Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 895
Filtrar
1.
Int J Mol Sci ; 25(15)2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39125604

RESUMO

The growing activity in the textile industry has been demanding the search for new and innovative technologies to meet consumers' needs regarding more sustainable and ecological processes, with functionality receiving more attention. Bee products are known for their wide spectra of properties, including antioxidant and antibacterial activities. Propolis and honey are the most popular and used since ancient times for the most diverse applications due to their health benefits. With the increasing need for safer and more sustainable practices, the use of natural products for the functional finishing process can be a suitable alternative due to their safety and eco-friendly nature. For that, a biosolution, composed of a mixture of propolis and honey in water, was used to perform the functional finishing of cotton knits, both in the presence and in the absence of potassium alum as a chemical mordant. The fastness strength was also evaluated after three washing cycles. The antioxidant potential of the biosolution, assessed with the in vitro ABTS scavenging assay, provided textiles with the capacity to reduce more than 90% of the ABTS radical, regardless of the mordant presence and even after three washing cycles. Furthermore, biofunctional textiles decreased the growth of Bacillus subtilis, Propionibacterium acnes, Escherichia coli, and, particularly, Staphylococcus aureus cultures after 24 h of incubation with an increase in antibacterial activity when potassium alum was used. These findings show that bee products are promising and effective alternatives to be used in the textile industry to confer antioxidant and antibacterial properties to cotton textiles, thereby enhancing human health.


Assuntos
Antibacterianos , Antioxidantes , Mel , Própole , Própole/química , Própole/farmacologia , Mel/análise , Antioxidantes/farmacologia , Antioxidantes/química , Antibacterianos/farmacologia , Antibacterianos/química , Têxteis , Fibra de Algodão/análise , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/crescimento & desenvolvimento , Testes de Sensibilidade Microbiana , Escherichia coli/efeitos dos fármacos , Escherichia coli/crescimento & desenvolvimento , Compostos de Alúmen/química , Bacillus subtilis/efeitos dos fármacos , Bacillus subtilis/crescimento & desenvolvimento
2.
J Proteome Res ; 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39115235

RESUMO

Archaeological textiles represent precious remains from ancient culture; this is because of the historical and cultural importance of the information that can be obtained by such relics. However, the extremely complicated state of preservation of these textiles, which can be charred, partially or totally mineralized, with heavy soil or biological contamination, requires highly specialized and sensitive analytical tools to perform a comprehensive study. Starting from these considerations, the paper presents a combined workflow that provides the extraction of dyes and keratins and keratin-associated proteins in a single step, minimizing sampling while maximizing the amount of information gained. In the first phase, different approaches were tested and two different protocols were found suitable for the purpose of the unique workflow for dyes/keratin-proteins: a slightly modified urea protocol and a recently proposed new TCEP/CAA procedure. In the second step, after the extraction, different methods of cleanup and workflow for proteins and dyes were investigated to develop protocols that did not result in a loss of aliquots of the analytes of interest and to maximize the recovery of both components from the extracting solution. These protocols investigated the application of two types of paramagnetic beads, unmodified and carboxylate-coated hydrophilic magnetic beads, and dialysis and stage-tip protocols. The newly designed protocols have been applied to cochineal, weld, orchil, kermes, and indigo keratin-based dyed samples to evaluate the effectiveness of the protocols on several dye sources. These protocols, based on a single extraction step, show the possibility of investigating dyes and keratins from a unique sample of 1 mg or lesser, with respect to the thresholds of sensitivity and accuracy required in the study of textile artifacts of historical and artistic values.

3.
Proc Natl Acad Sci U S A ; 121(33): e2407971121, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39110725

RESUMO

Artificial neuromorphic devices can emulate dendric integration, axonal parallel transmission, along with superior energy efficiency in facilitating efficient information processing, offering enormous potential for wearable electronics. However, integrating such circuits into textiles to achieve biomimetic information perception, processing, and control motion feedback remains a formidable challenge. Here, we engineer a quasi-solid-state iontronic synapse fiber (ISF) comprising photoresponsive TiO2, ion storage Co-MoS2, and an ion transport layer. The resulting ISF achieves inherent short-term synaptic plasticity, femtojoule-range energy consumption, and the ability to transduce chemical/optical signals. Multiple ISFs are interwoven into a synthetic neural fabric, allowing the simultaneous propagation of distinct optical signals for transmitting parallel information. Importantly, IFSs with multiple input electrodes exhibit spatiotemporal information integration. As a proof of concept, a textile-based multiplexing neuromorphic sensorimotor system is constructed to connect synaptic fibers with artificial fiber muscles, enabling preneuronal sensing information integration, parallel transmission, and postneuronal information output to control the coordinated motor of fiber muscles. The proposed fiber system holds enormous promise in wearable electronics, soft robotics, and biomedical engineering.


Assuntos
Sinapses , Têxteis , Sinapses/fisiologia , Dispositivos Eletrônicos Vestíveis , Biomimética/métodos , Biomimética/instrumentação , Humanos , Plasticidade Neuronal/fisiologia
4.
Sensors (Basel) ; 24(15)2024 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-39123965

RESUMO

Porous conductive polymer structures, in particular Poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) structures, are gaining in importance due to their versatile fields of application as sensors, hydrogels, or supercapacitors, to name just a few. Moreover, (porous) conducting polymers have become of interest for wearable and smart textile applications due to their biocompatibility, which enables applications with direct skin contact. Therefore, there is a huge need to investigate distinct, straightforward, and textile-compatible production methods for the fabrication of porous PEDOT:PSS structures. Here, we present novel and uncomplicated approaches to producing diverse porous PEDOT:PSS structures and characterize them thoroughly in terms of porosity, electrical resistance, and their overall appearance. Production methods comprise the incorporation of micro cellulose, the usage of a blowing agent, creating a sponge-like structure, and spraying onto a porous base substrate. This results in the fabrication of various porous structures, ranging from thin and slightly porous to thick and highly porous. Depending on the application, these structures can be modified and integrated into electronic components or wearables to serve as porous electrodes, sensors, or other functional devices.

5.
Molecules ; 29(15)2024 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-39124944

RESUMO

The aim of this work was to determine the changes in the chemical and physical-mechanical properties of gauze compresses under the influence of various sterilizations. Gauze compresses are made of cotton; therefore, all methods used focused on cotton. The methods used to test possible damage to cotton materials (pH value (pH paper, KI starch paper), yellowing test, Fehling reaction, reaction to the formation of Turnbull blue (Berlin blue), microscopic staining with methylene blue and swelling reaction with Na-zincate) did not show that the sterilizations affected the cotton compresses. The morphological characteristics were examined with a scanning electron microscope (SEM). The SEM images showed that there were no morphological changes in the cotton fibers. FTIR-ATR spectroscopy revealed that the sterilization processes did not alter the characteristic bands of the cotton. The length of the macromolecules was increased (DP), showing that the sterilization processes had affected the cotton. The results of the wet strength test followed. The samples showed values below 100%, with the exception of two samples. It is known from theory that the relative wet strength is less than 100% when the material is damaged. The t-test performed on the strength results showed that the p-value was greater than 0.05 for all samples tested, with the exception of one sample. The degree of swelling capacity was determined, with non-sterilized samples having the highest capacity, followed by samples sterilized with ethylene oxide and then samples sterilized by steam sterilization. The results obtained are a contribution to the innovation of the topic of this work and a scientific confirmation for manufacturers and anyone interested in the influence of the sterilization process on natural fibers (cotton).

6.
Microb Cell Fact ; 23(1): 189, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38956629

RESUMO

Developing special textiles (for patients in hospitals for example) properties, special antimicrobial and anticancer, was the main objective of the current work. The developed textiles were produced after dyeing by the novel formula of natural (non-environmental toxic) pigments (melanin amended by microbial-AgNPs). Streptomyces torulosus isolate OSh10 with accession number KX753680.1 was selected as a superior producer for brown natural pigment. By optimization processes, some different pigment colors were observed after growing the tested strain on the 3 media. Dextrose and malt extract enhanced the bacteria to produce a reddish-black color. However, glycerol as the main carbon source and NaNO3 and asparagine as a nitrogen source were noted as the best for the production of brown pigment. In another case, starch as a polysaccharide was the best carbon for the production of deep green pigment. Peptone and NaNO3 are the best nitrogen sources for the production of deep green pigment. Microbial-AgNPs were produced by Fusarium oxysporum with a size of 7-21 nm, and the shape was spherical. These nanoparticles were used to produce pigments-nanocomposite to improve their promising properties. The antimicrobial of nanoparticles and textiles dyeing by nanocomposites was recorded against multidrug-resistant pathogens. The new nanocomposite improved pigments' dyeing action and textile properties. The produced textiles had anticancer activity against skin cancer cells with non-cytotoxicity detectable action against normal skin cells. The obtained results indicate to application of these textiles in hospital patients' clothes.


Assuntos
Antineoplásicos , Corantes , Prata , Têxteis , Têxteis/microbiologia , Corantes/química , Humanos , Antineoplásicos/farmacologia , Antineoplásicos/química , Prata/farmacologia , Prata/química , Fusarium/efeitos dos fármacos , Streptomyces/metabolismo , Anti-Infecciosos/farmacologia , Anti-Infecciosos/química , Nanopartículas Metálicas/química , Pigmentos Biológicos/farmacologia , Pigmentos Biológicos/biossíntese , Testes de Sensibilidade Microbiana , Linhagem Celular Tumoral
7.
Chemosphere ; 363: 142811, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38986785

RESUMO

A new worrying micropollutant threathens natural environments: the microfibres (MFs). Natural, regenerated and synthetic MFs have been detected in different environments, as well as in organisms. While synthetic MFs are generally detected in microplastic analyses, natural and regenerated MFs are not taken into account, or are wrongly considered plastics. They are generally considered biodegradable even if their degradation processes in ecosystems are poorly known. Their potential faster degradation could release toxic compounds, and their characteristics could led to a long-term accumulation in the environment. Understanding their dangerousness and the possible impact they could have on ecosystems is fundamental for environment conservation. We collected and investigated water and submerged sediment samples in different caves and springs of the Classical Karst Region (NE Italy), rich in protected habitats and species. MFs were analysed via microscopy and spectroscopy. MFs were found in all samples, highlighting pollution in surface and subterranean habitats of the karst system. MF concentration was higher in submerged sediments respect to waters, highlighting an accumulation of MFs over time. Big microfibres were less abundant, and MF amount increased with the decrease in the considered size. More than 80% of fibres were fluorescent under UV light. Fluorescent MFs were especially transparent, while non-fluorescent ones were mainly black and blue. Most MFs were cellulosic, and synthetic MFs represent only 15-22%, highlighting a significant gap between the MF composition detected in natural environments and the global production of synthetic textiles in recent times. Synthetic MFs were more abundant in waters. Our results improve the knowledge on micropollutants in karst environments, laying the foundations for future research. MF pollution monitoring in karst areas must become a priority for species protection, habitat conservation, and waters management, improving analyses on a larger number of aquatic environments, taking into account the ecological connections between surface and subterranean habitats.

8.
Comput Struct Biotechnol J ; 25: 127-142, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-39040658

RESUMO

This report demonstrates a case study within the ASINA project, aimed at instantiating a roadmap with quantitative metrics for Safe(r) and (more) Sustainable by Design (SSbD) options. We begin with a description of ASINA's methodology across the product lifecycle, outlining the quantitative elements within: Physical-Chemical Features (PCFs), Key Decision Factors (KDFs), and Key Performance Indicators (KPIs). Subsequently, we delve in a proposed decision support tool for implementing the SSbD objectives across various dimensions-functionality, cost, environment, and human health safety-within a broader European context. We then provide an overview of the technical processes involved, including design rationales, experimental procedures, and tools/models developed within ASINA in delivering nano-silver-based antimicrobial textile coatings. The result is pragmatic, actionable metrics intended to be estimated and assessed in future SSbD applications and to be adopted in a common SSbD roadmap aligned with the EU's Green Deal objectives. The methodological approach is transparently and thoroughly described to inform similar projects through the integration of KPIs into SSbD and foster data-driven decision-making. Specific results and project data are beyond this work's scope, which is to demonstrate the ASINA roadmap and thus foster SSbD-oriented innovation in nanotechnology.

9.
Adv Mater ; : e2405917, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39044611

RESUMO

Using light to drive polymer actuators can enable spatially selective complex motions, offering a wealth of opportunities for wireless control of soft robotics and active textiles. Here, the integration of photothermal components is reported into shape memory polymer actuators. The fabricated twist-coiled artificial muscles show on-command multidirectional bending, which can be controlled by both the illumination intensity, as well as the chirality, of the prepared artificial muscles. Importantly, the direction in which these artificial muscles bend does not depend on intrinsic material characteristics. Instead, this directionality is achieved by localized untwisting of the actuator, driven by selective irradiation. The reaction times of this bending system are significantly - at least two orders of magnitude - faster than heliotropic biological systems, with a response time up to one second. The programmability of the artificial muscles is further demonstrated for selective, reversible, and sustained actuation when integrated in butterfly-shaped textiles, along with the capacity to autonomously orient toward a light source. This functionality is maintained even on a rotating platform, with angular velocities of 6°/s, independent of the rotation direction. These attributes collectively represent a breakthrough in the field of artificial muscles, intended to adaptive shape-changing soft systems and biomimetic technologies.

10.
Front Bioeng Biotechnol ; 12: 1418047, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39070165

RESUMO

Patient compliance and therapeutic precision of compression textiles (CTs) are frequently limited by the inaccurate pressure distributions along biological bodies in physical-based compression therapy. Therefore, the biomechanical influences of physiological tissue material characteristics of lower extremities on compression generations of CTs need to be explored systematically to improve pressure management efficacy. In this study, we developed three-dimensional (3D) homogenous finite element (FE) CT-leg systems to qualitatively compare the pressure diversities along lower limbs with different biomaterial tissue properties under each external compression level. Simultaneously, through the obtained leg circumferential displacement, a contact analysis model was applied to quantitatively explore the impact mechanisms of soft leg indentations on the pressure performance of CTs. Based on the experimental validation study, the proposed FE systems could be efficiently utilized for compression performance prediction (error ratio: 7.45%). Through the biomechanical simulation and theoretical calculations, the tissue stiffness characteristics of applied bodies showed significant correlations (p < 0.05) with the body circumferential displacements but no correlations (p > 0.05) with pressure delivery differences of CTs. This study facilitates the pressure fit design principle and leg mannequin material selection guidance for the development and experimental assessment of CTs. It also provides effective simulation methods for pressure prediction and property parametric optimization of compression materials.

11.
Polymers (Basel) ; 16(14)2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39065363

RESUMO

Polyamide-6 (PA) is a popular textile polymer having desirable mechanical and thermal properties, chemical stability, and biocompatibility. However, PA nanofibers are prone to bacterial growth and user discomfort. ε-Poly-L-lysine (PL) is non-toxic, antimicrobial, and hydrophilic but lacks spinnability due to its low molecular weight. Given its similar backbone structure to PA, with an additional amino side chain, PL was integrated with PA to develop multifunctional nanofibers. This study explores a simple, scalable method by which to obtain PL nanofibers by utilizing the structurally similar PA as the base. The goal was to enhance the functionality of PA by addressing its drawbacks. The study demonstrates spinnability of varying concentrations of PL with base PA while exploring compositions with higher PL concentrations than previously reported. Electrospinning parameters were studied to optimize the nanofiber properties. The effects of PL addition on morphology, hydrophilicity, thermal stability, mechanical performance, and long-term antimicrobial activity of nanofibers were evaluated. The maximum spinnable concentration of PL in PA-based nanofibers resulted in super hydrophilicity (0° static water contact angle within 10 s), increased tensile strength (1.02 MPa from 0.36 MPa of control), and efficient antimicrobial properties with long-term stability. These enhanced characteristics hold promise for the composite nanofiber's application in medical and protective textiles.

12.
Sensors (Basel) ; 24(14)2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39066022

RESUMO

Electronic textiles (e-textiles) are a branch of wearable technology based on integrating smart systems into textile materials creating different possibilities, transforming industries, and improving individuals' quality of life. E-textiles hold vast potential, particularly for use in personal protective equipment (PPE) by embedding sensors and smart technologies into garments, thus significantly enhancing safety and performance. Although this branch of research has been active for several decades now, only a few products have made it to the market. Achieving durability, reliability, user acceptance, sustainability, and integration into current manufacturing processes remains challenging. High levels of reliability and user acceptance are critical for technical textiles, such as those used in PPE. While studies address washing reliability and field tests, they often overlook end user preferences regarding smart textiles. This paper presents a narrow fabric-based e-textile system co-developed by engineers, garment and textiles' manufacturers, and firefighters. It highlights material choices and integration methods, and evaluates the system's reliability, sustainability, and user experience, providing comprehensive insights into developing and analyzing e-textile products, particularly in the PPE field.

13.
Sensors (Basel) ; 24(14)2024 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-39066114

RESUMO

Currently, the market for wearable devices is expanding, with a growing trend towards the use of these devices for continuous-monitoring applications. Among these, real-time posture monitoring and assessment stands out as a crucial application given the rising prevalence of conditions like forward head posture (FHP). This paper proposes a wearable device that combines the acquisition of electromyographic signals from the cervical region with inertial data from inertial measurement units (IMUs) to assess the occurrence of FHP. To improve electronics integration and wearability, e-textiles are explored for the development of surface electrodes and conductive tracks that connect the different electronic modules. Tensile strength and abrasion tests of 22 samples consisting of textile electrodes and conductive tracks produced with three fiber types (two from Shieldex and one from Imbut) were conducted. Imbut's Elitex fiber outperformed Shieldex's fibers in both tests. The developed surface electromyography (sEMG) acquisition hardware and textile electrodes were also tested and benchmarked against an electromyography (EMG) gold standard in dynamic and isometric conditions, with results showing slightly better root mean square error (RMSE) values (for 4 × 2 textile electrodes (10.02%) in comparison to commercial Ag/AgCl electrodes (11.11%). The posture monitoring module was also validated in terms of joint angle estimation and presented an overall error of 4.77° for a controlled angular velocity of 40°/s as benchmarked against a UR10 robotic arm.


Assuntos
Eletromiografia , Postura , Têxteis , Dispositivos Eletrônicos Vestíveis , Eletromiografia/métodos , Humanos , Postura/fisiologia , Monitorização Fisiológica/instrumentação , Monitorização Fisiológica/métodos , Eletrodos
14.
Molecules ; 29(13)2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38999018

RESUMO

After the period of halogenated compounds, the period of nano-structured systems, and that of phosphorus (and nitrogen)-based additives (still in progress), following the increasingly demanding circular economy concept, about ten years ago the textile flame retardant world started experiencing the design and exploitation of bio-sourced products. Indeed, since the demonstration of the potential of such bio(macro)molecules as whey proteins, milk proteins (i.e., caseins), and nucleic acids as effective flame retardants, both natural and synthetic fibers and fabrics can take advantage of the availability of several low-environmental impact/"green" compounds, often recovered from wastes or by-products, which contain all the elements that typically compose standard flame-retardant recipes. The so-treated textiles often exhibit flame-retardant features that are similar to those provided by conventional fireproof treatments. Further, the possibility of using the same deposition techniques already available in the textile industry makes these products very appealing, considering that the application methods usually do not require hazardous or toxic chemicals. This review aims to present an overview of the development of bio-sourced flame retardants, focusing attention on the latest research outcomes, and finally discussing some current challenging issues related to their efficient application, paving the way toward further future implementations.

15.
ACS Appl Mater Interfaces ; 16(30): 40004-40017, 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39023009

RESUMO

Fabricating Janus nanoparticle-functionalized fabrics with UV protection, strength enhancement, self-cleaning properties, and wash durability, with a biocompatible nature, is crucial in modern functional fabrics engineering. Particularly, tailoring multifunctional nanoparticles capable of exhibiting several distinct properties, utilizing low-cost raw materials, and adhering to green chemistry principles is pivotal. A fabrication strategy for developing multifunctional reactive Janus nanoparticles, utilizing waste-derived natural polyphenol (quercetin-3-glucuronide, myricetin-3-galactoside, gossypin, phlorizin, kaempferol, myricetin-3-arabinoside)-integrated zinc-silica core-shell Janus nanoparticles with UV protection, strength enhancement, and self-cleaning properties, is proposed. Polyphenols were utilized as sustainable precursors for synthesizing zinc-polyphenol complexes, which were then encapsulated within a silica shell to form a core-shell structure. Furthermore, Janus particles were created by introducing a bifunctional layer with half amine/carboxylic acid and half methyl terminals, imparting reactive hydrophilic and hydrophobic properties. Janus-coated textiles and leather exhibited significant attenuation of harmful UV radiation, with water contact angle measurements confirming improved water repellency. The coexistence of natural phenols and bifunctional groups within a material bolstered textile strength, fostering superior adhesion and markedly enhancing wash durability. This eco-friendly approach, utilizing waste-derived materials, presents a promising solution for sustainable textile engineering with enhanced performance in UV protection and water resistance, thereby contributing to the advancement of green nanotechnology in textile applications.

16.
Small ; : e2405101, 2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-39051511

RESUMO

Carbon quantum dots (CQDs) have attracted more attentions due to their multiple performances. However, the fabrication of long-wavelength emitting CQDs with aliphatic precursors still remains a challenge, mainly because it is difficult to generate large sp2 domains to reduce energy gap, which is not conducive to a redshift of the luminescence peak. Hereon, by regulating the pH of citric acid and thiourea mixture, a N, S co-doped CQD emitting bright red fluorescence at 635 nm is successfully fabricated through the solvothermal reaction under acidic condition, achieving a high quantum yield of 32.66%. Solvatochromic effects of the CQDs are discussed through theoretical equations and models, which confirm that the hydrogen-bonding interaction dominates the fluorescence emission behavior of CQDs in polar solvents. Besides, a feasible strategy is proposed to prepare an anti-counterfeiting textile via the deposition of red-emitting CQDs onto cotton fibers, through rapidly evaporating the preferred organic solvent. As expected, the CQD-decorated textiles exhibit encouraging anti-counterfeiting and security-warning functions, along with underwater and long-distance detectability, washability, and sun resistance. It is worth noting that the present work is innovative in realizing the application of red-light-emitting CQDs in the fields of security-warning textiles.

17.
Adv Colloid Interface Sci ; 332: 103252, 2024 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-39053159

RESUMO

Fabrics are soft against the skin, flexible, easily accessible and able to wick away perspiration, to some extent for local private thermal management. In this review, we classify smart fabrics as passive thermal management fabrics and active thermal management fabrics based on the availability of outside energy consumption in the manipulation of heat generation and dissipation from the human body. The mechanism and research status of various thermal management fabrics are introduced in detail, and the article also analyses the advantages and disadvantages of various smart thermal management fabrics, achieving a better and more comprehensive comprehension of the current state of research on smart thermal management fabrics, which is quite an important reference guide for our future research. In addition, with the progress of science and technology, the social demand for fabrics has shifted from keeping warm to improving health and quality of life. E-textiles have potential value in areas such as remote health monitoring and life signal detection. New e-textiles are designed to mimic the skin, sense biological data and transmit information. At the same time, the ultra-moisturizing properties of the fabric's thermal management allow for applications beyond just the human body to energy. E-textiles hold great promise for energy harvesting and storage. The article also introduces the application of smart fabrics in life forms and energy harvesting. By combining electronic technology with textiles, e-textiles can be manufactured to promote human well-being and quality of life. Although smart textiles are equipped with more intelligent features, wearing comfort must be the first thing to be ensured in the multi-directional application of textiles. Eventually, we discuss the dares and prospects of smart thermal management fabric research.

18.
ACS Appl Mater Interfaces ; 16(29): 38540-38549, 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-38982645

RESUMO

Phase change materials (PCMs) possess the potential to regulate temperature by utilizing their thermal properties to absorb and release heat. Nevertheless, the application of PCMs in thermal management is constrained by issues such as liquid leakage and limited flexibility. In this study, we propose a novel approach to address these challenges by incorporating a pore structure within nanofibers to confine the crystallization of phase change molecules, thereby enhancing the flexibility of the composite material. Additionally, inspired by the adaptive mechanisms observed in plants, we have developed a form stable PCM based on polyether, which effectively mitigates the issue of liquid leakage at higher temperatures. Despite being a solid-liquid PCM at its core, this material exhibits molecular-scale flow and macroscopic shape stability as a result of intermolecular forces. The composite film material possesses remarkable flexibility, efficient thermal management capabilities, adjustable phase transition temperature, and the ability to undergo repeated processing and utilization. Consequently, it holds promising potential for applications in personal thermal energy management.

19.
Int J Biol Macromol ; 276(Pt 2): 133906, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39019364

RESUMO

This novel research addresses the critical need for sustainable and efficient materials, aiming to enhance the optical and thermoelectric properties of Aluminum doped Zinc Oxide (Al-doped ZnO) on cellulose fabric for diverse applications. At first stage, Cellulosic fabric of Al-doped ZnO were experimentally studied in detail with respect to varying levels of annealing temperature. Structural analysis unveiled structural evolution in hexagonal crystal formations with a reduction in particle size up to 27.5 % on average, with increased temperature. Further, Raman spectroscopy revealed the doping effects on the vibrational modes of ZnO, potentially due to alterations in lattice structure. The ZnO optical modes are found as E2 (low) = 110 cm-1 with observed phonon frequency in the Raman spectra of ZnO at A1 (TO) = 364 cm-1. Fourier transform infrared spectroscopy (FTIR) revealed the presence of characteristic stretching of developed material. Furthermore, the optical characters revealed a decrement of 43.22 % in bandgap values with increasing annealing temperature. The analysis of thermoelectric attributes documented that the prominent sample annealed at 300°C exhibited the maximum Seebeck coefficient and power factor of 2.1 × 10-3 µV/oC and 5.8 × 10-21 Wm-1 K-2, respectively. At second stage the optical characteristics of experimentally optimized sample were rigorously studied through the application of Material Studio software, while varying the doping ratio.

20.
J Environ Manage ; 366: 121758, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38986372

RESUMO

The agricultural processing industry produces a large amount of waste on a global scale whose disposal is simultaneously a nuisance and of special interest. The by-products are rich in bioactive phytoconstituents that might be beneficial to the production of bio-functional textiles. The present work uses agricultural wastes for the eco-friendly dyeing of woolen yarns. Response surface methodology based on 23- Central Composite Design was used to design experiments, evaluate the main dyeing parameters, develop efficient mathematical models to predict the dyeing process, and optimize the procedure. The quadratic regression models developed were found to be statistically significant using ANOVA, with R2 -value of 0.9734 and 0.9820 for color strength and lightness responses, respectively. Also, eye-soothing tone and hues with a good resistance to durability (4-5) and light (4) were achieved. The banana shell and gallnut bio-mordants improved UV protection by up to 25.33% and 59.79%, respectively. Generally speaking, the results showed that C. Oblonga leaf as well as gallnut and banana shells could be used as whole crop products in an ecologically sound textile dyeing process through a sustainable approach and that the proposed innovative application might serve as an attractive procedure for recycling and green waste management.


Assuntos
Agricultura , Reciclagem , Têxteis , Corantes/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA