Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 96
Filtrar
Mais filtros








Intervalo de ano de publicação
1.
Dent Mater ; 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39117497

RESUMO

OBJECTIVES: This study aimed to evaluate the effects of incorporating the 0-20 wt% tetrapod-shaped zinc oxide (tZnO) whiskers on the mechanical, antibacterial, and cytotoxic properties exhibited by experimental dual-cure resin composites. METHODS: Commercially obtained tZnO whiskers underwent surface modification using 3-methacryloxypropyltrimethoxysilane (γ-MPS). Subsequently, four groups of resin composites containing 0, 5, 10, and 20 wt% silanized tZnO along with barium borosilicate glass (BaBSG) fillers were fabricated while maintaining total filler loading at 60 wt%. Mechanical properties were examined utilizing specimens produced adhering to ISO 4049:2019 guidelines where applicable. Depth of cure was quantified immediately, while three-point flexural strength, flexural modulus, fracture toughness, Vickers hardness, compressive strength, and diametral tensile strength were assessed after 24 h of storage in 37 °C distilled water. Planktonic bacteria of Streptococcus mutans (S. mutans) were cultured and tested for antibacterial activity using disk diffusion and microbial anti-adhesion assays. Cytotoxicity was examined by preparing extracts from specimens in a cell culture medium and exposing stem cells from human exfoliated deciduous teeth (SHED) to serial dilutions of these extracts, then assessing cell viability and survival using CCK-8 assay and live/dead staining. RESULTS: Elevating tZnO loading yielded significant reductions in depth of cure, compressive (from 296.4 to 254.6 MPa), and diametral tensile strength (from 42.7 to 31.0 MPa), while flexural strength (91.3-94.1 MPa), flexural modulus (6.4-6.6 GPa), fracture toughness (0.96-1.04 MPa·m0.5), and Vickers hardness (36.5-37.4 kgf·mm-2) remained the same. Composites integrating tZnO displayed markedly enhanced antibacterial activity against S. mutans, based on anti-adhesion tests and live/dead staining. No cytotoxicity was observed for SHED treated with extracts from resin composites possessing up to 20 wt% tZnO whiskers. SIGNIFICANCE: This study demonstrates that incorporating up to 20 wt% silanized tZnO in place of traditional barium glass particles appreciably enhances dual-cure resin composite antibacterial function against S. mutans without compromising mechanical properties.

2.
J Evol Biol ; 37(9): 1101-1112, 2024 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-39066611

RESUMO

Type III interferon (IFN), also known as IFN-λ, is an innate antiviral protein. We retrieved the sequences of IFN-λ and their receptors from 42 tetrapod species and conducted a computational evolutionary analysis to understand the diversity of these genes. The copy number variation (CNV) of IFN-λ was determined through qPCR in Indian cattle and buffalo. The tetrapod species feature intron-containing type III IFN genes. Some reptiles and placental mammals have 2 IFN-λ loci, while marsupials, monotremes, and birds have a single IFN-λ locus. Some placental mammals and amphibians exhibit multiple IFN-λ genes, including both intron-less and intron-containing forms. Placental mammals typically possess 3-4 functional IFN-λ genes, some of them lack signal peptides. IFN-λ of these tetrapod species formed 3 major clades. Mammalian IFN-λ4 appears as an ancestral form, with syntenic conservation in most mammalian species. The intron-less IFN-λ1 and both type III IFN receptors have conserved synteny in tetrapod. Purifying selection was noted in their evolutionary analysis that plays a crucial role in minimizing genetic diversity and maintaining the integrity of biological function. This indicates that these proteins have successfully retained their biological function and indispensability, even in the presence of the type I IFNs. The expansion of IFN-λ genes in amphibians and camels have led to the evolution of multiple IFN-λ. The CNV can arise from gene duplication and conversion events. The qPCR-based absolute quantification revealed that IFN-λ3 and IFN-λ4 have more than 1 copy in buffalo (Murrah) and 6 cattle breeds (Sahiwal, Tharparkar, Kankrej, Red Sindhi, Jersey, and Holstein Friesian). Overall, these findings highlight the evolutionary diversity and functional significance of IFN-λ in tetrapod species.


Assuntos
Evolução Molecular , Interferons , Filogenia , Animais , Interferons/genética , Interferons/metabolismo , Interleucinas/genética , Variações do Número de Cópias de DNA , Bovinos/genética , Mamíferos/genética , Búfalos/genética , Interferon lambda
3.
Biol Lett ; 20(7): 20240216, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39046287

RESUMO

Most described species have not been explicitly included in phylogenetic trees-a problem named the Darwinian shortfall-owing to a lack of molecular and/or morphological data, thus hampering the explicit incorporation of evolution into large-scale biodiversity analyses. We investigate potential drivers of the Darwinian shortfall in tetrapods, a group in which at least one-third of described species still lack phylogenetic data, thus necessitating the imputation of their evolutionary relationships in fully sampled phylogenies. We show that the number of preserved specimens in scientific collections is the main driver of phylogenetic knowledge accumulation, highlighting the major role of biological collections in unveiling novel biodiversity data and the importance of continued sampling efforts to reduce knowledge gaps. Additionally, large-bodied and wide-ranged species, as well as terrestrial and aquatic amphibians and reptiles, are phylogenetically better known. Future efforts should prioritize phylogenetic research on organisms that are narrow-ranged, small-bodied and underrepresented in scientific collections, such as fossorial species. Addressing the Darwinian shortfall will be imperative for advancing our understanding of evolutionary drivers shaping biodiversity patterns and implementing comprehensive conservation strategies.


Assuntos
Biodiversidade , Evolução Biológica , Filogenia , Vertebrados , Animais , Vertebrados/genética , Vertebrados/classificação , Anfíbios/genética , Anfíbios/classificação , Répteis/classificação , Répteis/genética
4.
Polymers (Basel) ; 16(8)2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38674959

RESUMO

Biodegradable composite films comprising of poly(butylene adipate-co-terephthalate) (PBAT), polylactic acid (PLA), and tetrapod-zinc oxide (T-ZnO) whisker were prepared by a melt-extrusion and blow molding process. The effect of the incorporation of the T-ZnO whisker (1 to 7 wt.%) in the PBAT/PLA blend film was studied systematically. The composite films with an optimal T-ZnO whisker concentration of 3 wt.% exhibited the highest mechanical (tensile strength ~32 MPa), rheological (complex viscosity~1200 Pa.s at 1 rad/s angular frequency), and gas barrier (oxygen permeability~20 cc/m2·day) properties, whereas the composite films with 7 wt.% T-ZnO whiskers exhibited the highest antibacterial properties. The developed composite films can find potential application as antibacterial food packaging materials.

5.
J Exp Biol ; 227(8)2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38511508

RESUMO

Climbing animals theoretically should optimize the energetic costs of vertical climbing while also maintaining stability. Many modifications to climbing behaviors have been proposed as methods of satisfying these criteria, focusing on controlling the center of mass (COM) during ascent. However, the link between COM movements and metabolic energy costs has yet to be evaluated empirically. In this study, we manipulated climbing conditions across three experimental setups to elicit changes in COM position, and measured the impact of these changes upon metabolic costs across a sample of 14 humans. Metabolic energy was assessed via open flow respirometry, while COM movements were tracked both automatically and manually. Our findings demonstrate that, despite inducing variation in COM position, the energetic costs of climbing remained consistent across all three setups. Differences in energetic costs were similarly not affected by body mass; however, velocity had a significant impact upon both cost of transport and cost of locomotion, but such a relationship disappeared when accounting for metabolic costs per stride. These findings suggest that climbing has inescapable metabolic demands driven by gaining height, and that attempts to mitigate such a cost, with perhaps the exception of increasing speed, have only minimal impacts. We also demonstrate that metabolic and mechanical energy costs are largely uncorrelated. Collectively, we argue that these data refute the idea that efficient locomotion is the primary aim during climbing. Instead, adaptations towards effective climbing should focus on stability and reducing the risk of falling, as opposed to enhancing the metabolic efficiency of locomotion.


Assuntos
Metabolismo Energético , Humanos , Masculino , Adulto , Feminino , Fenômenos Biomecânicos , Locomoção/fisiologia , Adulto Jovem , Marcha/fisiologia
6.
PeerJ ; 11: e16182, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37904842

RESUMO

Skeletal development is well known in temnospondyls, the most diverse group of Paleozoic and Mesozoic amphibians. However, the elements of carpus and tarsus (i.e., the mesopodium) were always the last bones to ossify relative to the other limb bones and with regard to the rest of the skeleton, and are preserved only in rare cases. Thus, in contrast to the other parts of the limb skeleton, little is known about the ontogeny and sequence of ossification of the temnospondyl carpus and tarsus. We intended to close this gap by studying the ontogenies of a number of Permo/Carboniferous stereospondylomorphs, the only temnospondyls with preserved growth series in which the successive ossification of carpals and tarsals can be traced. Studying the degree of mesopodial ossification within the same species show that it is not necessarily correlated with body size. This indicates that individual age rather than size determined the degree of mesopodial ossification in stereospondylomorphs and that the largest individuals are not necessarily the oldest ones. In the stereospondylomorph tarsus, the distal tarsals show preaxial development in accordance with most early tetrapods and salamanders. However, the more proximal mesopodials exhibit postaxial dominance, i.e., the preaxial column (tibiale, centrale 1) consistently started to ossify after the central column (centralia 2-4, intermedium) and the postaxial column (fibulare). Likewise, we observed preaxial development of the distal carpals in the stereospondylomorph carpus, as in most early tetrapods for which a statement can be made. However, in contrast to the tarsus, the more proximal carpals were formed by preaxial development, i.e., the preaxial column (radiale, centrale 1) ossified after the central column (centralia 2-4, intermedium) and before the postaxial column (ulnare). This pattern is unique among known early tetrapods and occurs only in certain extant salamanders. Furthermore, ossification proceeded from distal to proximal in the central column of the stereospondylomorph carpus, whereas the ossification advanced from proximal to distal in the central column of the tarsus. Despite these differences, a general ossification pattern that started from proximolateral (intermedium or centrale 4) to mediodistal (distal tarsal and carpal 1) roughly in a diagonal line is common to all stereospondylomorph mesopodials investigated. This pattern might basically reflect the alignment of stress within the mesopodium during locomotion. Our observations might point to a greater variability in the development of the mesopodium in stereospondylomorphs and probably other early tetrapods than in most extant tetrapods, possibly mirroring a similar variation as seen in the early phases of skeletogenesis in salamander carpus and tarsus.


Assuntos
Tornozelo , Ossos do Tarso , Humanos , Animais , Anfíbios/anatomia & histologia , Osteogênese , Urodelos
7.
J Morphol ; 284(5): e21577, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36921082

RESUMO

Seymouria is among the best-known stem amniotes and holds an important phylogenetic position for discussions of amniote evolution. Previous work has focused primarily on the osteology of Seymouria, with recent interest turning to the application of computed tomography (CT) to study the internal features. We utilized neutron CT to reconstruct the first virtual cranial endocast and the first complete otic endocasts of Seymouria, revealing previously unrecognized details of its palaeoneuroanatomy. The brain and inner ear of Seymouria are largely plesiomorphic relative to later-diverging crown amniotes, showing no indication of increased encephalization or braincase ossification. Our results also clarify the plesiomorphic condition for carotid artery morphology in amniotes, with Seymouria showing a similar condition to basal members of both the synapsid and sauropsid lineages. The reconstructed neuroanatomy also indicates that Seymouria did not possess any particular neuroanatomical specializations, despite the probable presence of an impedance matching hearing system.


Assuntos
Evolução Biológica , Fósseis , Animais , Filogenia , Crânio/diagnóstico por imagem , Crânio/anatomia & histologia , Encéfalo/diagnóstico por imagem , Encéfalo/anatomia & histologia
8.
Materials (Basel) ; 17(1)2023 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-38204056

RESUMO

Metal oxide semiconductors (MOSs) hold great promise for electronic devices such as gas sensors. The utilization of ZnO as a conductometric gas sensor material can be traced back to its early stages; however, its application has primarily been limited to high-temperature environments. A gas sensor based on highly porous and interconnected 3D networks of ZnO tetrapod (ZnO-T) micro-nano structures was fabricated via an easy chemical vapor deposition (CVD) method. Homemade instruments were utilized to evaluate the gas-sensing of the sample at room temperature. It exhibited good gas-sensing at room temperature, particularly with a response of up to 338.80% toward 1600 ppm ethanol, while also demonstrating remarkable repeatability, stability, and selectivity. Moreover, the unique gas-sensing properties of ZnO-T at room temperature can be reasonably explained by considering the effect of van der Waals forces in physical adsorption and the synergistic effect of carrier concentration and mobility. The aforementioned statement presents an opportunity for the advancement of gas sensors utilizing ZnO at room temperature.

9.
Biol Futur ; 73(4): 411-426, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36355308

RESUMO

Major changes in the vertebrate anatomy have preceded the conquest of land by the members of this taxon, and continuous changes in limb shape and use have occurred during the later radiation of tetrapods. While the main, conserved mechanisms of limb development have been discerned over the past century using a combination of classical embryological and molecular methods, only recent advances made it possible to identify and study the regulatory changes that have contributed to the evolution of the tetrapod appendage. These advances include the expansion of the model repertoire from traditional genetic model species to non-conventional ones, a proliferation of predictive mathematical models that describe gene interactions, an explosion in genomic data and the development of high-throughput methodologies. These revolutionary innovations make it possible to identify specific mutations that are behind specific transitions in limb evolution. Also, as we continue to apply them to more and more extant species, we can expect to gain a fine-grained view of this evolutionary transition that has been so consequential for our species as well.


Assuntos
Evolução Biológica , Vertebrados , Animais , Vertebrados/genética , Expressão Gênica
10.
Molecules ; 27(22)2022 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-36431781

RESUMO

Herein, we report synthetic strategies for the development of a bifunctional Janus T4 tetrapod (Janus ring), in which the orthogonal silsesquioxane and organic faces are independently functionalized. An all-cis T4 tetrasilanolate was functionalized to introduce thiol moieties on the silsesquioxane face and naphthyl groups on the organic face to introduce luminescent and self-organization properties. The stepwise synthesis conditions required to prepare such perfectly defined oligomers via a suite of well-defined intermediates and to avoid polymerization or reactions over all eight positions of the tetrapod are explored via 29Si, 13C and 1H NMR, FTIR and TOF-ESI mass spectroscopy. To the best of our knowledge, this is one of the few reports of Janus T4 tetrapods, with different functional groups located on both faces of the molecule, thus expanding the potential range of applications for these versatile precursors.


Assuntos
Compostos de Sulfidrila , Polimerização , Espectroscopia de Ressonância Magnética
11.
Biosensors (Basel) ; 12(10)2022 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-36290974

RESUMO

In order to ensure the health and welfare of livestock, there has been an emphasis on precision farming of ruminant animals. Monitoring the life index of ruminant animals is of importance for intelligent farming. Here, a wearable sensor for monitoring ultraviolet (UV) radiation is demonstrated to understand the effect of primary and secondary photosensitization on dairy animals. Thin films of wide bandgap semiconductor zinc oxide (ZnO) comprising multilevel of nanostructures from microparticles (MP) to nanoparticles (NP), and tetrapod (T-ZnO), were prepared as the UV sensing active materials. The sensitivity was evaluated by exposing the films to various radiation sources, i.e., 365 nm (UV A), 302 nm (UV B), and 254 nm (UV C), and measuring the electrical resistance change. T-ZnO is found to exhibit higher sensitivity and stable response (on/off) upon exposure to UV A and UV B radiation, which is attributed to their higher surface area, aspect ratio, porosity, and interconnective networks inducing a high density of chemical interaction sites and consequently improved photocurrent generation. A wearable sensor using T-ZnO is packaged and attached to a collar for dynamic monitoring of UV response on ruminant animals (e.g., sheep in this study). The excellent performance of T-ZnO wearable sensors for ruminant animals also holds the potential for a wider range of applications such as residential buildings and public spaces.


Assuntos
Nanoestruturas , Óxido de Zinco , Ovinos , Animais , Óxido de Zinco/química , Gado , Nanoestruturas/química , Agricultura , Ruminantes
12.
ACS Nano ; 16(10): 15959-15976, 2022 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-36219731

RESUMO

Atherosclerosis, driven by chronic inflammation in the artery walls, underlies several severe cardiovascular diseases. However, currently available anti-inflammatory-based strategies for atherosclerosis treatment suffer from compromised therapeutic efficacy and undesirable therapeutic outcome. Herein, a distinct tetrapod needle-like PdH nanozyme was designed and engineered for efficient atherosclerosis treatment by the combinatorial reactive oxygen species (ROS) scavenging, hydrogen anti-inflammation, and autophagy activation. After loading into macrophages and targeted delivery to arterial plaques, these multifunctional nanozymes efficiently decreased the ROS levels and significantly suppressed the inflammation-related pathological process, exerting the distinct antioxidation and anti-inflammatory performance for alleviating atherosclerosis development. Especially and importantly, the specific spiky morphology of the PdH nanoenzyme further triggered a strong autophagy response in macrophages, synergistically maintaining the cellular homeostasis and alleviating atherosclerosis development. Both in vitro and in vivo results confirmed the synergy among the antioxidation, anti-inflammatory, and autophagy activation, suggesting that the combinatorial engineering of nanomedicines with intrinsic multiple therapeutic functions and topology-induced biological effects is highly preferable and effective for achieving the high therapeutic performance and desirable therapeutic outcome on atherosclerosis management and therapy.


Assuntos
Aterosclerose , Hidrogênio , Humanos , Espécies Reativas de Oxigênio/farmacologia , Hidrogênio/farmacologia , Hidrogênio/uso terapêutico , Autofagia , Aterosclerose/tratamento farmacológico , Aterosclerose/patologia , Macrófagos , Inflamação/tratamento farmacológico , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico
13.
Front Microbiol ; 13: 881595, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35814711

RESUMO

Hepatitis E virus (HEV) causes an acute, self-limiting hepatitis. The disease takes a severe form in pregnant women, leading to around 30% mortality. Zinc is an essential micronutrient that plays a crucial role in multiple cellular processes. Our earlier findings demonstrated the antiviral activity of zinc salts against HEV infection. Zinc oxide (ZnO) and its nanostructures have attracted marked interest due to their unique characteristics. Here we synthesized ZnO nanoparticles [ZnO(NP)] and tetrapod-shaped ZnO nanoparticles [ZnO(TP)] and evaluated their antiviral activity. Both ZnO(NP) and ZnO(TP) displayed potent antiviral activity against hepatitis E and hepatitis C viruses, with the latter being more effective. Measurement of cell viability and intracellular reactive oxygen species levels revealed that both ZnO(NP) and ZnO(TP) are noncytotoxic to the cells even at significantly higher doses, compared to a conventional zinc salt (ZnSO4). Our study paves the way for evaluation of the potential therapeutic benefit of ZnO(TP) against HEV and HCV.

14.
J Comp Physiol B ; 192(5): 623-645, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35779114

RESUMO

Adipose tissue has many important functions including metabolic energy storage, endocrine functions, thermoregulation and structural support. Given these varied functions, the microvascular characteristics within the tissue will have important roles in determining rates/limits of exchange of nutrients, waste, gases and molecular signaling molecules between adipose tissue and blood. Studies on skeletal muscle have suggested that tissues with higher aerobic capacity contain higher microvascular density (MVD) with lower diffusion distances (DD) than less aerobically active tissues. However, little is known about MVD in adipose tissue of most vertebrates; therefore, we measured microvascular characteristics (MVD, DD, diameter and branching) and cell size to explore the comparative aerobic activity in the adipose tissue across diving tetrapods, a group of animals facing additional physiological and metabolic stresses associated with diving. Adipose tissues of 33 animals were examined, including seabirds, sea turtles, pinnipeds, baleen whales and toothed whales. MVD and DD varied significantly (P < 0.001) among the groups, with seabirds generally having high MVD, low DD and small adipocytes. These characteristics suggest that microvessel arrangement in short duration divers (seabirds) reflects rapid lipid turnover, compared to longer duration divers (beaked whales) which have relatively lower MVD and greater DD, perhaps reflecting the requirement for tissue with lower metabolic activity, minimizing energetic costs during diving. Across all groups, predictable scaling patterns in MVD and DD such as those observed in skeletal muscle did not emerge, likely reflecting the fact that unlike skeletal muscle, adipose tissue performs many different functions in marine organisms, often within the same tissue compartment.


Assuntos
Mergulho , Tecido Adiposo/fisiologia , Animais , Regulação da Temperatura Corporal , Mergulho/fisiologia , Músculo Esquelético , Baleias
15.
Elife ; 112022 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-35880746

RESUMO

A crucial evolutionary change in vertebrate history was the Palaeozoic (Devonian 419-359 million years ago) water-to-land transition, allowed by key morphological and physiological modifications including the acquisition of lungs. Nonetheless, the origin and early evolution of vertebrate lungs remain highly controversial, particularly whether the ancestral state was paired or unpaired. Due to the rarity of fossil soft tissue preservation, lung evolution can only be traced based on the extant phylogenetic bracket. Here we investigate, for the first time, lung morphology in extensive developmental series of key living lunged osteichthyans using synchrotron x-ray microtomography and histology. Our results shed light on the primitive state of vertebrate lungs as unpaired, evolving to be truly paired in the lineage towards the tetrapods. The water-to-land transition confronted profound physiological challenges and paired lungs were decisive for increasing the surface area and the pulmonary compliance and volume, especially during the air-breathing on land.


All life on Earth started out under water. However, around 400 million years ago some vertebrates, such as fish, started developing limbs and other characteristics that allowed them to explore life on land. One of the most pivotal features to evolve was the lungs, which gave vertebrates the ability to breathe above water. Most land-living vertebrates, including humans, have two lungs which sit on either side of their chest. The lungs extract oxygen from the atmosphere and transfer it to the bloodstream in exchange for carbon dioxide which then gets exhaled out in to the atmosphere. How this important organ first evolved is a hotly debated topic. This is largely because lung tissue does not preserve well in fossils, making it difficult to trace how the lungs of vertebrates changed over the course of evolution. To overcome this barrier, Cupello et al. compared the lungs of living species which are crucial to understand the early stages of the water-to-land transition. This included four species of lunged bony fish which breathe air at the water surface, and a four-legged salamander that lives on land. Cupello et al. used a range of techniques to examine how the lungs of the bony fish and salamander changed shape during development. The results suggested that the lungs of vertebrates started out as a single organ, which became truly paired later in evolution once vertebrates started developing limbs. This anatomical shift increased the surface area available for exchanging oxygen and carbon dioxide so that vertebrates could breathe more easily on land. These findings provide new insights in to how the lung evolved into the paired structure found in most vertebrates alive today. It likely that this transition allowed vertebrates to fully adapt to breathing above water, which may explain why this event only happened once over the course of evolution.


Assuntos
Evolução Biológica , Água , Animais , Peixes/fisiologia , Fósseis , Pulmão , Filogenia , Vertebrados
16.
Evolution ; 76(9): 2181-2190, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35862552

RESUMO

Evolutionary analyses of joint kinematics and muscle mechanics suggest that, during cyclic behaviors, tetrapod feeding systems are optimized for precise application of forces over small displacements during chewing, whereas locomotor systems are more optimized for large and rapid joint excursions during walking and running. If this hypothesis is correct, then it stands to reason that other biomechanical variables in the feeding and locomotor systems should also reflect these divergent functions. We compared rhythmicity of cyclic jaw and limb movements in feeding and locomotor systems in 261 tetrapod species in a phylogenetic context. Accounting for potential confounding variables, our analyses reveal higher rhythmicity of cyclic movements of the limbs than of the jaw. Higher rhythmicity in the locomotor system corroborates a hypothesis of stronger optimization for energetic efficiency: deviation from the limbs' natural frequency results in greater variability of center of mass movements and limb inertial changes, and therefore more work by limb muscles. Relatively lower rhythmicity in the feeding system may be a consequence of the necessity to prevent tooth breakage and wear, the greater complexity of coordination with tongue movements, and/or a greater emphasis on energy storage in elastic elements rather than the kinetics of limb movement.


Assuntos
Periodicidade , Caminhada , Fenômenos Biomecânicos/fisiologia , Marcha/fisiologia , Movimento , Filogenia , Caminhada/fisiologia
17.
J Colloid Interface Sci ; 624: 650-669, 2022 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-35691230

RESUMO

Designing efficient nanohybrid electrocatalysts with advanced structure is of great essential for energy conversion devices. Herein, a multi-dimensional hierarchical strategy is proposed to design melamine sponge-derived sulfur and nitrogen co-doped tetrapod carbon (SNTC) supported cobalt-nickel telluride (CoTe2/SNTC, NiTe2/SNTC, and CoNiTe2/SNTC) 1D/3D and 0D/3D nanohybrids for boosting hydrogen evolution reaction (HER) and triiodide reduction reaction (IRR). Among these, the CoNiTe2/SNTC 0D/3D hybrid exhibited superior catalytic activities and excellent electrochemical stability. In alkaline HER, the CoNiTe2/SNTC catalyst had a low Tafel slope of 72 mV dec-1, which was comparable to that of Pt/C (49 mV dec-1). CoNiTe2/SNTC served as counter electrode catalyst in photovoltaics and obtained a power conversion efficiency (PCE) of 8.11%, which is higher than that of Pt (7.25%). This investigation provides a novel approach for designing highly efficient nanohybrid catalysts in advanced energy devices.


Assuntos
Cobalto , Níquel , Carbono , Hidrogênio , Nitrogênio , Enxofre , Triazinas
18.
J Exp Biol ; 225(10)2022 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-35438154

RESUMO

While insect locomotion has been intensively studied, there are comparably few studies investigating octopedal walking behaviour, and very little is known about pseudoscorpions in particular. Therefore, we performed an extensive locomotion analysis during forward, backward and upside-down walking in the cosmopolitan pseudoscorpion Chelifer cancroides. During forward locomotion, we observed C. cancroides to freeze locomotion frequently for short time periods. These microstops were barely visible to the naked eye with a duration of 100-200 ms. Our locomotion analysis revealed that C. cancroides performs a statically stable and highly coordinated alternating tetrapod gait during forward and backward walking, with almost complete inversion of the tetrapod schemes, but no rigidly fixed leg coordination during upside-down walks with low walking speeds up to 4 body lengths per second. Highest speeds (up to 17 body lengths per second), mainly achieved by consistent leg coordination and strong phase shifts, were observed during backward locomotion (escape behaviour), whereas forward walking was characterised by lower speeds and phase shifts of ∼10% between two loosely coupled leg groups within one tetrapod. That is, during the movement of one tetrapod group, the last and the third leg are almost synchronous in their swing phases, as are the second and the first leg. A special role of the second leg pair was demonstrated, probably mainly for stability reasons and related to the large pedipalps.


Assuntos
Aracnídeos , Caminhada , Animais , Marcha , Insetos , Locomoção
19.
Biol Lett ; 18(4): 20220047, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35382583

RESUMO

Convergent evolution is a central concept in evolutionary theory but the underlying mechanism has been largely debated since On the Origin of Species. Previous hypotheses predict that developmental constraints make some morphologies more likely to arise than others and natural selection discards those of the lowest fitness. However, the quantification of the role and strength of natural selection and developmental constraint in shaping convergent phenotypes on macroevolutionary timescales is challenging because the information regarding performance and development is not directly available. Accordingly, current knowledge of how embryonic development and natural selection drive phenotypic evolution in vertebrates has been extended from studies performed at short temporal scales. We propose here the organization of the tetrapod body-axis as a model system to investigate the developmental origins of convergent evolution over hundreds of millions of years. The quantification of the primary developmental mechanisms driving body-axis organization (i.e. somitogenesis, homeotic effects and differential growth) can be inferred from vertebral counts, and recent techniques of three-dimensional computational biomechanics have the necessary potential to reveal organismal performance even in fossil forms. The combination of both approaches offers a novel and robust methodological framework to test competing hypotheses on the functional and developmental drivers of phenotypic evolution and evolutionary convergence.


Assuntos
Evolução Biológica , Vertebrados , Animais , Desenvolvimento Embrionário , Fósseis , Fenótipo , Filogenia
20.
J Exp Biol ; 225(Suppl_1)2022 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-35258610

RESUMO

The difficulty of quantifying asymmetrical limb movements, compared with symmetrical gaits, has resulted in a dearth of information concerning the mechanics and adaptive benefits of these locomotor patterns. Further, no study has explored the evolutionary history of asymmetrical gaits using phylogenetic comparative techniques. Most foundational work suggests that symmetrical gaits are an ancestral feature and asymmetrical gaits are a more derived feature of mammals, some crocodilians, some turtles, anurans and some fish species. In this study, we searched the literature for evidence of the use of asymmetrical gaits across extant gnathostomes, and from this sample (n=308 species) modeled the evolution of asymmetrical gaits assuming four different scenarios. Our analysis shows strongest support for an evolutionary model where asymmetrical gaits are ancestral for gnathostomes during benthic walking and could be both lost and gained during subsequent gnathostome evolution. We were unable to reconstruct the presence/absence of asymmetrical gaits at the tetrapod, amniote, turtle and crocodilian nodes with certainty. The ability to adopt asymmetrical gaits was likely ancestral for Mammalia but was probably not ancestral for Amphibia and Lepidosauria. The absence of asymmetrical gaits in certain lineages may be attributable to neuromuscular and/or anatomical constraints and/or generally slow movement not associated with these gaits. This finding adds to the growing body of work showing the early gnathostomes and tetrapods may have used a diversity of gaits, including asymmetrical patterns of limb cycling.


Assuntos
Jacarés e Crocodilos , Tartarugas , Animais , Fenômenos Biomecânicos , Marcha , Locomoção , Mamíferos , Filogenia , Tartarugas/genética , Vertebrados , Caminhada
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA