Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Planta ; 248(6): 1473-1486, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30132152

RESUMO

MAIN CONCLUSION: For the first time we provide a study on the physiological, ultrastructural and molecular effects of salt stress on a terrestrial symbiotic green microalga, Trebouxia sp. TR9. Although tolerance to saline conditions has been thoroughly studied in plants and, to an extent, free-living microalgae, scientific data regarding salt stress on symbiotic lichen microalgae is scarce to non-existent. Since lichen phycobionts are capable of enduring harsh, restrictive and rapidly changing environments, it is interesting to study the metabolic machinery operating under these extreme conditions. We aim to determine the effects of prolonged exposure to high salt concentrations on the symbiotic phycobiont Trebouxia sp. TR9, isolated from the lichen Ramalina farinacea. Our results suggest that, when this alga is confronted with extreme saline conditions, the cellular structures are affected to an extent, with limited chlorophyll content loss and photosynthetic activity remaining after 72 h of exposure to 5 M NaCl. Furthermore, this organism displays a rather different molecular response compared to land plants and free-living halophile microalgae, with no noticeable increase in ABA levels and ABA-related gene expression until the external NaCl concentration is raised to 3 M NaCl. Despite this, the ABA transduction pathway seems functional, since the ABA-related genes tested are responsive to exogenous ABA. These observations could suggest that this symbiotic green alga may have developed alternative molecular pathways to cope with highly saline environments.


Assuntos
Ascomicetos/fisiologia , Clorófitas/fisiologia , Líquens/fisiologia , Microalgas/fisiologia , Simbiose , Ácido Abscísico/metabolismo , Ascomicetos/genética , Ascomicetos/ultraestrutura , Clorófitas/genética , Clorófitas/microbiologia , Clorófitas/ultraestrutura , Líquens/genética , Líquens/microbiologia , Líquens/ultraestrutura , Microalgas/genética , Microalgas/microbiologia , Microalgas/ultraestrutura , Fotossíntese/efeitos dos fármacos , Reguladores de Crescimento de Plantas/metabolismo , Salinidade , Cloreto de Sódio/farmacologia , Estresse Fisiológico
2.
Plant Mol Biol ; 91(3): 319-39, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26992400

RESUMO

Trebouxia is the most common lichen-forming genus of aero-terrestrial green algae and all its species are desiccation tolerant (DT). The molecular bases of this remarkable adaptation are, however, still largely unknown. We applied a transcriptomic approach to a common member of the genus, T. gelatinosa, to investigate the alteration of gene expression occurring after dehydration and subsequent rehydration in comparison to cells kept constantly hydrated. We sequenced, de novo assembled and annotated the transcriptome of axenically cultured T. gelatinosa by using Illumina sequencing technology. We tracked the expression profiles of over 13,000 protein-coding transcripts. During the dehydration/rehydration cycle c. 92 % of the total protein-coding transcripts displayed a stable expression, suggesting that the desiccation tolerance of T. gelatinosa mostly relies on constitutive mechanisms. Dehydration and rehydration affected mainly the gene expression for components of the photosynthetic apparatus, the ROS-scavenging system, Heat Shock Proteins, aquaporins, expansins, and desiccation related proteins (DRPs), which are highly diversified in T. gelatinosa, whereas Late Embryogenesis Abundant Proteins were not affected. Only some of these phenomena were previously observed in other DT green algae, bryophytes and resurrection plants, other traits being distinctive of T. gelatinosa, and perhaps related to its symbiotic lifestyle. Finally, the phylogenetic inference extended to DRPs of other chlorophytes, embryophytes and bacteria clearly pointed out that DRPs of chlorophytes are not orthologous to those of embryophytes: some of them were likely acquired through horizontal gene transfer from extremophile bacteria which live in symbiosis within the lichen thallus.


Assuntos
Clorófitas/fisiologia , Líquens/fisiologia , Clorófitas/genética , Desidratação , Dessecação , Líquens/genética , Filogenia , Reação em Cadeia da Polimerase , Transcriptoma/genética , Transcriptoma/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA