studies implicate that elevation of intracellular taurine could suppress cell growth and metabolism, and activate cell protective mechanisms involving mTOR and DNA damage-sensing signal transducti.


Assuntos
Cisplatino , Dano ao DNA , Neoplasias Ovarianas , Serina-Treonina Quinases TOR , Taurina , Proteína Supressora de Tumor p53 , Taurina/farmacologia , Humanos , Serina-Treonina Quinases TOR/metabolismo , Feminino , Neoplasias Ovarianas/metabolismo , Dano ao DNA/efeitos dos fármacos , Cisplatino/farmacologia , Proteína Supressora de Tumor p53/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Glicólise/efeitos dos fármacos , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Antineoplásicos/farmacologia
19.
Toxins (Basel) ; 16(6)2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38922135

RESUMO

The aim of this study was to investigate the effects of aflatoxin B1 (AFB1) on cholestasis in duck liver and its nutritional regulation. Three hundred sixty 1-day-old ducks were randomly divided into six groups and fed for 4 weeks. The control group was fed a basic diet, while the experimental group diet contained 90 µg/kg of AFB1. Cholestyramine, atorvastatin calcium, taurine, and emodin were added to the diets of four experimental groups. The results show that in the AFB1 group, the growth properties, total bile acid (TBA) serum levels and total superoxide dismutase (T-SOD), glutathione peroxidase (GSH-Px), and glutathione (GSH) liver levels decreased, while the malondialdehyde (MDA) and TBA liver levels increased (p < 0.05). Moreover, AFB1 caused cholestasis. Cholestyramine, atorvastatin calcium, taurine, and emodin could reduce the TBA serum and liver levels (p < 0.05), alleviating the symptoms of cholestasis. The qPCR results show that AFB1 upregulated cytochrome P450 family 7 subfamily A member 1 (CYP7A1) and cytochrome P450 family 8 subfamily B member 1 (CYP8B1) gene expression and downregulated ATP binding cassette subfamily B member 11 (BSEP) gene expression in the liver, and taurine and emodin downregulated CYP7A1 and CYP8B1 gene expression (p < 0.05). In summary, AFB1 negatively affects health and alters the expression of genes related to liver bile acid metabolism, leading to cholestasis. Cholestyramine, atorvastatin calcium, taurine, and emodin can alleviate AFB1-induced cholestasis.


Assuntos
Aflatoxina B1 , Colestase , Patos , Fígado , Animais , Aflatoxina B1/toxicidade , Colestase/induzido quimicamente , Colestase/metabolismo , Fígado/efeitos dos fármacos , Fígado/metabolismo , Ácidos e Sais Biliares/metabolismo , Ácidos e Sais Biliares/sangue , Doenças das Aves Domésticas/induzido quimicamente , Resina de Colestiramina/farmacologia , Ração Animal
20.
Front Aging Neurosci ; 16: 1379431, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38867846

RESUMO

Background: Taurine, an amino acid abundantly found in the brain and other tissues, has potential neuroprotective properties. Alzheimer's disease (AD) is a commonly occurring type of dementia, which becomes more prevalent as people age. This experiment aimed to assess the neuroprotective effects of taurine on SH-SY5Y cells by examining its impact on Dihydrotestosterone (DHT), Dihydroprogesterone (DHP), as well as the expression of miRNA-21 and miRNA-181. Methods: The effects of various taurine concentrations (0.25, and 0.75 mg/mL), and LPS (0.1, and 12 mg/mL) on the SH-SY5Y cell line were assessed using the MTT assay. The levels of DHT and DHP were quantified using an ELISA kit. Additionally, the expression levels of miRNA-181 and miRNA-21 genes were examined through Real-Time PCR analysis. Results: The results of the MTT assay showed that treatment with taurine at concentrations of 0.25, and 0.75 mg/mL reduces the toxicity of LPS in SH-SY5Y cells. ELISA results indicated that taurine at a concentration of 0.25, and 0.75 mg/mL significantly elevated DHT and DHP hormones in the SH-SY5Y cell line compared to the untreated group (p < 0.01). The expression levels of IL-1ß and IL-6 were decreased under the influence of LPS in SH-SY5Y cells after taurine treatment (p < 0.01). Gene expression analysis revealed that increasing taurine concentration resulted in heightened expression of miRNA-181 and miRNA-21, with the most significant increase observed at a concentration of 0.75 mg/mL (p < 0.001). Conclusion: Our study findings revealed that the expression of miRNA-181 and miRNA-21 can be enhanced by taurine. Consequently, exploring the targeting of taurine, miRNA-181, and miRNA-21 or considering hormone therapy may offer potential therapeutic approaches for treating AD or alleviating severe symptoms. Nonetheless, in order to fully comprehend the precise mechanisms involved, additional research is required.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA