Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.379
Filtrar
1.
Neuro Oncol ; 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39351795

RESUMO

Radiopharmaceutical theranostic treatments have grown exponentially worldwide, and internal dosimetry has attracted attention and resources. Despite some similarities with chemotherapy, radiopharmaceuticals treatments are essentially radiotherapy treatments, as the release of radiation into tissues is the determinant of the observed clinical effects. Therefore, absorbed dose calculations are key to explain dose-effect correlations and to individualize radiopharmaceutical treatments. The present article introduces the basic principles of internal dosimetry and provides an overview of available locoregional and systemic radiopharmaceutical treatments for CNS tumors. The specific characteristics of dosimetry as applied to these treatments are highlighted, along with their limitations and most relevant results. Dosimetry is performed with higher precision and better reproducibility than in the past, and dosimetric data should be systematically collected, as treatment planning and verification may help exploit the full potential of theranostic of CNS tumors.

2.
Front Nucl Med ; 4: 1411878, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39355213
3.
Bioact Mater ; 41: 471-484, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39220405

RESUMO

Aerogel scaffolds are nanostructured materials with beneficial properties for tissue engineering applications. The tracing of the state of the aerogels after their implantation is challenging due to their variable biodegradation rate and the lack of suitable strategies capable of in vivo monitoring the scaffolds. Upconversion nanoparticles (UCNPs) have emerged as advanced tools for in vitro bioimaging because of their fluorescence properties. In this work, highly fluorescent UCNPs were loaded into aerogels to obtain theranostic implants for tissue engineering and bioimaging applications. 3D-printed alginate-hydroxyapatite aerogels labeled with UCNPs were manufactured by 3D-printing and supercritical CO2 drying to generate personalize-to-patient aerogels. The physicochemical performance of the resulting structures was evaluated by printing fidelity measurements, nitrogen adsorption-desorption analysis, and different microscopies (confocal, transmission and scanning electron microscopies). Stability of the aerogels in terms of physicochemical properties was also tested after 3 years of storage. Biocompatibility was evaluated in vitro by different cell and hemocompatibility assays, in ovo and in vivo by safety and bioimaging studies using different murine models. Cytokines profile, tissue index and histological evaluations of the main organs unveiled an in vivo downregulation of the inflammation after implantation of the scaffolds. UCNPs-decorated aerogels were first-time manufactured and long-term traceable by fluorescence-based bioimaging until 3 weeks post-implantation, thereby endorsing their suitability as tissue engineering and theranostic nanodevices (i.e. bifunctional implants).

4.
Int J Nanomedicine ; 19: 9213-9226, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39263631

RESUMO

Introduction: Targeting, imaging, and treating tumors represent major clinical challenges. Developing effective theranostic agents to address these issues is an urgent need. Methods: We introduce an "all-in-one" tumor-targeted theranostic platform using CuFeSe2-based composite nanoparticles (CuFeSe2@PA) for magnetic resonance (MR) and computed tomography (CT) dual model imaging-guided hyperthermia tumor ablation. Plerixafor (AMD3100) is bonded to the surface of CuFeSe2 as a targeting unit. Due to the robust interaction between AMD3100 and the overexpressed Chemokine CXC type receptor 4 (CXCR4) on the membrane of 4T1 cancer cells, CuFeSe2@PA specifically recognizes 4T1 cancer cells, enriching the tumor region. Results: CuFeSe2@PA serves as a contrast agent for T2-weighted MR imaging (relaxivity value of 1.61 mM-1 s-1) and CT imaging. Moreover, it effectively suppresses tumor growth through photothermal therapy (PTT) owing to its high photothermal conversion capability and stability, with minimized side effects demonstrated both in vitro and in vivo. Discussion: CuFeSe2@PA nanoparticles show potential as dual-mode imaging contrast agents for MR and CT and provide an effective means of tumor treatment through photothermal therapy. The surface modification with Plerixafor enhances the targeting ability of the nanoparticles, performing more significant efficacy and biocompatibility in the 4T1 cancer cell model. The study demonstrates that CuFeSe2@PA is a promising multifunctional theranostic platform with clinical application potential.


Assuntos
Cobre , Imageamento por Ressonância Magnética , Terapia Fototérmica , Receptores CXCR4 , Nanomedicina Teranóstica , Tomografia Computadorizada por Raios X , Animais , Receptores CXCR4/metabolismo , Nanomedicina Teranóstica/métodos , Terapia Fototérmica/métodos , Linhagem Celular Tumoral , Imageamento por Ressonância Magnética/métodos , Camundongos , Cobre/química , Compostos Heterocíclicos/química , Compostos Heterocíclicos/farmacologia , Camundongos Endogâmicos BALB C , Feminino , Humanos , Meios de Contraste/química , Nanopartículas/química , Ciclamos/farmacologia , Ciclamos/química , Benzilaminas/química
5.
Molecules ; 29(17)2024 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-39274933

RESUMO

64Cu is gaining recognition not only for its diagnostic capabilities in nuclear medical imaging but also for its therapeutic and theranostic potential. The simultaneous ß- and Auger emissions of 64Cu can be utilized to induce a therapeutic effect on cancerous lesions. The finding of the exceptional biodistribution characteristics of the radionuclide 64Cu, when administered as basic copper ions, has highlighted its potential therapeutic application in cancer treatment. Preclinical and clinical research on the effectiveness of [64Cu]CuCl2 as a theranostic radiopharmaceutical has commenced only in the past decade. Current clinical studies are increasingly demonstrating the high specificity and uptake of [64Cu]Cu2+ by malignant tissues during early cancer progression, indicating its potential for early cancer diagnosis across various organs. This short review aims to present the latest preclinical studies involving [64Cu]CuCl2, offering valuable insights for researchers planning new in vitro and in vivo studies to explore the theranostic potential of [64Cu]Cu2+.


Assuntos
Radioisótopos de Cobre , Cobre , Neoplasias , Compostos Radiofarmacêuticos , Nanomedicina Teranóstica , Humanos , Radioisótopos de Cobre/química , Cobre/química , Animais , Compostos Radiofarmacêuticos/química , Compostos Radiofarmacêuticos/uso terapêutico , Neoplasias/tratamento farmacológico , Neoplasias/diagnóstico por imagem , Neoplasias/diagnóstico , Nanomedicina Teranóstica/métodos , Distribuição Tecidual
6.
Small Methods ; : e2400563, 2024 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-39319499

RESUMO

Despite the advent of various medical interventions for cancer treatment, the disease continues to pose a formidable global health challenge, necessitating the development of new therapeutic approaches for more effective treatment outcomes. Photodynamic therapy (PDT), which utilizes light to activate a photosensitizer to produce cytotoxic reactive oxygen species (ROS) for eradicating cancer cells, has emerged as a promising approach for cancer treatment due to its high spatiotemporal precision and minimal invasiveness. However, the widespread clinical use of PDT faces several challenges, including the inefficient production of ROS in the hypoxic tumor microenvironment, the limited penetration depth of light in biological tissues, and the inadequate accumulation of photosensitizers at the tumor site. Over the past decade, there has been increasing interest in the utilization of photofunctional transition metal complexes as photosensitizers for PDT applications due to their intriguing photophysical and photochemical properties. This review provides an overview of the current design strategies used in the development of transition metal complexes as innovative phototherapeutics, aiming to address the limitations associated with PDT and achieve more effective treatment outcomes. The current challenges and future perspectives on the clinical translation of transition metal complexes are also discussed.

7.
ACS Biomater Sci Eng ; 2024 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-39298132

RESUMO

Glutathione (GSH)-responsive nanomedicines have generated significant interest in biochemistry, oncology, and material sciences due to their diverse applications, including chemical and biological sensors, diagnostics, and drug delivery systems. The effectiveness of these smart GSH-responsive nanomedicines depends critically on the choice of GSH-responsive linkers. Despite their crucial role, comprehensive reviews of GSH-responsive linkers are scarce, revealing a gap in the current literature. This review addresses this gap by systematically summarizing various GSH-responsive linkers and exploring their potential applications in cancer treatment. We provide an overview of the mechanisms of action of these linkers and their bioapplications, evaluating their advantages and limitations. The insights presented aim to guide the development of advanced GSH-responsive agents for cancer diagnosis and therapy.

8.
Biomater Adv ; 166: 214038, 2024 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-39306963

RESUMO

To address the issue of high-dose treatment agents in magnetic hyperthermia-mediated multi-model tumor therapy, a unique iron-based theranostic nanoenzyme with excellent magnetothermal and catalytic properties was constructed. By using a high-temperature arc method, the iron carbon nanoparticles (MF1-3) with a particle size between 13.7 and 27.6 nm and shell thickness between 1 and 5 nm were prepared. After screening, we selected MF3 as the magnetic core due to its high Ms. value and excellent thermal properties. Under the magneto-photo dual thermal conditions, MF3 exhibited a remarkable specific absorption rate (SAR) of 4917 W/g, which was 20 times more than that of iron oxide. Notably, MF3 also exhibited best peroxidase (POD)-like catalytic in pH 5.0 and maintained stable catalytic performance at 45 °C. Considering the "starvation" strategy of cutting off the energy supply to tumor cells and killing them, the glucose oxidase (GOX) and chitosan oligosaccharide (COS) was further grafted onto MF3, forming the MF3/GOX/COS. This multifunctional therapeutic nanoenzyme not only exhibited significant peroxidase-like activity, but also had glucose decomposition and glutathione (GSH) consumption capabilities. The thermal effect significantly promoted the uptake of MF3/GOX/COS by 4T1 cells, and the IC50 value of MF3/GOX/COS reached low to 3.75 µg/mL. In vivo anti-tumor experiment, compared with single treatment methods, the combined therapy of MF3/GOX/COS mediated magneto-photo thermotherapy (M-PTT) and starvation therapy (ST) exhibited higher tumor inhibition rate of 82.1 % by increased cell apoptosis through the mitochondrial pathway. Overall, MF3/GOX/COS therapeutic nanoenzyme combined the advantages of nano-catalysis, M-PTT and ST, providing a solution for achieving sustained, stable, and effective tumor inhibition rates at lower dose levels.

9.
Ultrason Imaging ; : 1617346241279112, 2024 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-39308117

RESUMO

Polymer microbubbles have garnered broad interest as potential theranostic agents. However, the capabilities of polymer MBs can be greatly enhanced, particularly regarding the imaging performance and functional versatility of the platform. This study investigates integrating fluorescent carbon nanodots within polylactic acid (PLA) microbubbles. First, the formulations are characterized by their size, microbubble counts, zeta potential, and resonance frequency. Then, the fluorescence capabilities, nanoparticle loading, and acoustic capabilities are examined. Unmodified (U-), carboxylated (C-), and aminated graphene quantum dots (A-GQDs) were separately suspended and synthesized at a 2% w/w ratio with PLA in the organic phase of the water/oil/water double emulsion process. The new microbubbles were characterized using an AccuSizer, Zetasizer, scanning electron microscopy, fluorescence microscopy and fluorimetry, a custom-built acoustic setup, and clinical ultrasound. The GQD microbubbles were sized between 1.4 and 1.9 µm (U = 1.90, C = 1.44, A = 1.72, Unloaded = 2.02 µm). The U-GQD microbubble exhibited a higher bubble concentration/mg PLA (p < .05) and the A-GQD microbubbles exhibited the greatest shift in zeta potential. Electron microscopy revealed smooth surfaces and a spherical shape, showing that the nanoparticle addition was not deleterious. The A-GQD microbubbles were specifically detectable using DAPI-filtering with fluorescence microscopy and had the highest TRITC-filtered fluorescence. The C-GQD microbubbles had the highest loading efficiency at 59.4% (p < .05), and the lowest max acoustic enhancement at 5 MHz (U = 19.8, C = 17.6, A = 18.9, Unloaded = 18.5 dB; p < .05). Additionally, all microbubbles were visible and susceptible to inertial cavitation utilizing clinical ultrasound. The A-GQDs showed promise toward improving the theranostic capabilities of the microbubble platform. They have imbued the most advantageous fluorescence capability and slightly improved backscatter enhancement while retaining all the necessary capabilities of an ultrasound contrast agent. Future studies will investigate the coloading potential of A-GQDs and drug within microbubbles.

10.
Malays J Med Sci ; 31(4): 213-217, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39247120

RESUMO

Prostate-specific membrane antigen (PSMA) has proven to be an important target for diagnostic imaging in prostate cancer. As PSMA is overexpressed on the surface of prostate cancer cells, numerous targeted PSMA ligands have been developed. The emergence of PSMA targeting based on small molecules, such as the PSMA-11 ligand (or PSMA-HBED-CC), has led to breakthroughs, such as [68Ga]Ga-PSMA-11, for positron emission tomography (PET) imaging of biochemically recurrent or metastatic castration-resistant prostate cancer (mCRPC). In addition, the recent approval of [177Lu]Lu-PSMA-617 for the treatment of adult patients with PSMA-positive mCRPC represents an important milestone in prostate cancer therapy. These advances underscore the growing confidence in the use of PSMA-targeted radiopharmaceuticals for the diagnosis and treatment of prostate cancer patients. PSMA-targeted radiopharmaceuticals have been shown to significantly impact treatment planning and clinical decision-making and facilitate the customisation of treatment regimens.

11.
Colloids Surf B Biointerfaces ; 245: 114207, 2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-39243706

RESUMO

Advancement in the development of new materials with theranostic and phototherapeutic potential along with receptiveness to external stimuli has been persistently inspiring oncology research. Herein, titanium carbide-based MXene quantum dots (FHMQDs) have been synthesized and modified to take advantage of stimuli-responsive behavior and target specificity for breast cancer cells. With a size of around 3 nm, the developed FHMQDs demonstrate high fluorescent emission at around 460 nm. With ∼90 % encapsulation efficiency of doxorubicin (DOX), the developed system also offers rapid DOX release behavior when encountering an acidic pH (5.4). Further, the in vitro assessment of the developed FHMQDs on MDA-MB 231 breast cancer cells presents excellent target specificity to cancer cells which was reflected by its high cytotoxicity against cancer cells. Additionally, the outstanding photodynamic efficiency of FHMQDs due to excessive Reactive Oxygen Species (ROS) generating ability along with apoptosis promoting capability of FHMQDs in cancer cells demonstrates a synergistic approach in cancer theranostics. Encouragingly, the fabricated FHMQDs also exhibited fluorescent labelling and bioimaging capacity which makes it an incredible platform that ensures theranostic excellence in breast cancer research.

12.
Biosens Bioelectron ; 267: 116800, 2024 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-39341072

RESUMO

Biophotonics has seen significant advancements with the development of optical imaging techniques facilitating the noninvasive detection of biologically relevant species. Aggregation-induced emission (AIE) materials have emerged as a novel class of luminogens exhibiting enhanced luminescence or photodynamic efficiency in the aggregated state, making them ideal for biomedical applications. The intracellularly controlled aggregation of aggregate-induced emission luminogens (AIEgens) enables high-resolution imaging of intracellular targets and diagnosis of related diseases, and enables disease therapy by exploiting the novel properties of aggregates. This review provides an in-depth analysis of the strategies employed to modulate the aggregation of AIEgens, focusing on the importance of molecular modifications to improve hydrophilicity and achieve precise control over the intercellular aggregation of AIEgens. Furthermore, the representative applications of AIEgens in bioimaging, such as enzyme activity monitoring, protein tracking, organelle function monitoring, and in vivo tumor-specific therapeutics, are reviewed. Additionally, we outline the challenges and future opportunities for AIE research, emphasizing the importance of the strategies for realizing the precisely controllable aggregation of AIEgens inside cells and the need for extending AIEgens' absorption and emission wavelengths. This review aims to elucidate the rational development of responsive AIEgens for advanced biomedical applications.

14.
Expert Rev Anti Infect Ther ; : 1-15, 2024 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-39317385

RESUMO

INTRODUCTION: The threat of new, emerging, and multidrug-resistant microbes is increasing which has created the necessity for new antimicrobials. In this regard, nanotechnology can be an alternative for the treatment of infectious microbes. Curcumin has been used since ancient times as antimicrobials; however, it has limitations due to its less aqueous solubility, bioavailability, and biocompatibility. This problem can be solved by curcumin-derived carbon nanodots, which are emerging antimicrobials of <10 nm size, water-soluble, biocompatible, less toxic, and fluorescent. AREAS COVERED: The review discusses the application of curcumin-derived carbon nanodots against various pathogenic microbes including bacteria and dreaded viruses like SARS-CoV-2. In addition, the role of curcumin carbon nanodots in biolabelling of pathogenic microbes, mechanism of action, bioimaging, and therapy has been critically examined. EXPERT OPINION: Carbon nanodots play an important role in combating pathogenic microbes by early diagnosis, bioimaging, nanocarrier for antimicrobial drugs, and therapy of infectious diseases. Curcumin carbon nanodots have already demonstrated their benefits of being water soluble, bioavailable, and biocompatible. However, more thorough research is needed to understand the efficacy and safety of curcumin carbon nanodots. In the future, curcumin-derived carbon nanodots can be used as alternative antimicrobial agents to fight microbial infections including multidrug-resistant microbes.

15.
Biomaterials ; 314: 122834, 2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39288617

RESUMO

Inflammatory bowel disease (IBD) is characterized by the upregulation of reactive oxygen species (ROS) and dysfunction of gut immune system, and microbiota. The conventional treatments mainly focus on symptom control with medication by overuse of drugs. There is an urgent need to develop a closed-loop strategy that combines in situ monitoring and precise treatment. Herein, we innovatively designed the 'cluster munition structure' theranostic microgels to realize the monitoring and therapy for ulcerative colitis (a subtype of IBD). The superoxide anion specific probe (tetraphenylethylene-coelenterazine, TPC) and ROS-responsive nanogels consisting of postbiotics urolithin A (UA) were loaded into alginate and ion-crosslinked to obtain the theranostic microgels. The theranostic microgels could be delivered to the inflammatory site, where the environment-triggered breakup of the microgels and release of the nanogels were achieved in sequence. The TPC-UA group had optimal results in reducing inflammation, repairing colonic epithelial tissue, and remodeling microbiota, leading to inflammation amelioration and recovery of tight junction between the colonic epithelium, and maintenance of gut microbiota. During the recovery process, the local chemiluminescence intensity, which is proportional to the degree of inflammation, was gradually inhibited. The cluster munition of theranostic microgels displayed promising outcomes in monitoring inflammation and precise therapy, and demonstrated the potential for inflammatory disease management.

16.
Adv Healthc Mater ; : e2401749, 2024 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-39291882

RESUMO

To a certain extent, theranostic nanoplatforms promote tumor treatment efficiency. However, timely monitoring of the critical stages and signal sustainability of the entire process is challenging. In this study, multi-chambered core/shell magnetic nanoparticles (MC-MNPs) as drug and imaging agent multi-loaded nanocarriers with a synergistic release function are reported. Supraparticles with stable chambers are formed by the supercooling self-assembly of several core/shell magnetic nanoparticles composed of amphiphilic copolymers as the core and hydrophilic magnetic iron oxide nanoparticles as the shell. Desalinized doxorubicin and coumarin 6 are stored in different cavities of nanocarriers, and chitosan is used as an outer encapsulation layer. Based on their construction properties, MC-MNPs can exhibit gradient-degraded and steady-released controllability in the tumor environment. Furthermore, real-time accumulation situations and full-time diagnostic signals of nanocarriers are thoroughly demonstrated using fluorescence imaging and T2-weighted magnetic resonance imaging before and after magnetic hyperthermia in targeted tumors under an alternating magnetic field. Thus, MC-MNPs as theranostic nanocarriers exhibit great potential for the timely monitoring and full-time guidance of tumor treatment.

17.
EJNMMI Phys ; 11(1): 77, 2024 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-39276263

RESUMO

BACKGROUND: Element-equivalent matched theranostic pairs facilitate quantitative in vivo imaging to establish pharmacokinetics and dosimetry estimates in the development of preclinical radiopharmaceuticals. Terbium radionuclides have significant potential as matched theranostic pairs for multipurpose applications in nuclear medicine. In particular, 155Tb (t1/2 = 5.32 d) and 161Tb (t1/2 = 6.89 d) have been proposed as a theranostic pair for their respective applications in single photon emission computed tomography (SPECT) imaging and targeted beta therapy. Our study assessed the performance of preclinical quantitative SPECT imaging with 155Tb and 161Tb. A hot rod resolution phantom with rod diameters ranging between 0.85 and 1.70 mm was filled with either 155Tb (21.8 ± 1.7 MBq/mL) or 161Tb (23.6 ± 1.9 MBq/mL) and scanned with the VECTor preclinical SPECT/CT scanner. Image performance was evaluated with two collimators: a high energy ultra high resolution (HEUHR) collimator and an extra ultra high sensitivity (UHS) collimator. SPECT images were reconstructed from photopeaks at 43.0 keV, 86.6 keV, and 105.3 keV for 155Tb and 48.9 keV and 74.6 keV for 161Tb. Quantitative SPECT images of the resolution phantoms were analyzed to report inter-rod contrast, recovery coefficients, and contrast-to-noise metrics. RESULTS: Quantitative SPECT images of the resolution phantom established that the HEUHR collimator resolved all rods for 155Tb and 161Tb, and the UHS collimator resolved rods ≥ 1.10 mm for 161Tb and ≥ 1.30 mm for 155Tb. The HEUHR collimator maintained better quantitative accuracy than the UHS collimator with recovery coefficients up to 92%. Contrast-to-noise metrics were also superior with the HEUHR collimator. CONCLUSIONS: Both 155Tb and 161Tb demonstrated potential for applications in preclinical quantitative SPECT imaging. The high-resolution collimator achieves < 0.85 mm resolution and maintains quantitative accuracy in small volumes which is advantageous for assessing sub organ activity distributions in small animals. This imaging method can provide critical quantitative information for assessing and optimizing preclinical Tb-radiopharmaceuticals.

18.
Mol Ther Nucleic Acids ; 35(3): 102305, 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-39281705

RESUMO

In cancer molecular imaging, selecting binders with high specificity and affinity for biomarkers is paramount for achieving high-contrast imaging within clinical time frames. Nanobodies have emerged as potent candidates, surpassing antibodies in pre-clinical imaging due to their convenient production, rapid renal clearance, and deeper tissue penetration. Multimerization of nanobodies is a popular strategy to enhance their affinity and pharmacokinetics; however, traditional methods are laborious and may yield heterogeneous products. In this study, we employ a Holliday junction (HJ)-like nucleic acid-based scaffold to create homogeneous nanostructures with precise multivalent and multiparatopic nanobody displays. The plug-and-play assembly allowed the screening of several nanobody multimer configurations for the detection of the breast cancer biomarker, human epidermal growth factor receptor 2 (HER2). In vitro studies demonstrated significant improvements in binding avidity, particularly with the biparatopic construct exhibiting high sensitivity, surpassing that of traditional antibody-based cell binding. Furthermore, our HJ platform allowed for adaptation from fluorescence-based to nuclear imaging, as demonstrated in xenografted mice, thereby allowing for future in vivo applications. This work highlights the potential of nucleic acid-mediated multimerization to markedly enhance nanobody binding, by exploring synergistic combinations and offering versatility for both in vitro diagnostics and cancer molecular imaging with prospects for future theranostic applications.

19.
Macromol Biosci ; : e2400343, 2024 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-39221746

RESUMO

Cancer is anticipated to become the pioneer reason of disease-related deaths worldwide in the next two decades, underscoring the urgent need for personalized and adaptive treatment strategies. These strategies are crucial due to the high variability in drug efficacy and the tendency of cancer cells to develop resistance. This study investigates the potential of theranostic nanotechnology using three innovative fluorescent polymers (FP-1, FP-2, and FP-3) encapsulated in niosomal carriers, combining therapy (chemotherapy and radiotherapy) with fluorescence imaging. These cargoes are assessed for their cytotoxic effects across three cancer cell lines (A549, MCF-7, and HOb), with further analysis to determine their capacity to augment the effects of radiotherapy using a Linear Accelerator (LINAC) at specific doses. Fluorescence microscopy is utilized to verify their uptake and localization in cancerous versus healthy cell lines. The results confirmed that these niosomal cargoes not only improved the antiproliferative effects of radiotherapy but also demonstrate the practical application of fluorescent polymers in in vitro imaging. This dual function underscores the importance of dose optimization to maximize therapeutic benefits while minimizing adverse effects, thereby enhancing the overall efficacy of cancer treatments.

20.
Heliyon ; 10(15): e35655, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39170173

RESUMO

Melanoma, a lethal form of skin cancer, poses a significant challenge in oncology due to its aggressive nature and high mortality rates. Gold nanostructures, including gold nanoparticles (GNPs), offer myriad opportunities in melanoma therapy and imaging due to their facile synthesis and functionalization, robust stability, tunable physicochemical and optical properties, and biocompatibility. This review explores the emerging role of gold nanostructures and their composites in revolutionizing melanoma treatment paradigms, bridging the gap between nanotechnology and clinical oncology, and offering insights for researchers, clinicians, and stakeholders. It begins by elucidating the potential of nanotechnology-driven approaches in cancer therapy, highlighting the unique physicochemical properties and versatility of GNPs in biomedical applications. Various therapeutic modalities, including photothermal therapy, photodynamic therapy, targeted drug delivery, gene delivery, and nanovaccines, are discussed in detail, along with insights from ongoing clinical trials. In addition, the utility of GNPs in melanoma imaging and theranostics is explored, showcasing their potential in diagnosis, treatment monitoring, and personalized medicine. Furthermore, safety considerations and potential toxicities associated with GNPs are addressed, underscoring the importance of comprehensive risk assessment in clinical translation. Finally, the review concludes by discussing current challenges and future directions, emphasizing the need for innovative strategies to maximize the clinical impact of GNPs in melanoma therapy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA