Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 77
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Int J Pharm ; : 124825, 2024 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-39401579

RESUMO

Head and neck squamous cell carcinoma (HNSCC) remain a major oncological challenge with significant morbidity and mortality rates. Erlotinib (Er) and Curcumin (Cm) are potential therapeutic agents for HNSCC, yet they are hindered by poor solubility and bioavailability. This study explored the optimization of poly(lactic-co-glycolic acid) nanoparticles co-loaded with Er and Cm (Er/Cm-NP), prepared via a D-optimal response surface design-guided nanoprecipitation process. The optimized formulation, optEr/Cm-NP, was then incorporated into chitosan/ß-glycerophosphate hydrogels (optEr/Cm-NP-HG) to create an injectable intratumoral (IT) nanocomposite hydrogel (HG) delivery system. Physicochemical properties of the formulations, including gelation time, injectability, mechanical strength and drug release profiles were assessed alongside hemolytic activity. Compared to optEr/Cm-NP alone, the NP-loaded HG formulation exhibited a more pronounced modulation effect, enabling sustained and controlled drug release. The cytotoxicity of the developed formulations was evaluated using the FaDu HNSCC cancer cell line. Both optEr/Cm-NP and optEr/Cm-NP-HG21 displayed enhanced cytotoxicity compared to free drugs. Confocal laser microscopy and flow cytometry confirmed superior cellular uptake of Er and Cm when delivered via NPs or NP-loaded HG. Furthermore, a significant increase in apoptotic cell death upon treatment with optEr/Cm-NP was observed, highlighting its potential for HNSCC therapy. In vivo studies conducted on a xenograft HNSCC mouse model revealed the significant capacity of the intratumorally-injected optEr/Cm-NP-HG21 formulation to retard the tumor growth. Conclusively, the results presented herein report the successful development of a nanocomposite HG system incorporating NPs co-loaded with Er and Cm that could be efficiently utilized in the treatment of HNSCC.

2.
J Pharm Pharm Sci ; 27: 12921, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39114808

RESUMO

Chitosan is an extensively used polymer for drug delivery applications in particulate and non-particulate carriers. Chitosan-based particulate, nano-, and microparticle, carriers have been the most extensively studied for the delivery of therapeutics and vaccines. However, chitosan has also been used in vaccine applications for its adjuvant properties in various hydrogels or as a carrier coating material. The focus of this review will be on the usage of chitosan as a vaccine adjuvant based on its intrinsic immunogenicity; the various forms of chitosan-based non-particulate delivery systems such as thermosensitive hydrogels, microneedles, and conjugates; and the advantages of its role as a coating material for vaccine carriers.


Assuntos
Quitosana , Sistemas de Liberação de Medicamentos , Vacinas , Quitosana/química , Humanos , Vacinas/administração & dosagem , Vacinas/química , Animais , Hidrogéis/química , Hidrogéis/administração & dosagem , Portadores de Fármacos/química
3.
Polymers (Basel) ; 16(15)2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39125232

RESUMO

Ischemic events can culminate in acute myocardial infarction, which is generated by irreversible cardiac lesions that cannot be restored due to the limited regenerative capacity of the heart. Cardiac cell therapy aims to replace injured or necrotic cells with healthy and functional cells. Tissue engineering and cardiovascular regenerative medicine propose therapeutic alternatives using biomaterials that mimic the native extracellular environment and improve cellular and tissue functionality. This investigation evaluates the effect of thermosensitive hydrogels, and murine fetal ventricular cardiomyocytes encapsulated in thermosensitive hydrogels, on the contractile function of cardiomyocyte regeneration during an ischemic event. Chitosan and hydrolyzed collagen thermosensitive hydrogels were developed, and they were physically and chemically characterized. Likewise, their biocompatibility was evaluated through cytotoxicity assays by MTT, LDH, and their hemolytic capacity. The hydrogels, and cells inside the hydrogels, were used as an intervention for primary cardiomyocytes under hypoxic conditions to determine the restoration of the contractile capacity by measuring intracellular calcium levels and the expressions of binding proteins, such as a-actinin and connexin 43. These results evidence the potential of natural thermosensitive hydrogels to restore the bioelectrical functionality of ischemic cardiomyocytes.

4.
Asian J Pharm Sci ; 19(3): 100911, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38948400

RESUMO

Precision therapy has become the preferred choice attributed to the optimal drug concentration in target sites, increased therapeutic efficacy, and reduced adverse effects. Over the past few years, sprayable or injectable thermosensitive hydrogels have exhibited high therapeutic potential. These can be applied as cell-growing scaffolds or drug-releasing reservoirs by simply mixing in a free-flowing sol phase at room temperature. Inspired by their unique properties, thermosensitive hydrogels have been widely applied as drug delivery and treatment platforms for precision medicine. In this review, the state-of-the-art developments in thermosensitive hydrogels for precision therapy are investigated, which covers from the thermo-gelling mechanisms and main components to biomedical applications, including wound healing, anti-tumor activity, osteogenesis, and periodontal, sinonasal and ophthalmic diseases. The most promising applications and trends of thermosensitive hydrogels for precision therapy are also discussed in light of their unique features.

5.
Int J Pharm ; 661: 124384, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38917957

RESUMO

Postoperative distant metastasis and high recurrence rate causes a dilemma in treating triple-negative breast cancer (TNBC) owing to its unforeseeable invasion into various organs or tissues. The wealth of nutrition provided by vascular may facilitate the proliferation and angiogenesis of cancer cells, which further enhance the rates of postoperative metastasis and recurrence. Chemotherapy, as a systemic postoperative adjuvant therapy, is generally applied to diminish recurrence and metastasis of TNBC. Herein, an halofuginone-silver nano thermosensitive hydrogel (HTPM&AgNPs-gel) was prepared via a physical swelling method. The in vitro anticancer efficacy of HTPM&AgNPs-gel was analyzed by investigating cell proliferation, migration, invasion, and angiogenesis capacity. Furthermore, the in vivo anti-cancer activity of HTPM&AgNPs-gel was further appraised through the tumor suppression, anti-metastatic, anti-angiogenic, and anti-inflammatory ability. The optimized HTPM&AgNPs-gel, a thermosensitive hydrogel, showed excellent properties, including syringeability, swelling behavior, and a sustained release effect without hemolysis. In addition, HTPM&AgNPs-gel was confirmed to effectively inhibit the proliferation, migration, invasion, and angiogenesis of MDA-MB-231 cells. An evaluation of the in vivo anti-tumor efficacy demonstrated that HTPM&AgNPs-gel showed a stronger tumor inhibition rate (68.17%) than did HTPM-gel or AgNPs-gel used alone and exhibited outstanding biocompatibility. Notably, HTPM&AgNPs-gel also inhibited lung metastasis induced by residual tumor tissue after surgery and further blocked angiogenesis-related inflammatory responses. Taken together, the suppression of inflammation by interdicting the blood vessels adjoining the tumor and inhibiting angiogenesis is a potential strategy to attenuate the recurrence and metastasis of TNBC. HTPM&AgNPs-gel is a promising anticancer agent for TNBC as a local postoperative treatment.


Assuntos
Antineoplásicos , Proliferação de Células , Hidrogéis , Piperidinas , Quinazolinonas , Prata , Neoplasias de Mama Triplo Negativas , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Hidrogéis/administração & dosagem , Hidrogéis/química , Animais , Feminino , Prata/química , Prata/administração & dosagem , Humanos , Linhagem Celular Tumoral , Piperidinas/farmacologia , Piperidinas/administração & dosagem , Piperidinas/química , Proliferação de Células/efeitos dos fármacos , Quinazolinonas/química , Quinazolinonas/administração & dosagem , Quinazolinonas/farmacologia , Antineoplásicos/administração & dosagem , Antineoplásicos/farmacologia , Antineoplásicos/química , Camundongos Endogâmicos BALB C , Camundongos , Movimento Celular/efeitos dos fármacos , Nanopartículas Metálicas/administração & dosagem , Nanopartículas Metálicas/química , Neovascularização Patológica/tratamento farmacológico , Ensaios Antitumorais Modelo de Xenoenxerto , Camundongos Nus
6.
Macromol Biosci ; 24(10): e2400080, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38752628

RESUMO

Controlling infections while reducing the use of antibiotics is what doctors as well as researchers are looking for. As innovative smart materials, photothermal materials can achieve localized heating under light excitation for broad-spectrum bacterial inhibition. A polydopamine/chitosan/ß-glycerophosphate temperature-sensitive hydrogel with excellent antibacterial ability is synthesized here. Initially, the hydrogel has good biocompatibility. In vitro experiments reveal its noncytotoxic property when cocultured with gingival fibroblasts and nonhemolytic capability. Concurrently, the in vivo biocompatibility is confirmed through liver and kidney blood markers and staining of key organs. Crucially, the hydrogel has excellent photothermal conversion performance, which can realize the photothermal conversion of hydrogel up to 3 mm thickness. When excited by near-infrared light, localized heating is attainable, resulting in clear inhibition impacts on both Staphylococcus aureus and Escherichia coli, with the inhibition rates of 91.22% and 96.69%, respectively. During studies on mice's infected wounds, it is observed that the hydrogel can decrease S. aureus' presence in the affected area when exposed to near-infrared light, and also lessen initial inflammation and apoptosis, hastening tissue healing. These findings provide valuable insights into the design of antibiotic-free novel biomaterials with good potential for clinical applications.


Assuntos
Antibacterianos , Quitosana , Escherichia coli , Glicerofosfatos , Hidrogéis , Indóis , Polímeros , Staphylococcus aureus , Cicatrização , Quitosana/química , Quitosana/farmacologia , Hidrogéis/química , Hidrogéis/farmacologia , Antibacterianos/farmacologia , Antibacterianos/química , Glicerofosfatos/química , Glicerofosfatos/farmacologia , Cicatrização/efeitos dos fármacos , Animais , Staphylococcus aureus/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Camundongos , Polímeros/química , Polímeros/farmacologia , Indóis/química , Indóis/farmacologia , Humanos , Temperatura , Injeções
7.
Int J Pharm X ; 7: 100241, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38572023

RESUMO

In female dogs, the highest morbidity and mortality rates cancer are the result of mammary adenocarcinoma, which presents with metastases in the lung. Other than early surgical removal, however, no special methods are available to treat mammary adenocarcinoma. Because human breast cancer and canine mammary carcinoma share clinical characteristics and heterogeneity, the canine model is a suitable spontaneous tumor model for breast cancer in humans. In this study, the physical swelling method was used to prepare halofuginone-loaded D-α-tocopherol polyethylene glycol 1000 succinate (TPGS) polymer micelles nano-thermosensitive hydrogels (HTPM-gel). Furthermore, HTPM-gel was investigated via characterization, morphology, properties such as swelling experiment and in vitro release with reflecting its splendid nature. Moreover, HTPM-gel was further examined its capability to anti-proliferation, anti-migration, and anti-invasion. Ultimately, HTPM-gel was investigated for its in vivo anticancer activity in the post-operative metastatic and angiogenic canine mammary carcinoma. HTPM-gel presented spherical under transmission electron microscope (TEM) and represented grid structure under scanning electron microscope (SEM), with hydrodynamic diameter (HD) of 20.25 ± 2.5 nm and zeta potential (ZP) of 15.10 ± 1.82 mV. Additionally, HTPM-gel own excellent properties comprised of pH-dependent swelling behavior, sustained release behavior. To impede the migration, invasion, and proliferation of CMT-U27 cells, we tested the efficacy of HTPM-gel. Evaluation of in vivo anti-tumor efficacy demonstrates HTPM-gel exhibit a splendid anti-metastasis and anti-angiogenic ability, with exhibiting ideal biocompatibility. Notably, HTPM-gel also inhibited the scar formation in the healing process after surgery. In summary, HTPM-gel exhibited anti-metastasis and anti-angiogenic and scar repair features. According to the results of this study, HTPM-gel has encouraging clinical potential to treat tumors with multifunctional hydrogel.

8.
ACS Appl Mater Interfaces ; 16(17): 21383-21399, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38626424

RESUMO

Osteoarthritis (OA) progression is highly associated with chondrocyte mitochondrial dysfunction and disorders of catabolism and anabolism of the extracellular matrix (ECM) in the articular cartilage. The mitochondrial unfolded protein response (UPRmt), which is an integral component of the mitochondrial quality control (MQC) system, is essential for maintaining chondrocyte homeostasis. We successfully validated the pivotal role of activating transcription factor 5 (ATF5) in upregulating the UPRmt, mitigating IL-1ß-induced inflammation and mitochondrial dysfunction, and promoting balanced metabolism in articular cartilage ECM, proving its potential as a promising therapeutic target for OA. Modified mRNAs (modRNAs) have emerged as novel and efficient gene delivery vectors for nucleic acid therapeutic approaches. In this study, we combined Atf5-modRNA (modAtf5) with engineered exosomes derived from bone mesenchymal stem cells (ExmodAtf5) to exert cytoprotective effects on chondrocytes in articular cartilage via Atf5. However, the rapid localized metabolization of ExmodAtf5 limits its application. PLGA-PEG-PLGA (Gel), an injectable thermosensitive hydrogel, was used as a carrier of ExmodAtf5 (Gel@ExmodAtf5) to achieve a sustained release of ExmodAtf5. In vitro and in vivo, the use of Gel@ExmodAtf5 was shown to be a highly effective strategy for OA treatment. The in vivo therapeutic effect of Gel@ExmodAtf5 was evidenced by the preservation of the intact cartilage surface, low OARSI scores, fewer osteophytes, and mild subchondral bone sclerosis and cystic degeneration. Consequently, the combination of ExmodAtf5 and PLGA-PEG-PLGA could significantly enhance the therapeutic efficacy and prolong the exosome release. In addition, the mitochondrial protease ClpP enhanced chondrocyte autophagy by modulating the mTOR/Ulk1 pathway. As a result of our research, Gel@ExmodAtf5 can be considered to be effective at alleviating the progression of OA.


Assuntos
Fatores Ativadores da Transcrição , Condrócitos , Exossomos , Mitocôndrias , Osteoartrite , RNA Mensageiro , Resposta a Proteínas não Dobradas , Osteoartrite/patologia , Osteoartrite/metabolismo , Osteoartrite/terapia , Exossomos/metabolismo , Exossomos/química , Animais , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Resposta a Proteínas não Dobradas/efeitos dos fármacos , Fatores Ativadores da Transcrição/metabolismo , Fatores Ativadores da Transcrição/química , Fatores Ativadores da Transcrição/genética , RNA Mensageiro/metabolismo , RNA Mensageiro/genética , Condrócitos/metabolismo , Condrócitos/efeitos dos fármacos , Humanos , Células-Tronco Mesenquimais/metabolismo , Hidrogéis/química , Masculino , Cartilagem Articular/metabolismo , Cartilagem Articular/patologia , Cartilagem Articular/efeitos dos fármacos
9.
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi ; 41(1): 199-204, 2024 Feb 25.
Artigo em Chinês | MEDLINE | ID: mdl-38403622

RESUMO

Methylcellulose is a semi-flexible cellulose ether derivative, whose hydrogels are thermosensitive and reversible, with good biocompatibility and adjustable function, and its application has attracted much attention in the biomedical field. In this paper, the application of methylcellulose-based thermo-sensitive hydrogels in biomedical field was reviewed. Based on the mechanism of gelation and influencing factors of methylcellulose, this paper focused on the recent advances in biomedical applications of methylcellulose-based hydrogels, including drug delivery, regenerative medicine, and other related fields. The current achievements in these fields were summarized in the form of lists in this paper to provide ideas and tendencies for future research. Finally, the future development of multifunctional methylcellulose-based hydrogel materials with improved performance was also discussed.


Assuntos
Hidrogéis , Metilcelulose , Sistemas de Liberação de Medicamentos
10.
Adv Healthc Mater ; 13(6): e2302490, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37909241

RESUMO

The emergence of drug-resistant bacteria, particularly resistant strains of Gram-negative bacteria, such as Pseudomonas aeruginosa, poses a significant threat to public health. Although antibacterial photodynamic therapy (APDT) is a promising strategy for combating drug-resistant bacteria, actively targeted photosensitizers (PSs) remain unknown. In this study, a PS based on dipicolylamine (DPA), known as WZK-DPA-Zn, is designed for the selective identification of P. aeruginosa and drug-resistant Gram-positive bacteria. WZK-DPA-Zn exploits the synergistic effects of DPA-Zn2+ coordination and cellular uptake, which could effectively anchor P. aeruginosa within a brief period (10 min) without interference from other Gram-negative bacteria. Simultaneously, the cationic nature of WZK-DPA-Zn enhances its interaction with Gram-positive bacteria via electrostatic forces. Compared to traditional clinical antibiotics, WZK-DPA-Zn shows exceptional antibacterial activity without inducing drug resistance. This effectiveness is achieved using the APDT strategy when irradiated with white light or sunlight. The combination of WZK-DPA-Zn with Pluronic-based thermosensitive hydrogel dressings (WZK-DPA-Zn@Gel) effectively eliminates mixed bacterial infections and accelerates wound healing, thereby achieving a synergistic effect where "1+1>2." In summary, this study proposes a precise strategy employing DPA-Zn as the targeting moiety of a PS, facilitating the rapid elimination of P. aeruginosa and drug-resistant Gram-positive bacteria using APDT.


Assuntos
Aminas , Ácidos Picolínicos , Infecções por Pseudomonas , Pseudomonas aeruginosa , Humanos , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Infecções por Pseudomonas/tratamento farmacológico , Bactérias Gram-Positivas , Zinco/farmacologia
11.
Pharmaceutics ; 15(6)2023 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-37376197

RESUMO

The aim of this study was to examine homopolymeric poly(N-isopropylacrylamide), p(NIPAM), hydrogels cross-linked with ethylene glycol dimethacrylate as carriers for sulfanilamide. Using FTIR, XRD and SEM methods, structural characterization of synthesized hydrogels before and after sulfanilamide incorporation was performed. The residual reactants content was analyzed using the HPLC method. The swelling behavior of p(NIPAM) hydrogels of different crosslinking degrees was monitored in relation to the temperature and pH values of the surrounding medium. The effect of temperature, pH, and crosslinker content on the sulfanilamide release from hydrogels was also examined. The results of the FTIR, XRD, and SEM analysis showed that sulfanilamide is incorporated into the p(NIPAM) hydrogels. The swelling of p(NIPAM) hydrogels depended on the temperature and crosslinker content while pH had no significant effect. The sulfanilamide loading efficiency increased with increasing hydrogel crosslinking degree, ranging from 87.36% to 95.29%. The sulfanilamide release from hydrogels was consistent with the swelling results-the increase of crosslinker content reduced the amount of released sulfanilamide. After 24 h, 73.3-93.5% of incorporated sulfanilamide was released from the hydrogels. Considering the thermosensitivity of hydrogels, volume phase transition temperature close to the physiological temperature, and the satisfactory results achieved for sulfanilamide incorporation and release, it can be concluded that p(NIPAM) based hydrogels are promising carriers for sulfanilamide.

12.
Expert Opin Drug Deliv ; 20(5): 641-672, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37218585

RESUMO

INTRODUCTION: Drug treatment is one of the main ways of coping with disease today. For the disadvantages of drug management, thermosensitive hydrogel is used as a countermeasure, which can realize the simple sustained release of drugs and the controlled release of drugs in complex physiological environments. AREAS COVERED: This paper talks about thermosensitive hydrogels that can be used as drug carriers. The common preparation materials, material forms, thermal response mechanisms, characteristics of thermosensitive hydrogels for drug release and main disease treatment applications are reviewed. EXPERT OPINION: When thermosensitive hydrogels are used as drug loading and delivery platforms, desired drug release patterns and release profiles can be tailored by selecting raw materials, thermal response mechanisms, and material forms. The properties of hydrogels prepared from synthetic polymers will be more stable than natural polymers. Integrating multiple thermosensitive mechanisms or different kinds of thermosensitive mechanisms on the same hydrogel is expected to realize the spatiotemporal differential delivery of multiple drugs under temperature stimulation. The industrial transformation of thermosensitive hydrogels as drug delivery platforms needs to meet some important conditions.


Assuntos
Sistemas de Liberação de Medicamentos , Hidrogéis , Portadores de Fármacos , Polímeros , Liberação Controlada de Fármacos , Temperatura
13.
Macromol Biosci ; 23(7): e2300118, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37081810

RESUMO

This work presents a novel nanoparticle-based thermosensor implant able to reveal the precise temperature variations along the polymer filaments, as it contracts and expands due to changes in the macroscale local temperature. The multimodal device is able to trace the position and the temperature of a polypropylene mesh, employed in abdominal hernia repair, by combining plasmon resonance and Raman spectroscopy with hydrogel responsive system. The novelty relies on the attachment of the biocompatible nanoparticles, based on gold stabilized by a chitosan-shell, already charged with the Raman reporter (RaR) molecules, to the robust prosthesis, without the need of chemical linkers. The SERS enhanced effect observed is potentiated by the presence of a quite thick layer of the copolymer (poly(N-isopropylacrylamide)-co-poly(acrylamide)) hydrogel. At temperatures above the LCST of PNIPAAm-co-PAAm, the water molecules are expulsed and the hydrogel layer contracts, leaving the RaR molecules more accessible to the Raman source. In vitro studies with fibroblast cells reveal that the functionalized surgical mesh is biocompatible and no toxic substances are leached in the medium. The mesh sensor opens new frontiers to semi-invasive diagnosis and infection prevention in hernia repair by using SERS spectroscopy. It also offers new possibilities to the functionalization of other healthcare products.


Assuntos
Temperatura Corporal , Polímeros , Temperatura , Próteses e Implantes , Hidrogéis/química
14.
J Biomater Sci Polym Ed ; 34(5): 695-714, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36745508

RESUMO

Due to a lack of sufficient blood supply and unique physicochemical properties, the treatment of injured cartilage is laborious and needs an efficient strategy. Unfortunately, most of the current therapeutic approaches are, but not completely, unable to restore the function of injured cartilage. Tissue engineering-based modalities are an alternative option to reconstruct the injured tissue. Considering the unique structure and consistency of cartilage tissue (osteochondral junction), it is mandatory to apply distinct biomaterials with unique properties slightly different from scaffolds used for soft tissues. PCL is extensively used for the fabrication of fine therapeutic scaffolds to accelerate the restorative process. Thermosensitive PCL hydrogels with distinct chemical compositions have paved the way for sophisticated cartilage regeneration. This review aimed to collect recent findings regarding the application of PCL in hydrogels blended with natural, synthetic materials in the context of cartilage healing.


Assuntos
Hidrogéis , Engenharia Tecidual , Hidrogéis/química , Cartilagem , Materiais Biocompatíveis/farmacologia , Materiais Biocompatíveis/química , Alicerces Teciduais/química
15.
Small Methods ; 7(2): e2201379, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36617683

RESUMO

Plasmonic tweezers are an emerging research topic because of their low input power and wide operating range from homogeneous particles to complex biological objects. But it is still challenging for plasmonic tweezers to trap or manipulate objects of tens of microns, especially in biological science. This study introduces a new 3D biocompatible plasmonic tweezer for single living cell manipulation in solution. The key design is a tapered tip whose three-layer surface structure consists of nanoprobe, gold nanofilm, and thermosensitive hydrogel, thiolated poly(N-isopropylacrylamide). Incident light excites the surface plasmon polaritons on gold film and generates heat to induce thermally driven phase transition of the thermosensitive hydrogel, which enables reversible binding between functionalized surface and cell membrane and avoids both thermal and mechanical stresses in the meanwhile. The 3D biocompatible plasmonic tweezer realizes selective capture, 3D pathway free transport, and position-controlled release of target cells, and it displays excellent biocompatibility, low energy consumption, and high operational flexibility.


Assuntos
Ouro , Pinças Ópticas , Ouro/química , Hidrogéis
16.
Drug Deliv Transl Res ; 13(2): 642-657, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36008703

RESUMO

Buccal drug administration may be chosen as a medication route to treat various diseases for local or systemic effects. This study proposes the development of a thermosensitive hydrogel containing curcumin-loaded lipid-core nanocapsules coated with chitosan to increase mucoadhesion, circumventing several limitations of this route of administration. Hydroxypropylmethylcellulose and Poloxamer® 407 were incorporated for hydrogel production. Physicochemical characterization parameters, such as particle size distribution, mean diameter, polydispersity index, zeta potential, and morphology, were analyzed. Spherical homogeneous particles were obtained with average diameter, of 173 ± 22 nm for LNCc (curcumin lipid-core nanocapsules) and 179 ± 48 nm for CLNCc (chitosan-curcumin lipid-core nanocapsules). A PDI equal to 0.09 ± 0.02 for LNCc and 0.26 ± 0.01 for CLNCc confirmed homogeneity. Tensile analysis and washability test on porcine buccal mucosa indicated higher mucoadhesion for hydrogels in comparison to the nanocapsules in suspension, remaining on the mucous membrane up to 8 h (10.92 ± 3.95 µg of curcumin washed for H-LNCc and 28.41 ± 24.47 µg for H-CLNCc) versus the latter, which remained washed on the membrane for 90 min only (62.60 ± 4.72 µg for LNCc and 52.08 ± 1.63 µg for CLNCc). The irritant potential (IR) of the formulations was evaluated by the hen's egg chorioallantoic membrane test (HET-CAM), with no irritation phenomena observed. Formulations were tested for their efficacy in an in vitro model against oral squamous cancer cell line, showing a significant reduction in cell viability on all tested groups. These findings demonstrated that the proposed nanosystem is mucoadhesive and has potential to deliver buccal treatments.


Assuntos
Carcinoma de Células Escamosas , Quitosana , Curcumina , Neoplasias de Cabeça e Pescoço , Neoplasias Bucais , Nanocápsulas , Animais , Feminino , Suínos , Nanocápsulas/química , Hidrogéis , Quitosana/química , Carcinoma de Células Escamosas de Cabeça e Pescoço , Galinhas , Neoplasias Bucais/tratamento farmacológico , Lipídeos/química
17.
Gels ; 8(9)2022 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-36135249

RESUMO

(1) Background: Chitosan-gelatin-based thermosensitive hydrogel containing 5FU-alginate nanoparticles was formulated for the effective and sustained delivery of 5FU to the skin. (2) Methods: Alginate, a polysaccharide was used for the formulation of nanoparticles using a spray drying technique. Size, zeta potential, and surface morphology were investigated using a zetasizer and scanning electron microscope. The hydrogel was fabricated using chitosan and gelatin. Several important analyses were used to characterize these prepared topical hydrogels. The pH, visual transparency, rheological behavior, and swelling index of the prepared hydrogels were evaluated. The in vitro release studies were performed at different pH (5.5 and 7.4) and temperature (32 and 37 °C) conditions using a Franz diffusion cell. Ex vivo permeation and in vivo studies were performed using Sprague Dawley rats. (3) Results: Results show that spherical nanoparticles were produced at sizes of 202−254 nm and with zeta potentials of −43 to −38 mV. The prepared nanoparticles were successfully incorporated into chitosan-gelatin-based hydrogels using a glycerol 2-phosphate disodium salt hydrates crosslinker. Drug polymers and excipients compatibility and formulation of hydrogels was confirmed by ATR-FTIR results. The pH of the prepared hydrogels was in accordance with the skin pH. The viscosity of prepared hydrogel increased with temperature increase and phase transition (sol-gel transition) occurred at 34 °C. The release of drug was sustained in case of nanoparticles incorporated hydrogels (5FU-Alg-Np-HG) as compared to nanoparticles (5FU-Alg-Np) and simple hydrogels (5FU-HG) (ANOVA; p < 0.05). The premature and initial burst release of 5FU was prevented using 5FU-Alg-Np-HG. The release mechanism of 5FU from the 5FU-Alg-Np-HG diffusion was followed by swelling and erosion, as suggested by Korsmeyer-Peppas model. The prepared hydrogel proved to be non-irritant. Ex vivo permeation study across rat's skin suggests that permeability of nanoparticles (5FU-Alg-Np) was higher than the 5FU-Alg-Np-HG (ANOVA; p < 0.05). However, skin-related drug retention of 5FU-Alg-Np-HG was significantly higher than the 5FU solution, 5FU-Alg-Np, and 5FU-HG (ANOVA; p < 0.05). This was due to swelling of hydrogels in the lower layers of skin where the temperature is 37 °C. The higher concentration of 5FU in the skin is helpful for treatment of local skin cancer, such as melanoma, and actinic keratosis. In vivo results also confirmed maximum AUC, t1/2, and skin-related drug retention of 5FU-Alg-Np-HG. (4) Conclusions: Chitosan-gelatin-based hydrogels containing 5FU-Alg-Np possess exceptional properties, and can be used for the sustained delivery of 5FU for the treatment of local skin cancers.

18.
Gels ; 8(8)2022 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-36005089

RESUMO

The intra-articular administration of drugs has attracted great interest in recent decades for the treatment of osteoarthritis. The use of modified drugs has also attracted interest in recent years because their intra-articular administration has demonstrated encouraging results. The objective of this work was to prepare injectable-thermosensitive hydrogels for the intra-articular administration of Etanercept (ETA), an inhibitor of tumor necrosis factor-α. Hydrogels were prepared from the physical mixture of chitosan and Pluronic F127 with ß-glycerolphosphate (BGP). Adding ß-glycerolphosphate to the system reduced the gelation time and also modified the morphology of the resulting material. In vitro studies were carried out to determine the cytocompatibility of the prepared hydrogels for the human chondrocyte line C28/I2. The in vitro release study showed that the incorporation of BGP into the system markedly modified the release of ETA. In the in vivo studies, it was verified that the hydrogels remained inside the implantation site in the joint until the end of the study. Furthermore, ETA was highly concentrated in the blood of the study mice 48 h after the loaded material was injected. Histological investigation of osteoarthritic knees showed that the material promotes cartilage recovery in osteoarthritic mice. The results demonstrate the potential of ETA-loaded injectable hydrogels for the localized treatment of joints.

19.
Small ; 18(27): e2201300, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35678523

RESUMO

The treatment of diabetic wounds remains challenging due to the excess levels of oxidative stress, vulnerability to bacterial infection, and persistent inflammation response during healing. The development of hydrogel wound dressings with ideal anti-inflammation, antioxidant, and anti-infective properties is an urgent clinical requirement. In the present study, an injectable thermosensitive niobium carbide (Nb2 C)-based hydrogel (Nb2 C@Gel) with antioxidative and antimicrobial activity is developed to promote diabetic wound healing. The Nb2 C@Gel system is composed of Nb2 C and a PLGA-PEG-PLGA triblock copolymer. The fabricated Nb2 C nanosheets (NSs) show good biocompatibility during in vitro cytotoxicity and hemocompatibility assays and in vivo toxicity assays. In vitro experiments show that Nb2 C NSs can efficiently eliminate reactive oxygen species (ROS), thus protecting cells in the wound from oxidative stress damage. Meanwhile, Nb2 C NSs also exhibit good near-infrared (NIR) photothermal antimicrobial activity against both Staphylococcus aureus and Escherichia coli. In vivo results demonstrate that Nb2 C@Gel promotes wound healing by attenuating ROS levels, reducing oxidative damage, eradicating bacterial infection under NIR irradiation, and accelerating angiogenesis. To summarize, the Nb2 C@Gel system, with its ROS-scavenging, photothermal antimicrobial and hemostatic activities, can be a promising and effective strategy for the treatment of diabetic wounds.


Assuntos
Infecções Bacterianas , Diabetes Mellitus , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Antioxidantes , Escherichia coli , Humanos , Hidrogéis , Nióbio , Espécies Reativas de Oxigênio , Cicatrização
20.
Adv Healthc Mater ; 11(15): e2200544, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35667125

RESUMO

Transcatheter arterial embolization (TAE) therapy requires firm and long-term vessel embolization without recanalization. However, firm embolization usually leads to unanticipated hypoxic response which promotes tumor recurrence and metastasis. Herein, an injectable thermosensitive hydrogel containing catechol groups and Mn2+ (PNDM) has been developed to enhance embolization and inhibit hypoxic response utilizing augmented H2 O2 after TAE. This novel embolic agent converts H2 O2 into hydroxyl radicals via Mn2+ -dependent Fenton-like reaction, which are subsequently scavenged through a "catechol-quinone" transition to suppress hypoxic responses. Quinone structure can not only make hydrogel internal structure more compact, but also enhance hydrogel adhesion to vessel wall. In vivo experiments confirm that the rabbit renal artery can be firmly embolized for 84 days. Studies in liver VX2 tumor-bearing rabbits demonstrate that the PNDM-based TAE can promote tumor necrosis, inhibit angiogenesis and tumor metastasis, and greatly prolong rabbit survival. This strategy opens new sights in the TAE therapy for liver cancer.


Assuntos
Embolização Terapêutica , Neoplasias Hepáticas , Animais , Catecóis , Hidrogéis , Neoplasias Hepáticas/patologia , Quinonas , Coelhos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA