Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Mais filtros








Intervalo de ano de publicação
1.
Molecules ; 29(17)2024 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-39275120

RESUMO

Tetrahydroquinolines are key structures in a variety of natural products with diverse pharmacological utilities and other applications. A series of 3,4-diaryl-5,7-dimethoxy-1,2,3,4-tetrahydroquinolines were synthesized in good yield by reacting 3-aryl-5,7-dimethoxy-2,3-dihydroquinolin-4-ones with different Grignard reagents followed by the dehydration of the intermediate phenolic compounds. Subsequent reduction and deprotection were carried out to achieve the desired tetrahydroquinolone moiety. The lead compound 3c showed low micromolar inhibition of various cancer cell lines. Demethylation under different reaction conditions was also investigated to afford the corresponding monohydroxy analogues.


Assuntos
Antineoplásicos , Quinolinas , Humanos , Quinolinas/química , Quinolinas/síntese química , Quinolinas/farmacologia , Antineoplásicos/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Linhagem Celular Tumoral , Estrutura Molecular , Relação Estrutura-Atividade , Ensaios de Seleção de Medicamentos Antitumorais , Proliferação de Células/efeitos dos fármacos
2.
Angew Chem Int Ed Engl ; : e202411561, 2024 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-39188019

RESUMO

The tetrahydroquinoline (THQ) framework is commonly found in natural products and pharmaceutically relevant molecules. Apart from the use of transition metal catalysts and chiral phosphoric acids, the chiral 2-substituted 1,2,3,4-THQs are synthesized using amine oxidase biocatalysts. However, the use of imine reductases (IREDs) in their asymmetric synthesis remained unexplored. In the current work, IREDs are employed in telescopic multienzyme cascades to catalyze the intramolecular reductive amination leading to chiral 2-alkyl and 2-aryl substituted-1,2,3,4-tetrahydroquinolines starting from inexpensive nitroalkenones. The cascades containing NtDBR (an ene reductase), NfsB (a nitro reductase) with either Na2S2O4 or V2O5, various IREDs, and glucose dehydrogenase (for NADPH regeneration) are used to synthesize a broad range of (R)/(S)-2-alkyl-substituted (THQs) (26 examples) with high yield (up to 93%) and excellent ee (up to 99%) in one-pot. The method further facilitates the one-pot biocatalytic synthesis of chiral 2-aryl substituted THQs (26 examples) from amino chalcones. Lastly, the asymmetric synthesis of several (R)- and (S)-THQ based intermediates of Hancock alkaloids showed the practical application of the newly developed biocatalytic cascades.

3.
Int J Biol Macromol ; 269(Pt 2): 132102, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38729465

RESUMO

Optically pure 1,2,3,4-tetrahydroquinolines (THQs) represent a class of important motifs in many natural products and pharmaceutical agents. While recent advances on redox biocatalysis have demonstrated the great potential of amine oxidases, all the transformations focused on 2-substituted THQs. The corresponding biocatalytic method for the preparation of chiral 4-substituted THQs is still challenging due to the poor activity and stereoselectivity of the available enzyme. Herein, we developed a biocatalytic kinetic resolution approach for enantiodivergent synthesis of 4-phenyl- or alkyl-substituted THQs. Through structure-guided protein engineering of cyclohexylamine oxidase derived from Brevibacterium oxidans IH-35 A (CHAO), the variant of CHAO (Y215H/Y214S) displayed improved specific activity toward model substrate 4-phenyl substituted THQ (0.14 U/mg, 13-fold higher than wild-type CHAO) with superior (R)-stereoselectivity (E > 200). Molecular dynamics simulations show that CHAO Y215H/Y214S allows a suitable substrate positioning in the expanded binding pocket to be facilely accessed, enabling enhanced activity and stereoselectivity. Furthermore, a series of 4-alkyl-substituted THQs can be transformed by CHAO Y215H/Y214S, affording R-isomers with good yields (up to 50 %) and excellent enantioselectivity (up to ee > 99 %). Interestingly, the monoamine oxidase from Pseudomonas fluorescens Pf0-1 (PfMAO1) with opposite enantioselectivity was also mined. Together, this system enriches the kinetic resolution methods for the synthesis of chiral THQs.


Assuntos
Quinolinas , Cinética , Estereoisomerismo , Quinolinas/química , Biocatálise , Brevibacterium/enzimologia , Especificidade por Substrato , Simulação de Dinâmica Molecular , Monoaminoxidase/metabolismo , Monoaminoxidase/química
4.
Virology ; 590: 109968, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38141499

RESUMO

Bovine viral diarrhea virus (BVDV) is known to cause financial losses and decreased productivity in the cattle industry worldwide. Currently, there are no available antiviral treatments for effectively controlling BVDV infections in laboratories or farms. The BVDV envelope protein (E2) mediates receptor recognition on the cell surface and is required for fusion of virus and cell membranes after the endocytic uptake of the virus during the entry process. Therefore, E2 is an attractive target for the development of antiviral strategies. To identify BVDV antivirals targeting E2 function, we defined a binding site in silico located in domain IIIc at the interface between monomers in the disulfide linked dimer of E2. Employing a de novo design methodology to identify compounds with the potential to inhibit the E2 function, compound 9 emerged as a promising candidate with remarkable antiviral activity and minimal toxicity. In line with targeting of E2 function, compound 9 was found to block the virus entry into host cells. Furthermore, we demonstrated that compound 9 selectively binds to recombinant E2 in vitro. Molecular dynamics simulations (MD) allowed describing a possible interaction pattern between compound 9 and E2 and indicated that the S enantiomer of compound 9 may be responsible for the antiviral activity. Future research endeavors will focus on synthesizing enantiomerically pure compounds to further support these findings. These results highlight the usefulness of de novo design strategies to identify a novel class of BVDV inhibitors that block E2 function inhibiting virus entry into the host cell.


Assuntos
Vírus da Diarreia Viral Bovina Tipo 1 , Vírus da Diarreia Viral Bovina , Animais , Bovinos , Proteínas do Envelope Viral/metabolismo , Vírus da Diarreia Viral Bovina/genética , Vírus da Diarreia Viral Bovina Tipo 1/metabolismo , Antivirais/farmacologia
5.
Invest. clín ; 63(3): 243-261, set. 2022. tab, graf
Artigo em Inglês | LILACS-Express | LILACS | ID: biblio-1534661

RESUMO

Abstract Tetrahydroquinoline derivatives are interesting structures exhibiting a wide range of biological activities, including antitumor effects. In this investigation, the effect of the synthesized tetrahydroquinolines JS-56 and JS-92 on apoptosis, intracellular Ca2+ concentration ([Ca2+]i), and the sarco(endo)plasmic reticulum Ca2+-ATPase (SERCA) activity was determined on MCF-7 breast cancer cells. Colorimetric assays were used to assess MCF-7 cells viability and SERCA activity. Fura-2 and rhodamine 123 were used to measure the intracellular Ca2+ concentration and the mitochondrial electrochemical potential, respec tively. TUNEL assay was used to analyze DNA fragmentation, while caspase activity and NF-κB-dependent gene expression were assessed by luminescence. In silico models were used for molecular docking analysis. These compounds increase intracellular Ca2+ concentration; the main contribution is the Ca2+ entry from the extracellular milieu. Both JS-56 and JS-92 inhibit the activity of SERCA and dissipate the mitochondrial electrochemical potential through processes dependent and independent of the Ca2+ uptake by this organelle. Furthermore, JS-56 and JS-92 generate cytotoxicity in MCF-7 cells. The effect of JS-92 is higher than JS-56. Both compounds activate caspases 7 and 9, cause DNA fragmentation, and potentiate the effect of phorbol 12-myristate-13-acetate on NF-κB-dependent gene expression. Molecular docking analysis suggests that both compounds have a high interaction for SERCA, similar to thapsigargin. Both tetrahydroquinoline derivatives induced cell death through a combination of apoptotic events, increase [Ca2+]i, and inhibit SERCA activity by direct interaction.


Resumen Los derivados de tetrahidroquinolina son estructuras interesantes que exhiben una amplia gama de actividades biológicas, incluyendo efectos antitumorales. Se determinó el efecto de las tetrahidroquinolinas sintetizadas JS-56 y JS-92 sobre la apoptosis, concentración intracelular de Ca2+ ([Ca2+]i) y la actividad Ca2+-ATPasa del retículo sarco(endo)plásmico (SERCA) en células de cáncer de mama MCF-7. Se usaron ensayos colorimétricos para evaluar la viabilidad de las células MCF-7 y la actividad SERCA. Se emplearon Fura-2 y rodamina 123 para medir la concentración de Ca2+ intracelular y el potencial electroquímico mitocondrial, respectivamente. El ensayo TUNEL se utilizó para analizar la fragmentación del ADN, mientras que la actividad de caspasas y la expresión génica dependiente de NF-κB se evaluaron mediante luminiscencia. Modelos in silico permitieron el análisis del acoplamiento molecular. Estos compuestos aumentan la concentración de Ca2+ intracelular; la principal contribución es la entrada de Ca2+ desde el medio extracelular. Tanto JS-56 como JS-92 inhiben la actividad de SERCA y disipan el potencial electroquímico mitocondrial a través de procesos dependientes e independientes de la captación de Ca2+ por este orgánulo. Además, JS-56 y JS-92 generan citotoxicidad en células MCF-7. El efecto de JS-92 es mayor que JS-56. Ambos compuestos activan las caspasas 7 y 9, provocan la fragmentación del ADN y potencian el efecto del 12-miristato-13-acetato de forbol en la expresión génica dependiente de NF-κB. El análisis de acoplamiento molecular sugiere que ambos compuestos tienen una alta interacción con SERCA, similar a la tapsigargina. Ambos derivados de tetrahidroquinolina indujeron la muerte celular a través de una combinación de eventos apoptóticos, aumento de [Ca2+]i e inhibición de la actividad SERCA por interacción directa.

6.
Angew Chem Int Ed Engl ; 61(29): e202204300, 2022 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-35543384

RESUMO

Chiral compounds containing nitrogen heteroatoms are fundamental substances for the chemical, pharmaceutical and agrochemical industries. However, the preparation of some of these interesting scaffolds is still underdeveloped. Herein we present the synthesis of a family of P-stereogenic phosphinooxazoline iridium catalysts from L-threonine methyl ester and their use in the asymmetric hydrogenation of N-Boc-2,3-diarylallyl amines, achieving very high enantioselectivity. Furthermore, the synthetic utility of the 2,3-diarylpropyl amines obtained is demonstrated by their transformation to 3-aryl-tetrahydroquinolines and 4-benzyl-tetrahydroisoquinolines, which have not yet been obtained in an enantioselective manner by direct reduction of the corresponding aromatic heterocycles. This strategy allows the preparation of these types of alkaloids with the highest enantioselectivity reported up to date.


Assuntos
Irídio , Tetra-Hidroisoquinolinas , Aminas/química , Catálise , Hidrogenação , Irídio/química , Ligantes , Quinolinas , Estereoisomerismo , Tetra-Hidroisoquinolinas/química , Treonina
7.
Front Chem ; 9: 764866, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34805095

RESUMO

As a privileged structural motif, tetrahydroquinoline skeletons widely exist in biologically active natural products and pharmaceuticals. In this protocol, a highly diastereoselective [4 + 2] annulation of ortho-tosylaminophenyl-substituted p-QMs and cyanoalkenes to construct tetrahydroquinoline derivatives has been successfully achieved. This strategy proceeds efficiently under mild condition, offering straightforward route to a variety of 4-aryl-substituted tetrahydroquinolines with high yields, excellent diastereoselectivities, broad functional group tolerance as well as gram-scale capacity. Moreover, a one-pot reaction sequence utilizing in situ generated p-QMs under the similar condition to build tetrahydroquinoline framework is smoothly conducted with good reaction performance as well as step and atom economy.

8.
Molecules ; 26(5)2021 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-33801330

RESUMO

The aza-vinylogous Povarov reaction between aromatic amines, α-ketoaldehydes or α-formylesters and α,ß-unsaturated dimethylhydrazones was carried out in a sequential three-component fashion under mechanochemical conditions. Following extensive optimization work, the reaction was performed on a vibratory ball mill operating at 20 Hz and using zirconium oxide balls and milling jar, and afforded 1,2,3,4-tetrahydroquinolines and 1,2,3,4-tetrahydro- 1,5-naphthyridines functionalized at C-2, C-4 and also at C-6, in the latter case. This protocol generally afforded the target compounds in good to excellent yields and diastereoselectivities. A comparison of representative examples with the results obtained under conventional conditions revealed that the mechanochemical protocol affords faster Povarov reactions in comparable yields using a solvent-less environment.


Assuntos
Compostos Aza/química , Fenômenos Mecânicos , Naftiridinas/química , Quinolinas/química , Catálise , Estrutura Molecular , Estereoisomerismo
9.
Future Med Chem ; 13(12): 1057-1072, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33896195

RESUMO

Aim: Tumor cells adapt to hypoxic microenvironments by releasing the key transcription factor HIF-1α, which promotes angiogenesis, glycolytic phenotype, metastasis and erythropoiesis, allowing proliferation amid low oxygen levels. Therefore, therapeutic targeting of HIF-1α represents a viable strategy for cancer therapy. Methods & Results: The authors synthesized a series of novel tetrahydroquinazoline derivatives in six steps and demonstrated that their development had a unique ability to suppress HIF-1α expression through proteasomal degradation. Conclusion: Among these compounds, CDMP-TQZ (8bf) exhibited the highest antiproliferative potency in human cancer cells, in part through downregulation of HIF-1α.


Assuntos
Antineoplásicos/farmacologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/antagonistas & inibidores , Quinazolinas/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Estrutura Molecular , Quinazolinas/síntese química , Quinazolinas/química , Células Tumorais Cultivadas
10.
ChemMedChem ; 16(17): 2686-2694, 2021 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-33844464

RESUMO

Multidrug resistance (MDR) is one of the major factors in the failure of many chemotherapy approaches. In cancer cells, MDR is mainly associated with the expression of ABC transporters such as P-glycoprotein, MRP1 and ABCG2. Despite major efforts to develop new selective and potent inhibitors of ABC drug transporters, no ABCG2-specific inhibitors for clinical use are yet available. Here, we report the evaluation of sixteen tetrahydroquinoline/4,5-dihydroisoxazole derivatives as a new class of ABCG2 inhibitors. The affinity of the five best inhibitors was further investigated by the vanadate-sensitive ATPase assay. Molecular modelling data, proposing a potential binding mode, suggest that they can inhibit the ABCG2 activity by binding on site S1, previously reported as inhibitors binding region, as well targeting site S2, a selective region for substrates, and by specifically interacting with residues Asn436, Gln398, and Leu555. Altogether, this study provided new insights into THQ/4,5-dihydroisoxazole molecular hybrids, generating great potential for the development of novel most potent ABCG2 inhibitors.


Assuntos
Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/antagonistas & inibidores , Antineoplásicos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Isoxazóis/farmacologia , Proteínas de Neoplasias/antagonistas & inibidores , Quinolinas/farmacologia , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Antineoplásicos/síntese química , Antineoplásicos/química , Neoplasias da Mama/metabolismo , Relação Dose-Resposta a Droga , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Feminino , Humanos , Isoxazóis/química , Modelos Moleculares , Estrutura Molecular , Proteínas de Neoplasias/metabolismo , Quinolinas/química , Relação Estrutura-Atividade
11.
Eur J Med Chem ; 211: 113013, 2021 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-33272782

RESUMO

The retinoic acid receptor-related orphan receptor γt (RORγt) is an important nuclear receptor that regulates the differentiation of Th17 cells and production of interleukin 17(IL-17). RORγt agonists increase basal activity of RORγt and could provide a potential approach to cancer immunotherapy. Herein, hit compound 1 was identified as a weak RORγt agonist during in-house library screening. Changes in LHS core of 1 led to the identification of tetrahydroquinoline compound 6 as a partial RORγt agonist (max. act. = 39.3%). Detailed structure-activity relationship on substituent of the LHS core, amide linker and RHS arylsulfonyl moiety was explored and a novel series of tetrahydroquinolines and benzomorpholines was discovered as potent RORγt agonists. Tetrahydroquinoline compound 8g (EC50 = 8.9 ± 0.4 nM, max. act. = 104.5%) and benzomorpholine compound 9g (EC50 = 7.5 ± 0.6 nM, max. act. = 105.8%) were representative compounds with high RORγt agonistic activity in dual FRET assay, and they showed good activity in cell-based Gal4 reporter gene assay and Th17 cell differentiation assay (104.5% activation at 300 nM of 8g; 59.4% activation at 300 nM of 9g). The binding modes of 8g and 9g as well as the two RORγt inverse agonists accidentally discovered were also discussed.


Assuntos
Descoberta de Drogas , Morfolinas/farmacologia , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/agonistas , Quinolinas/farmacologia , Animais , Diferenciação Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Humanos , Camundongos , Simulação de Acoplamento Molecular , Estrutura Molecular , Morfolinas/síntese química , Morfolinas/química , Quinolinas/síntese química , Quinolinas/química , Relação Estrutura-Atividade , Células Th17
12.
Molecules ; 25(23)2020 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-33260896

RESUMO

The synthesis of a small library of 8-substituted 2-methyl-5,6,7,8-tetrahydroquinoline derivatives is presented. All the compounds were tested for their antiproliferative activity in non-cancer human dermal microvascular endothelial cells (HMEC-1) and cancer cells: human T-lymphocyte cells (CEM), human cervix carcinoma cells (HeLa), human dermal microvascular endothelial cells (HMEC-1), colorectal adenocarcinoma (HT-29), ovarian carcinoma (A2780), and biphasic mesothelioma (MSTO-211H). Compounds 3a, 5a, and 2b, showing significant IC50 values against the whole panel of the selected cells, were further synthesized and tested as pure enantiomers in order to shed light on how their stereochemistry might impact on the related biological effect. The most active compound (R)-5a was able to affect cell cycle phases and to induce mitochondrial membrane depolarization and cellular ROS production in A2780 cells.


Assuntos
Antineoplásicos/química , Antineoplásicos/farmacologia , Neoplasias Colorretais/tratamento farmacológico , Células Endoteliais/efeitos dos fármacos , Mesotelioma/tratamento farmacológico , Neoplasias Ovarianas/tratamento farmacológico , Apoptose , Ciclo Celular , Proliferação de Células , Células Cultivadas , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Humanos , Espécies Reativas de Oxigênio/metabolismo
13.
Bioorg Med Chem ; 28(22): 115784, 2020 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-33007562

RESUMO

A series of 5,8-disubstituted tetrahydroisoquinolines were shown to be effective inhibitors of M. tb in culture and modest inhibitors of M. tb ATP synthase. There was a broad general trend of improved potency with higher lipophilicity. Large substituents (e.g., Bn) at the tetrahydroquinoline 5-position were well-tolerated, while N-methylpiperazine was the preferred 8-substituent. Structure-activity relationships for 7-linked side chains showed that the nature of the 7-linking group was important; -CO- and -COCH2- linkers were less effective than -CH2- or -CONH- ones. This suggests that the positioning of a terminal aromatic ring is important for target binding. Selected compounds showed much faster rates of microsomal clearance than did the clinical ATP synthase inhibitor bedaquiline, and modest inhibition of mycobacterial ATP synthase.


Assuntos
Antituberculosos/farmacologia , Mycobacterium tuberculosis/efeitos dos fármacos , Tetra-Hidroisoquinolinas/farmacologia , Antituberculosos/síntese química , Antituberculosos/química , Relação Dose-Resposta a Droga , Testes de Sensibilidade Microbiana , Estrutura Molecular , Relação Estrutura-Atividade , Tetra-Hidroisoquinolinas/síntese química , Tetra-Hidroisoquinolinas/química
14.
Chempluschem ; 85(10): 2212-2218, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32400944

RESUMO

Helquats (HQs) are structurally linked to helicenes and viologens, and they represent an attractive field of research in chemistry and medicinal chemistry. In the present work they were used as catalysts for the synthesis of 1,2,3,4-tetrahydroquinolines in good yields by the Povarov reaction. The substrate scope and the capability of different helquats to promote Povarov reactions are demonstrated. Studies to elucidate mechanistic details revealed that helquats act as single-electron transfer oxidants through a cation-radical mechanism. The screening of the catalytic activity of HQs confirmed that an active HQ must have a LUMO energy below -8.67 eV and the standard redox potential higher (less negative) than -1.2 V vs. the ferrocene/ferrocenium redox couple.


Assuntos
Compostos Policíclicos/química , Quinolinas/síntese química , Viologênios/química , Catálise , Estrutura Molecular , Quinolinas/química , Estereoisomerismo
15.
Int Immunopharmacol ; 80: 106231, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32007708

RESUMO

Novel 1,2,3,4-tetrahydroquinoline derivatives with N-alkanoyl, N-benzoyl, or chlorobenzoyl substituents were designed and synthesized to inhibit nuclear factor-kappa B (NF-κB) known to be involved in the regulation of many immune and inflammatory responses. These compounds have been previously reported to inhibit NF-κB transcriptional activity in Raw 267.4 macrophage cells and exhibit cytotoxicities to several human cancer cell lines (Jo et al., ACS Med. Chem. Lett. 7 (2016) 385-390). Accumulating evidence indicated that NF-κB is also involved in neuroinflammation implicated in many neurodegenerative diseases. Thus, the present study investigated effects of 1,2,3,4-tetrahydroquinoline derivatives on LPS-stimulated inflammatory mediators and cell migration using BV2 microglial cells as a model. We found that seven compounds tested in this study inhibited LPS-induced pro-inflammatory mediators including interleukin-6, tumor necrosis factor-α, and nitric oxide in concentration-dependent manners. Among these compounds, ELC-D-2 exhibited the most potent inhibition without showing significant cytotoxicity. We also found that ELC-D-2 attenuated levels of LPS-induced inducible nitric oxide synthase and cyclooxygenase-2. Moreover, ELC-D-2 inhibited nuclear translocation of NF-κB by suppressing inhibitor of kappa Bα phosphorylation. Furthermore, ELC-D-2 inhibited LPS-induced activation of c-Jun N-terminal kinase (JNK), which was associated with suppression of inflammatory mediators and migration of LPS-treated BV2 cells. Collectively, our findings demonstrate that ELC-D-2 inhibits LPS-induced pro-inflammatory mediators and cell migration by suppressing NF-κB translocation and JNK phosphorylation in BV2 microglial cells. These results suggest that ELC-D-2 might have a beneficial impact on various brain disorders in which neuroinflammation involving microglial activation plays a crucial role in the pathogenesis of these diseases.


Assuntos
Movimento Celular/efeitos dos fármacos , Mediadores da Inflamação/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Microglia/efeitos dos fármacos , Quinolinas/farmacologia , Animais , Linhagem Celular , Movimento Celular/imunologia , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Lipopolissacarídeos/imunologia , Sistema de Sinalização das MAP Quinases/imunologia , Camundongos , Microglia/imunologia , Microglia/metabolismo , NF-kappa B/metabolismo , Fosforilação/efeitos dos fármacos , Fosforilação/imunologia , Quinolinas/química
16.
Eur J Med Chem ; 187: 111984, 2020 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-31881455

RESUMO

Targeting the nuclear receptor RORγt is thought to be effective in autoimmune disorders. Tertiary sulfonamide 1 was found to be a potent RORγt inverse agonist previously. However, the high hepatic clearance value limits its druggability. In this study, we designed and synthesized a series of N-sulfonamide-tetrahydroquinolines by molecular modeling and scaffold hopping strategy, aiming at improving the metabolic stabilities. Detailed SAR exploration led to identification of potent RORγt inverse agonists such as 13 with moderate binding affinity and inhibitory activity of Th17 cell differentiation. Binding mode of 13 with RORγt-LBD was revealed by molecular docking. Moreover, 13 showed lower intrinsic clearance in mouse liver microsomes compared with 1 and potent in vivo efficacy and safety in psoriasis models, which can be used as a good starting point for the further optimization.


Assuntos
Descoberta de Drogas , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/agonistas , Psoríase/tratamento farmacológico , Quinolinas/farmacologia , Sulfonamidas/farmacologia , Animais , Diferenciação Celular/efeitos dos fármacos , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Feminino , Transferência Ressonante de Energia de Fluorescência , Imiquimode , Camundongos , Camundongos Endogâmicos BALB C , Microssomos Hepáticos/química , Microssomos Hepáticos/metabolismo , Simulação de Acoplamento Molecular , Estrutura Molecular , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/metabolismo , Psoríase/induzido quimicamente , Psoríase/metabolismo , Quinolinas/síntese química , Quinolinas/química , Relação Estrutura-Atividade , Sulfonamidas/síntese química , Sulfonamidas/química , Células Th17
17.
Heliyon ; 5(8): e02174, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31417970

RESUMO

New N-propargyl tetrahydroquinolines 6a-g have been synthesized efficiently through the cationic Povarov reaction (a domino Mannich/Friedel-Crafts reaction), catalyzed by Indium (III) chloride (InCl3), from the corresponding N-propargylanilines preformed, formaldehyde and N-vinylformamide, with good to moderate yields. All tetrahydroquinoline derivatives obtained were evaluated in vitro as free radical scavengers. Results showed that compound 6c presents a potent antioxidant effect compared with ascorbic acid, used as a reference compound. ADME predictions also revealed favorable pharmacokinetic parameters for the synthesized compounds, which warrant their suitability as potentials antioxidant. Additionally, a theoretical study using Molecular Quantum Similarity and reactivity indices were developed to discriminate different reactive sites in the new molecules in which the oxidative process occurs.

18.
ChemistryOpen ; 8(5): 627-636, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-31139552

RESUMO

The imino-Diels-Alder reaction is one of the most common strategies in organic chemistry and is an important tool for providing a broad spectrum of biologically active heterocyclic systems. A combined theoretical and experimental study of the imino-Diels-Alder reaction is described. The new phenanthroline-tetrahydroquinolines were evaluated as cholinesterase inhibitors. Their cytotoxicity in human neuroblastoma SH-SY5Y cells was also evaluated. The theoretical results suggest that compounds formation in stages can be explained by endo cycloadducts under the established reaction conditions, thereby confirming experimental results obtained for percentage yield. These results allowed us to establish that pyridine substituent remarkably influences activation energy and reaction yield, as well as in acetylcholinesterase (AChE) activity. Among these derivatives, compounds with 4-pyridyl and 4-nitrophenyl showed favorable AChE activity and proved to be non-cytotoxic.

19.
Bioorg Chem ; 86: 557-568, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30782574

RESUMO

In search of potent acetyl cholinesterase inhibitors with low hepatotoxicity for the treatment of Alzheimer's disease, introduction of a chloro substitution to tacrine and some of its analogs has proven to be beneficial in maintaining or potentiating the cholinesterase inhibitory activity. Furthermore, it was found to be able to reduce the hepatotoxicity of the synthesized compounds, which is the main target of the study. Accordingly, a series of new 4-(chlorophenyl)tetrahydroquinoline derivatives, was synthesized and characterized. The synthesized compounds were evaluated for their in vitro and in vivo anti-cholinesterase activity using tacrine as a reference standard. Furthermore, they were investigated for their hepatotoxicity compared to tacrine. The obtained biological results revealed that all synthesized compounds displayed equivalent or significantly higher anti-cholinesterase activity and lower hepatotoxicity in comparison to tacrine. In addition, in silico drug-likeness of the synthesized compounds were predicted and their practical logP were assessed indicating that all synthesized compounds can be considered as promising hits/leads. Furthermore, docking study of the compound showing the highest in vitro anticholinesterase activity was performed and its binding mode was compared to that of tacrine.


Assuntos
Acetilcolinesterase/metabolismo , Doença de Alzheimer/tratamento farmacológico , Inibidores da Colinesterase/farmacologia , Tacrina/farmacologia , Doença de Alzheimer/metabolismo , Animais , Anuros , Inibidores da Colinesterase/síntese química , Inibidores da Colinesterase/química , Relação Dose-Resposta a Droga , Halogenação , Humanos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Masculino , Simulação de Acoplamento Molecular , Estrutura Molecular , Ratos , Relação Estrutura-Atividade , Tacrina/síntese química , Tacrina/química
20.
Angew Chem Int Ed Engl ; 56(45): 14232-14236, 2017 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-28926172

RESUMO

A general catalytic hydrogen transfer-mediated α-functionalization of 1,8-naphthyridines is reported for the first time that benefits from a hydrogen transfer-mediated activation mode for non-activated pyridyl cores. The pyridyl α-site selectively couples with the C8-site of various tetrahydroquinolines (THQs) to afford novel α-functionalized tetrahydro 1,8-naphthyridines, a class of synthetically useful building blocks and potential candidates for the discovery of therapeutic and bio-active products. The utilization of THQs as inactive hydrogen donors (HDs) appears to be a key strategy to overcome the over-hydrogenation barrier and address the chemoselectivity issue. The developed chemistry features operational simplicity, readily available catalyst and good functional group tolerance, and offers a significant basis for further development of new protocols to directly transform or functionalize inert N-heterocycles.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA