Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.237
Filtrar
1.
ACS Nano ; 2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-39223725

RESUMO

Changes in bond types and the reversible switching process between metavalent and covalent bonds are related to the operating mechanism of the phase-change (PC) behavior. Thus, controlling the bonding characteristics is the key to improving the PC memory performance. In this study, we have controlled the bonding characteristics of GeTe/Sb2Te3 superlattices (SLs) via bismuth (Bi) doping. The incorporation of Bi into the GeTe sublayers tailors the metavalent bond. We observed significant improvement in device reliability, set speed, and power consumption induced upon increasing Bi incorporation. The introduction of Bi was found to suppress the change in density between the SET and RESET states, resulting in a significant increase in device reliability. The reduction in Peierls distortion, leading to a more octahedral-like atomic arrangement, intensifies electron-phonon coupling with increased bond polarizability, which are responsible for the fast set speed and low power consumption. This study demonstrates how the structural and thermodynamic changes in phase change materials alter phase change characteristics due to systematic changes of bonding and provides an important methodology for the development of PC devices.

2.
Artigo em Inglês | MEDLINE | ID: mdl-39225113

RESUMO

An essential step toward enabling the production of renewable and cost-efficient fuels is an improved understanding of the performance of energy conversion materials. In recent years, there has been growing interest in ternary metal oxides. Particularly, α-SnWO4 exhibited promising properties for application to photoelectrochemical (PEC) water splitting. However, the number of corresponding studies remains limited, and a deeper understanding of the physical and chemical processes in α-SnWO4 is necessary. To date, charge-carrier generation, separation, and transfer have not been exhaustively studied for SnWO4-based photoelectrodes. All of these processes depend on the phase composition, not only α-SnWO4 but also on the related phases SnW3O9 and WO3, as well as on their spatial distributions resulting from the coating synthesis. In the present work, these processes in different phases of tin tungstate films were investigated by transient surface photovoltage (TSPV) spectroscopy to complement the analysis of the applicability of α-SnWO4 thin films for practical PEC oxygen evolution. Pure α-SnWO4 films exhibit higher photoactivities than those of films containing secondary SnW3O9 and WO3 phases due to the higher recombination of charge carriers when these phases are present.

3.
Artigo em Inglês | MEDLINE | ID: mdl-39225124

RESUMO

The use of solar energy for photocatalysis holds great potential for sustainable pollution reduction. Titanium dioxide (TiO2) is a benchmark material, effective under ultraviolet light but limited in visible light utilization, restricting its application in solar-driven photocatalysis. Previous studies have shown that semiconductor heterojunctions and nanostructuring can broaden the TiO2's photocatalytic spectral range. Semiconductor heterojunctions are interfaces formed between two different semiconductor materials that can be engineered. Especially, type II heterojunctions facilitate charge separation, and they can be obtained by combining TiO2 with, for example, iron(III) oxide (Fe2O3). Nanostructuring in the form of 3D inverse opals (IOs) demonstrated increased TiO2 light absorption efficiency of the material, by tailoring light-matter interactions through their photonic crystal structure and specifically their photonic stopband, which can give rise to a slow photon effect. Such effect is hypothesized to enhance the generation of free charges. This work focuses on the above-described effects simultaneously, through the synthesis of TiO2-Fe2O3 IOs via multilayer atomic layer deposition (ALD) and the characterization of their photocatalytic activities. Our results reveal that the complete functionalization of TiO2 IOs with Fe2O3 increases the photocatalytic activity through the slow photon effect and semiconductor heterojunction formation. We systematically explore the influence of Fe2O3 thickness on photocatalytic performance, and a maximum photocatalytic rate constant of 1.38 ± 0.09 h-1 is observed for a 252 nm template TiO2-Fe2O3 bilayer IO consisting of 16 nm TiO2 and 2 nm Fe2O3. Further tailoring the performance by overcoating with additional TiO2 layers enhances photoinduced crystallization and tunes photocatalytic properties. These findings highlight the potential of TiO2-Fe2O3 IOs for efficient water pollutant removal and the importance of precise nanostructuring and heterojunction engineering in advancing photocatalytic technologies.

4.
Heliyon ; 10(16): e35541, 2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-39220946

RESUMO

Physical vapor deposition (PVD) coating is a versatile and well-liked method for depositing thin films of materials onto surfaces in a range of industries. Due to their numerous functional and aesthetic benefits, PVD coatings are beneficial in several applications, from electronics and optics to automotive and medical equipment. PVD coating technology dramatically improves the effectiveness and quality of medical implants. PVD-coated medical implants improve osseointegration, lower wear and friction, increase corrosion resistance, and have antibacterial properties, which lead to better patient outcomes, fewer complications, and overall higher quality of life for people who need implantable medical devices. The essential concepts of PVD coating and the numerous deposition techniques and materials used are covered at the study's outset. The specific uses of PVD-coated medical implants are then highlighted, including those for orthopedic and dental implants and cardiovascular and neurosurgical devices. The review also emphasizes the critical contribution of PVD coatings to reducing wear and friction, improving corrosion resistance, augmenting biocompatibility, enhancing osseointegration, and aesthetic appeal. The challenges and prospects of PVD coating technologies were further addressed in this article. This review is invaluable for academics, doctors, and businesspeople interested in the beneficial combination of PVD coating and medical implantology.

5.
Adv Sci (Weinh) ; : e2407598, 2024 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-39231320

RESUMO

Realization of the full potential of single-atom photoelectrocatalysts in sustainable energy generation requires careful consideration of the design of the host material. Here, a comprehensive methodology for the rational design of photoelectrocatalysts using anodic titanium dioxide (TiO2) nanofilm as a model platform is presented. The properties of these nanofilms are precisely engineered to elucidate synergies across structural, chemical, optoelectronic, and electrochemical properties to maximize the efficiency of the hydrogen evolution reaction (HER). These findings clearly demonstrate that thicker TiO2 nanofilms in anatase phase with pits on the surface can accommodate single-atom platinum catalysts in an optimal configuration to increase HER performance. It is also evident that the electrolyte temperature can further enhance HER output through thermochemical effect. A judicious design incorporating all these factors into one system gives rise to a ten-fold HER enhancement. However, the reusability of the host photoelectrocatalyst is limited by the leaching of the Pt atom, worsening HER. Density-functional theory calculations have provided insights into the mechanism underlying the experimental observations in terms of moderate hydrogen adsorption and enhanced gas generation. This improved understanding of the critical factors determining HER performance in a model photoelectrocatalyst paves the way for future advances in scalable and translatable photoelectrocatalyst technologies.

6.
Chem Asian J ; : e202400620, 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39105250

RESUMO

Progress toward single-molecule electronics relies on a thorough understanding of the understanding of local physio-chemical processes and development of synthetic routines for controlled heterocoupling. We demonstrate a structurally unexpected ring closure process for a homo-coupled 4,4'-bipicenyl, realized in on-surface synthesis. An initial covalent C-C coupling of 4-bromopicene locks at lower temperatures the position and geometrically shields part of 4,4'-bipicenyl. Employing this effect of shielding might offer a path toward controlled stepwise hetero-coupling. At higher temperatures, a thermally activated three-dimensional rotation upon hydrogen dissociation, a dehydrogenative roto-cyclization, lifts the surface dimensionality restriction, and leads to the formation of a perylene. Thereby, the shielded molecular part becomes accessible again.

7.
Sci Technol Adv Mater ; 25(1): 2378684, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39135761

RESUMO

The cubic perovskite SrMoO3 with a paramagnetic ground state and remarkably low room-temperature resistivity has been considered as a suitable candidate for the new-era oxide-based technology. However, the difficulty of preparing single-phase SrMoO3 thin films by hydrogen-free sputtering has hindered their practical use, especially due to the formation of thermodynamically favorable SrMoO4 impurity. In this work, we developed a radio frequency sputtering technology enabling the reduction reaction and achieved conductive epitaxial SrMoO3 films with pure phase from a SrMoO4 target in a hydrogen-free, pure argon environment. We demonstrated the significance of controlling the target-to-substrate distance (TSD) on the synthesis of SrMoO3; the film resistivity drastically changes from 1.46 × 105 µΩ·cm to 250 µΩ·cm by adjusting the TSD. Cross-sectional microstructural analyses demonstrated that films with the lowest resistivity, deposited for TSD = 2.5 cm, possess a single-phase SrMoO3 with an epitaxial perovskite structure. The formation mechanism of the conductive single-phase SrMoO3 films can be attributed to the plasma-assisted growth process by tuning the TSD. Temperature-dependent resistivity and Hall effect studies revealed metal-like conducting properties for low-resistive SrMoO3 films, while the high-resistive ones displayed semiconductor-like behavior. Our approach makes hydrogen-free, reliable and cost-efficient scalable deposition of SrMoO3 films possible, which may open up promising prospects for a wide range of future applications of oxide materials.


For the first time, we developed a plasma-assisted RF sputtering technology enabling the reduction reaction for the synthesis of single-phase conductive SrMoO3 epitaxial films from insulating SrMoO4 in pure-argon atmosphere.

8.
Materials (Basel) ; 17(15)2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39124316

RESUMO

Amorphous ZrO2 thin films with increasing Mg content were deposited on quartz substrates, by dip coating method. The films are transparent in the visible domain and absorbent in UV, with an optical band gap that decreases with the increase of Mg content, from 5.42 eV to 4.12 eV. The temperature dependent conductivity measurements showed typical semiconductor comportment. The decrease of the electrical conductivity by Mg doping was related to the increase of the OH groups (37% to 63%) as seen from X-ray Photoelectron Spectroscopy. It was found out that the electrical conductivity obeys the Meyer-Neldel rule. This rule, previously reported for different disordered material systems is obtained for ZrO2 for the first time in the literature. Exploring novel aspects of Mg-doped ZrO2, the present study underscores the origin of the Meyer-Neldel rule explained by the small-polaron hopping model in the non-adiabatic hopping regime. Determination of the presence of such a conduction mechanism in the samples hold promise for comprehending the important aspects, which might be a concern in developing various devices based on Mg-doped ZrO2.

9.
Materials (Basel) ; 17(15)2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39124443

RESUMO

Bismuth-based compounds have been regarded as a kind of promising material due to their narrow bandgap, high carrier mobility, low toxicity, and strong oxidation ability, showing potential applications in the field of photoelectrochemical (PEC) activities. They can be applied in sustainable energy production, seawater desalination and treatment, optical detection and communication, and other fields. As a member of the broader family of bismuth-based materials, ß-Bi2O3 exhibits significant advantages for applications in engineering, including high photoelectric response, stability in harsh environments, and excellent corrosion resistance. This paper presents the synthesis of ß-Bi2O3 thin films utilizing the mist chemical vapor deposition (CVD) method at the optimal temperature of 400 °C. Based on the ß-Bi2O3 thin film synthesized at optimal temperature, a PEC-type photodetector was constructed with the highest responsivity R of 2.84 mA/W and detectivity D of 6.01 × 1010 Jones, respectively. The photodetection performance was investigated from various points like illumination light wavelength, power density, and long-term stability. This study would broaden the horizontal and practical applications of ß-Bi2O3.

10.
Sci Rep ; 14(1): 19338, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39164376

RESUMO

Vanadium dioxide has attracted much interest due to the drastic change of the electrical and optical properties it exhibits during the transition from the semiconductor state to the metallic state, which takes place at a critical temperature of about 68 °C. Much study has been especially devoted to developing advanced fabrication methodologies to improve the performance of VO2 thin films for phase-change applications in optical devices. Films structural and morphological characterisation is normally performed with expensive and time consuming equipment, as x-ray diffractometers, electron microscopes and atomic force microscopes. Here we propose a purely optical approach which combines Polarized Raman Mapping and Phase-Transition by Continuous Wave Optical Excitation (PTCWE) to acquire through two simple measurements structural, morphological and thermal behaviour information on polycrystalline VO2 thin films. The combination of the two techniques allows to reconstruct a complete picture of the properties of the films in a fast and effective manner, and also to unveil an interesting stepped appearance of the hysteresis cycles probably induced by the progressive stabilization of rutile metallic domains embedded in the semiconducting monoclinic matrix.

11.
ACS Appl Mater Interfaces ; 16(33): 43462-43473, 2024 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-39109991

RESUMO

The implementation of nanocomposite materials as electrode layers represents a potential turning point for next-generation of solid oxide cells in order to reduce the use of critical raw materials. However, the substitution of bulk electrode materials by thin films is still under debate especially due to the uncertainty about their performance and stability under operando conditions, which restricts their use in real applications. In this work, we propose a multiphase nanocomposite characterized by a highly disordered microstructure and high cationic intermixing as a result from thin-film self-assembly of a perovskite-based mixed ionic-electronic conductor (lanthanum strontium cobaltite) and a fluorite-based pure ionic conductor (samarium-doped ceria) as an oxygen electrode for reversible solid oxide cells. Electrochemical characterization shows remarkable oxygen reduction reaction (fuel cell mode) and oxygen evolution activity (electrolysis mode) in comparison with state-of-the-art bulk electrodes, combined with outstanding long-term stability at operational temperatures of 700 °C. The disordered nanostructure was implemented as a standalone oxygen electrode on commercial anode-supported cells, resulting in high electrical output in fuel cell and electrolysis mode for active layer thicknesses of only 200 nm (>95% decrease in critical raw materials with respect to conventional cathodes). The cell was operated for over 300 h in fuel cell mode displaying excellent stability. Our findings unlock the hidden potential of advanced thin-film technologies for obtaining high-performance disordered electrodes based on nanocomposite self-assembly combining long durability and minimized use of critical raw materials.

12.
Macromol Rapid Commun ; : e2400482, 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39108056

RESUMO

Digitally-encoded poly(phosphodiesters) (d-PPDE) with highly complex primary structures are evaluated for layer-by-layer (LbL) assembly. To be easily decoded by mass spectrometry (MS), these digital polymers contain many different monomers: 2 coding units allowing binary encryption, 1 cleavable spacer allowing controlled MS fragmentation, and 3 mass tags allowing fragment identification. These complex heteropolymers are therefore composed of 6 different motifs. Despite this strong sequence heterogeneity, it is found that they enable a highly controlled LbL film formation. For instance, a regular growth is observed when alternating the deposition of negatively-charged d-PPDE and positively-charged poly(allyl amine hydrochloride) (PAH). Yet, in this approach, the interdistance between consecutive coded d-PPDE layers remains relatively small, which may be an issue for data storage applications, especially for the selective decoding of the stored information. Using poly(sodium 4-styrene sulfonate) (PSS) as an intermediate non-coded polyanion, it is shown that a controlled interdistance between d-PPDE layers can be easily achieved, while still maintaining a regular LbL growth. Last but not least, it is found in this work that d-PPDE of relatively small molecular weight (i.e., significantly smaller than those of PAH and PSS) still enables a controlled LbL assembly.

13.
Appl Spectrosc ; : 37028241267925, 2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39094009

RESUMO

Raman spectroscopy, a versatile and nondestructive technique, was employed to develop a methodology for gallium oxide (Ga2O3) phase detection and identification. This methodology combines experimental results with a comprehensive literature survey. The established Raman approach offers a powerful tool for nondestructively assessing phase purity and detecting secondary phases in Ga2O3 thin films. X-ray diffraction was used for comparison, highlighting the complementary information that these techniques may provide for Ga2O3 characterization. Few case studies are included to demonstrate the usefulness of the proposed spectroscopic approach, namely the impact of deposition conditions such as metal-organic vapor-phase epitaxy and pulsed electron deposition (PED), and extrinsic elements provided during growth (Sn in the case of PED) on Ga2O3 polymorphism. In conclusion, it is shown that Raman spectroscopy offers a quick, reliable, and nondestructive high-resolution approach for Ga2O3 thin film characterization, especially concerning phase detection and crystalline quality.

14.
Adv Mater ; : e2408243, 2024 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-39188202

RESUMO

Thin polymer films (TPFs) are indispensable elements in numerous technologies ranging from liquid encapsulation to biotechnology to electronics. However, their production typically relies on wet chemistry involving organic solvents or chemical vapor deposition, necessitating elaborate equipment and often harsh conditions. Here, an eco-friendly, fast, and facile synthesis of water-templated interfacial polymers based on cyanoacrylates (superglues, CAs) that yield thin films with tailored properties is demonstrated. Specifically, by exposing a cationic surfactant-laden water surface to cyanoacrylate vapors, surfactant-modulated anionic polymerization produces a manipulable thin polymer film with a thickness growth rate of 8 nm min-1. Furthermore, the shape and color of the film are precisely controlled by the polymerization kinetics, wetting conditions, and/or exposure to patterned light. Using various interfaces as templates for film growth, including the free surface of drops and soap bubbles, the developed method advantageously enables in situ packaging of chemical and biological cargos in liquid phase as well as the encapsulation of gases within solidified bubbles. Simple, versatile, and biocompatible, this technology constitutes a potent platform for programmable coating and soft/smart encapsulation of fluids.

15.
Commun Mater ; 5(1): 151, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39157449

RESUMO

Hole spins in Ge/SiGe heterostructures have emerged as an interesting qubit platform with favourable properties such as fast electrical control and noise-resilient operation at sweet spots. However, commonly observed gate-induced electrostatic disorder, drifts, and hysteresis hinder reproducible tune-up of SiGe-based quantum dot arrays. Here, we study Hall bar and quantum dot devices fabricated on Ge/SiGe heterostructures and present a consistent model for the origin of gate hysteresis and its impact on transport metrics and charge noise. As we push the accumulation voltages more negative, we observe non-monotonous changes in the low-density transport metrics, attributed to the induced gradual filling of a spatially varying density of charge traps at the SiGe-oxide interface. With each gate voltage push, we find local activation of a transient low-frequency charge noise component that completely vanishes again after 30 hours. Our results highlight the resilience of the SiGe material platform to interface-trap-induced disorder and noise and pave the way for reproducible tuning of larger multi-dot systems.

16.
Small Methods ; : e2400722, 2024 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-39118585

RESUMO

Piezoelectric and ferroelectric wurtzite are promising to reshape modern microelectronics because they can be easily integrated with mainstream semiconductor technology. Sc doped AlN (Al1- xScxN) has attracted much attention for its enhanced piezoelectric and emerging ferroelectric properties, yet the commonly used sputtering results in polycrystalline Al1- xScxN films with high leakage current. Here, the pulsed laser deposition of single crystalline epitaxial Al1- xScxN thin films on sapphire and 4H-SiC substrates is reported. Pure wurtzite phase is maintained up to x = 0.3 with ≤0.1 at% oxygen contamination. Polarization is estimated to be 140 µC cm-2 via atomic scale microscopy imaging and found to be switchable via a scanning probe. The piezoelectric coefficient is found to be five times of the undoped one when x = 0.3, making it desirable for high-frequency radiofrequency (RF) filters and 3D nonvolatile memories.

17.
Small Methods ; : e2400624, 2024 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-39205551

RESUMO

The perovskite solar cells (PSCs) technology translated on flexible substrates is in high demand as an alternative powering solution to the Internet of Things (IOTs). An efficiency of ∼26.1% on rigid and ∼25.09% on flexible substrates has been achieved for the PSCs. Further, it is also reported that F-PSC modules have a surface area of ∼900 cm2, with a PCE of ∼16.43%. This performance is a world record for an F-PSC device more significant than ∼100 cm2. The process optimization, and use of new transport materials, interface, and compositional engineering, as well as passivation, have helped in achieving such kind of performance of F-PSCs. Hence, the review focuses mainly on the progress of F-PSCs and the low-temperature fabrication methods for perovskite films concerning their full coverage, morphological uniformity, and better crystallinity. The transmittance, band gap matching, carrier mobility, and ease of low-temperature processing are the key figures of merit of interface layers. Electrode material's flexible and transparent nature has enhanced the device's mechanical stability. Stability, flexibility, and scalable F-PSC fabrication challenges are also addressed. Finally, an outlook on F-PSC applications for their commercialization based on cost will also be discussed in detail.

18.
Angew Chem Int Ed Engl ; : e202413171, 2024 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-39193661

RESUMO

Exploring self-standing chiral covalent organic framework (CCOF) thin films with controllable circularly polarized luminescence (CPL) is of paramount significance but remains challenging. Herein, we demonstrate the first example of self-standing CCOF films employing a polymerization-dispersion-filtration strategy. Pristine, low-quality CCOF films were produced by interfacial polymerization and then re-dispersed into COF colloidal solutions. Via vacuum assisted assembly, these COF colloids were densely stacked and assembled into self-standing, pure chiral COF films (L-/D-CCOF-F) that were transparent, smooth, crack-free and highly crystalline. These films were tunable in thicknesses, areas, and roughness, along with strong diffuse reflectance circular dichroism (DRCD) and cyan CPL signals, showing an intrinsic luminescence asymmetric factor (glum) of 4.3×10-3. Furthermore, these COF films served as host adsorbents to load various achiral organic dye guests through adsorption. The effective chiral transfer and energy transfer between CCOF-F and achiral fluorescent dyes endowed the dyes with strong chirality and tunable DRCD, resulting in intense, full-color-tunable solid-state CPL. Notably, the ordered arrangement of dye guest molecules within the preferentially oriented chiral pores of CCOF-F contributed to an amplified |glum| factor of 7.2×10-2, which is state-of-the-art for COF-based CPL materials. This work provides new insights into the design and fabrication of self-standing chiral COF films.

19.
J Phys Condens Matter ; 36(46)2024 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-39151458

RESUMO

[Fe-(pyrazine){Pd(CN)4}] (pyrazine = pz) thin films were fabricated using a layer-by-layer assembly approach, a method known to be tunable, versatile, and scalable, since thin films are better-suited for industrial applications. In this study, [Fe-(pz){Pd(CN)4}] powder was synthesized, and the results obtained from a vibrating sample magnetometer verified the presence of an abrupt hysteresis loop with widths of 45 K centered around 300 K, indicating good cooperativity. Super conducting quantum interference device magnetometry results indicated a slow spin transition with temperature but with evidence of hysteresis for thin film samples. X-ray absorption analysis provided further support of the spin crossover behavior but differs from the magnetometry because the spin state transition at the surface differs from the bulk of the thin film. X-ray photoelectron spectroscopy provided some insight into issues with the film deposition process and multiplex fitting was used to further support the claim that the surface of the film is different than the bulk of the film.

20.
Polymers (Basel) ; 16(16)2024 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-39204558

RESUMO

This work looks at the effects of a varying concentration, soak time, pH and temperature on the sorption of tetraammineplatinum(II) chloride (Pt-Ammine) in Nafion-117 films in the context of the electroless plating of ionic polymer-metal composites (IPMCs). Sorption is characterised by atomic absorption spectroscopy. A definitive screening design carried out determined all four factors to be significant for further analysis using response surface modelling. A duplicated central composite design (CCD) was utilised to characterise how the four factors affect the sorption amount and efficiency. Regression models for both responses were of poor fit. Nevertheless, key insights were obtained on the effects of the process parameters on sorption behaviour. The results indicate that above 0.5 g/L Pt-Ammine sorption, the platinisation of 10 × 50 mm IPMC samples through sodium borohydride reduction becomes redundant by the surface resistance metric. IPMCs with surface resistance values of approximately 2.5 Ω/square were obtained through only one round of chemical reduction. Varying surface morphologies and electrode thicknesses were analysed under a scanning electron microscope. The CCD parameter settings were validated. Recommended settings for optimised Pt-Ammine sorption in 10 × 50 mm Nafion-117 films were identified as follows: 1.0 g/L Pt-Ammine concentration, 24 h soak time, pH of 3 and temperature of 20 °C.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA