Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 249
Filtrar
1.
Cell J ; 26(7): 454-464, 2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39290123

RESUMO

OBJECTIVE: Cardiovascular diseases (CVDs) are the leading cause of death worldwide, with atherosclerosis serving as a primary factor in their development. Platelets, leukocytes, and their interactions play a crucial role in initiating and amplifying atherosclerosis. This study aims to evaluate the levels of platelet-monocyte aggregates (PMA) and specific integrins involved in leukocyte recruitment, including macrophage-1 antigen (Mac-1) and lymphocyte functionassociated antigen-1 (Lfa-1), in patients with acute coronary syndrome (ACS). MATERIALS AND METHODS: In this case-control study, thirty-two subjects with ACS and 30 healthy individuals participated. It aimed to evaluate PMA expression and the median fluorescence intensity (MFI) of Mac-1 and Lfa-1 using flow cytometry. Dot plots and Pearson correlation coefficient were employed to examine the relationship between PMA, Mac-1, and Lfa-1. Multilevel model analysis was used to explore the effects and relationships of various parameters, including Mac-1 and Lfa-1, on PMA. Finally, receiver operating characteristic (ROC) curves were utilized to assess the diagnostic accuracy of PMA, Mac-1, and Lfa-1 markers. RESULTS: It was observed that patients had higher PMA levels compared to the control group (58.99 ± 16.27 vs. 29.99 ± 4.19 in controls, P<0.001), which correlated with PLT (ρ=0.512, P=0.035). Additionally, CD18 and CD11b expression on monocytes were significantly elevated in patients (P<0.001) and were positively associated with PMA (ß=19.09, P<0.001; ß=6.90, P=0.022), but no significant relationship between CD11a and PMA was observed (ß=5.06, P=0.315). PMA and Mac-1 were identified as better markers for differentiating patients from healthy individuals. (respectively, AUC=0.94, Sensitivity= 0.84, specificity=0.98; AUC=0.84, Sensitivity= 0.93, specificity=0.70). CONCLUSION: The study results indicated an increase in both Mac-1 and PMA levels in patients with ACS. Additionally, the significant association observed between Mac-1 and PMA in the patient group suggests a potential relationship between these markers and ACS.

2.
J Clin Med ; 13(18)2024 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-39337090

RESUMO

Background/Objectives: Through the past several years, a constant interaction has been implicated between complement and coagulation cascades. SARS-CoV-2 infection and bacterial sepsis are potent activators of both cascades. This study aims to compare the extent of complement and intrinsic coagulation pathway activation (and the interplay between them) among patients with COVID-19 and bacterial sepsis. Methods: Serum and plasma samples were collected from 25 ICU patients (11 patients with COVID-19 and 14 patients with bacterial sepsis) at two time points (on admission and either on improvement or deterioration). The activities of coagulation factors XI and XII and complement factors C3a and C5a were measured at both time points. Results: The activities of factors XI and XII were increased in both groups of patients and at both time points. However, there were no statistically significant differences between SARS-CoV-2 and bacterial sepsis patients. On the other hand, both C3a and C5a were significantly higher in the COVID-19 group on admission. This correlation was preserved on reassessment. Conclusions: Complement activation seems to be more enhanced in COVID-19 than bacterial sepsis. However, the lack of statistical significance in factors XI and XII indicates t the presence of additional pathways for complement activation in SARS-CoV-2 infection.

3.
Int J Mol Sci ; 25(18)2024 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-39337495

RESUMO

Thromboinflammation/immunothrombosis plays a role in several diseases including thrombotic thrombocytopenic purpura (TTP) and COVID-19. Unlike the extensive research that has been conducted on COVID-19 cytokine storms, the baseline and acute phase cytokine profiles of TTP are poorly characterized. Moreover, we compared the cytokine profiles of TTP and COVID-19 to identify the disease-specific/general characteristics of thromboinflammation/immunothrombosis. Plasma concentrations of 33 soluble mediators (SMs: cytokines, chemokines, soluble receptors, and growth factors) were measured by multiplex bead-based LEGENDplex™ immunoassay from 32 COVID-19 patients (32 non-vaccinated patients in three severity groups), 32 TTP patients (remission/acute phase pairs of 16 patients), and 15 control samples. Mainly, the levels of innate immunity-related SMs changed in both diseases. In TTP, ten SMs decreased in both remission and acute phases compared to the control, one decreased, and two increased only in the acute phase compared to remission, indicating mostly anti-inflammatory changes. In COVID-19, ten pro-inflammatory SMs increased, whereas one decreased with increasing severity compared to the control. In severe COVID-19, sixteen SMs exceeded acute TTP levels, with only one higher in TTP. PCA identified CXCL10, IL-1RA, and VEGF as the main discriminators among their cytokine profiles. The innate immune response is altered in both diseases. The cytokine profile of TTP suggests a distinct pathomechanism from COVID-19 and supports referring to TTP as thromboinflammatory rather than immunothrombotic, emphasizing thrombosis over inflammation as the driving force of the acute phase.


Assuntos
COVID-19 , Citocinas , Púrpura Trombocitopênica Trombótica , SARS-CoV-2 , Humanos , COVID-19/sangue , COVID-19/imunologia , Citocinas/sangue , Púrpura Trombocitopênica Trombótica/sangue , Púrpura Trombocitopênica Trombótica/imunologia , Masculino , Feminino , Pessoa de Meia-Idade , Adulto , SARS-CoV-2/imunologia , Idoso , Imunidade Inata , Inflamação/sangue
4.
J Intern Med ; 296(4): 311-326, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39331688

RESUMO

Hereditary angioedema (HAE) is a rare, potentially life-threatening genetic disorder characterized by recurrent attacks of swelling. Local vasodilation and vascular leakage are stimulated by the vasoactive peptide bradykinin, which is excessively produced due to dysregulation of the activated factor XII (FXIIa)-driven kallikrein-kinin system. There is a need for novel treatments for HAE that provide greater efficacy, improved quality of life, minimal adverse effects, and reduced treatment burden over current first-line therapies. FXIIa is emerging as an attractive therapeutic target for interference with HAE attacks. In this review, we draw on preclinical, experimental animal, and in vitro studies, providing an overview on targeting FXIIa as the basis for pharmacologic interference in HAE. We highlight that there is a range of FXIIa inhibitors in development for different therapeutic areas. Of these, garadacimab, an FXIIa-targeted inhibitory monoclonal antibody, is the most advanced and has shown potential as a novel long-term prophylactic treatment for patients with HAE in clinical trials. The evidence from these trials is summarized and discussed, and we propose areas for future research where targeting FXIIa may have therapeutic potential beyond HAE.


Assuntos
Angioedemas Hereditários , Fator XIIa , Humanos , Angioedemas Hereditários/tratamento farmacológico , Fator XIIa/antagonistas & inibidores , Fator XIIa/metabolismo , Animais , Anticorpos Monoclonais Humanizados/uso terapêutico
5.
J Thromb Haemost ; 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39122190

RESUMO

BACKGROUND: Platelet activation and interaction with leukocytes are crucial in inflammation. Gangliosides, sialic acid-containing glycosphingolipids, have been linked to different inflammatory conditions related to cardio- and neurodegenerative disorders. The role of gangliosides in platelet and leukocyte function, although reported, still needs further investigation. OBJECTIVES: We aimed to study the role of gangliosides in platelet activation and platelet-leukocyte interaction in vitro. METHODS: Platelet activation was studied through aggregometry in platelet-rich plasma from apparently healthy human volunteers. Signaling protein phosphorylation was analyzed by immunoblotting. Platelet P-selectin expression and platelet-leukocyte aggregate formation were measured by flow cytometry. RESULTS: The gangliosides monosialoganglioside GM1, disialoganglioside GD1a, and trisialoganglioside GT1b did not induce by themselves any platelet aggregation. Conversely, when preincubated with platelets, they potentiate platelet aggregation induced by submaximal adenosine diphosphate and collagen concentrations and increased P-selectin expression. Incubation of platelets with free sialic acid and the soluble part of monosialoganglioside GM1 induced a similar potentiating effect on platelet aggregation but not on platelet P-selectin expression. Consistently, analyzing the signaling protein phosphorylation, only the entire gangliosides activated extracellular stimuli-responsive kinase 1/2 suggesting that a complete ganglioside is crucial for its action on platelets. Both the priming effect on platelet aggregation and ERK1/2 activation were prevented by aspirin. Moreover, incubation of citrated whole blood with gangliosides induced platelet-leukocyte aggregate formation accompanied by increased expression of granulocyte and monocyte CD11b compared with untreated blood, suggesting a primary leukocyte activation. CONCLUSION: Gangliosides may act in vitro both on platelet and leukocyte activation and on their interaction. The observed effects might contribute to inflammatory processes in clinical conditions.

6.
Zool Res ; 45(5): 1001-1012, 2024 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-39147715

RESUMO

Thrombosis and inflammation are primary contributors to the onset and progression of ischemic stroke. The contact-kinin pathway, initiated by plasma kallikrein (PK) and activated factor XII (FXIIa), functions bidirectionally with the coagulation and inflammation cascades, providing a novel target for therapeutic drug development in ischemic stroke. In this study, we identified a bat-derived oligopeptide from Myotis myotis (Borkhausen, 1797), designated LE6 (Leu-Ser-Glu-Glu-Pro-Glu, 702 Da), with considerable potential in stroke therapy due to its effects on the contact kinin pathway. Notably, LE6 demonstrated significant inhibitory effects on PK and FXIIa, with inhibition constants of 43.97 µmol/L and 6.37 µmol/L, respectively. In vitro analyses revealed that LE6 prolonged plasma recalcification time and activated partial thromboplastin time. In murine models, LE6 effectively inhibited carrageenan-induced mouse tail thrombosis, FeCl 3-induced carotid artery thrombosis, and photochemically induced intracerebral thrombosis. Furthermore, LE6 significantly decreased inflammation and stroke injury in transient middle cerebral artery occlusion models. Notably, the low toxicity, hemolytic activity, and bleeding risk of LE6, along with its synthetic simplicity, underscore its clinical applicability. In conclusion, as an inhibitor of FXIIa and PK, LE6 offers potential therapeutic benefits in stroke treatment by mitigating inflammation and preventing thrombus formation.


Assuntos
Oligopeptídeos , Acidente Vascular Cerebral , Animais , Camundongos , Oligopeptídeos/farmacologia , Acidente Vascular Cerebral/tratamento farmacológico , Quirópteros , Trombose , Inflamação , Masculino , Anti-Inflamatórios/farmacologia
7.
Front Genet ; 15: 1434681, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39175753

RESUMO

Objective: The aim of this study was to replicate associations of GWAS-significant loci with severe COVID-19 in the population of Central Russia, to investigate associations of the SNPs with thromboinflammation parameters, to analyze gene-gene and gene-environmental interactions. Materials and Methods: DNA samples from 798 unrelated Caucasian subjects from Central Russia (199 hospitalized COVID-19 patients and 599 controls with a mild or asymptomatic course of COVID-19) were genotyped using probe-based polymerase chain reaction for 10 GWAS-significant SNPs: rs143334143 CCHCR1, rs111837807 CCHCR1, rs17078346 SLC6A20-LLZTFL1, rs17713054 SLC6A20-LLZTFL1, rs7949972 ELF5, rs61882275 ELF5, rs12585036 ATP11A, rs67579710 THBS3, THBS3-AS1, rs12610495 DPP9, rs9636867 IFNAR2. Results: SNP rs17713054 SLC6A20-LZTFL1 was associated with increased risk of severe COVID-19 in the entire group (risk allele A, OR = 1.78, 95% CI = 1.22-2.6, p = 0.003), obese individuals (OR = 2.31, 95% CI = 1.52-3.5, p = 0.0002, (p bonf = 0.0004)), patients with low fruit and vegetable intake (OR = 1.72, 95% CI = 1.15-2.58, p = 0.01, (p bonf = 0.02)), low physical activity (OR = 1.93, 95% CI = 1.26-2.94, p = 0.0035, (p bonf = 0.007)), and nonsmokers (OR = 1.65, 95% CI = 1.11-2.46, p = 0.02). This SNP correlated with increased BMI (p = 0.006) and worsened thrombodynamic parameters (maximum optical density of the formed clot, D (p = 0.02), delayed appearance of spontaneous clots, Tsp (p = 0.02), clot size 30 min after coagulation activation, CS (p = 0.036)). SNP rs17078346 SLC6A20-LZTFL1 was linked with increased BMI (p = 0.01) and severe COVID-19 in obese individuals (risk allele C, OR = 1.72, 95% CI = 1.15-2.58, p = 0.01, (p bonf = 0.02)). SNP rs12610495 DPP9 was associated with increased BMI (p = 0.01), severe COVID-19 in obese patients (risk allele G, OR = 1.48, 95% CI = 1.09-2.01, p = 0.01, (p bonf = 0.02)), and worsened thrombodynamic parameters (time to the start of clot growth, Tlag (p = 0.01)). For rs7949972 ELF5, a protective effect against severe COVID-19 was observed in non-obese patients (effect allele T, OR = 0.67, 95% CI = 0.47-0.95, p = 0.02, (p bonf = 0.04)), improving thrombodynamic parameters (CS (p = 0.02), stationary spatial clot growth rates, Vst (p = 0.02)). Finally, rs12585036 ATP11A exhibited a protective effect against severe COVID-19 in males (protective allele A, OR = 0.51, 95% CI = 0.32-0.83, p = 0.004). SNPs rs67579710 THBS3, THBS3-AS1, rs17713054 SLC6A20-LZTFL1, rs7949972 ELF5, rs9636867 IFNAR2-were involved in two or more of the most significant G×G interactions (p perm ≤ 0.01). The pairwise combination rs67579710 THBS3, THBS3-AS1 × rs17713054 SLC6A20-LZTFL1 was a priority in determining susceptibility to severe COVID-19 (it was included in four of the top five most significant SNP-SNP interaction models). Conclusion: Overall, this study represents a comprehensive molecular-genetic and bioinformatics analysis of the involvement of GWAS-significant loci in the molecular mechanisms of severe COVID-19, gene-gene and gene-environmental interactions, and provides evidence of their relationship with thromboinflammation parameters in patients hospitalized in intensive care units.

8.
Int J Mol Sci ; 25(16)2024 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-39201740

RESUMO

Thrombotic microangiopathy (TMA) encompasses a range of disorders characterized by blood clotting in small blood vessels, leading to organ damage. It can manifest as various syndromes, including thrombotic thrombocytopenic purpura (TTP), hemolytic-uremic syndrome (HUS), and others, each with distinct causes and pathophysiology. Thrombo-inflammation plays a significant role in TMA pathogenesis: inflammatory mediators induce endothelial injury and activation of platelet and coagulation cascade, contributing to microvascular thrombosis. Primary TMA, such as TTP, is primarily caused by deficient ADAMTS13 metalloproteinase activity, either due to antibody-mediated inhibition or intrinsic enzyme synthesis defects. In cancer patients, a significant reduction in ADAMTS13 levels and a corresponding increase in VWF levels is observed. Chemotherapy further decreased ADAMTS13 levels and increased VWF levels, leading to an elevated VWF/ADAMTS13 ratio and increased thrombotic risk. Drug-induced TMA (DITMA) can result from immune-mediated or non-immune-mediated mechanisms. Severe cases of COVID-19 may lead to a convergence of syndromes, including disseminated intravascular coagulation (DIC), systemic inflammatory response syndrome (SIRS), and TMA. Treatment of TMA involves identifying the underlying cause, implementing therapies to inhibit complement activation, and providing supportive care to manage complications. Plasmapheresis may be beneficial in conditions like TTP. Prompt diagnosis and treatment are crucial to prevent serious complications and improve outcomes.


Assuntos
Proteína ADAMTS13 , COVID-19 , Neoplasias , Microangiopatias Trombóticas , Humanos , Microangiopatias Trombóticas/etiologia , Microangiopatias Trombóticas/terapia , Neoplasias/complicações , Proteína ADAMTS13/metabolismo , COVID-19/complicações , SARS-CoV-2 , Fator de von Willebrand/metabolismo
9.
Crit Care Explor ; 6(7): e1128, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39022800

RESUMO

OBJECTIVES BACKGROUND: Under normal conditions, pulmonary megakaryocytes are an important source of circulating thrombocytes, causing thrombocyte counts to be higher in arterial than venous blood. In critical COVID-19, thrombocytes may be removed from the circulation by the lungs because of immunothrombosis, possibly causing venous thrombocyte counts to be higher than arterial thrombocyte counts. In the present study, we investigated time-dependent changes in pulmonary turnover of thrombocytes during critical COVID-19 by measuring arteriovenous thrombocyte differences. We hypothesized that the early stages of the disease would be characterized by a net pulmonary removal of circulating thrombocytes because of immunothrombosis and that later stages would be characterized by a net pulmonary release of thrombocytes as normal pulmonary function is restored. DESIGN: Cohort study with repeated measurements of arterial and central venous thrombocyte counts. SETTING: ICU in a large university hospital. PATIENTS: Thirty-one patients with critical COVID-19 that were admitted to the ICU and received invasive or noninvasive mechanical ventilation. INTERVENTIONS: None. MEASUREMENTS AND MAIN RESULTS: We found a significant positive association between the arteriovenous thrombocyte difference and time since symptom debut. This finding indicates a negative arteriovenous thrombocyte difference and hence pulmonary removal of thrombocytes in the early stages of the disease and a positive arteriovenous thrombocyte difference and hence pulmonary release of thrombocytes in later stages. Most individual arteriovenous thrombocyte differences were smaller than the variance coefficient of the analysis. CONCLUSIONS: The results of this study support our hypothesis that early stages of critical COVID-19 are characterized by pulmonary removal of circulating thrombocytes because of immunothrombosis and that later stages are characterized by the return of normal pulmonary release of thrombocytes. However, in most cases, the arteriovenous thrombocyte difference was too small to say anything about pulmonary thrombocyte removal and release on an individual level.


Assuntos
Plaquetas , COVID-19 , Pulmão , Humanos , COVID-19/imunologia , COVID-19/sangue , Masculino , Feminino , Pessoa de Meia-Idade , Plaquetas/patologia , Pulmão/imunologia , Pulmão/patologia , Idoso , Contagem de Plaquetas , Estudos de Coortes , Fatores de Tempo , SARS-CoV-2 , Respiração Artificial , Unidades de Terapia Intensiva
10.
J Transl Med ; 22(1): 666, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39020346

RESUMO

BACKGROUND: The discovery of new prognostic biomarkers following spinal cord injury (SCI) is a rapidly growing field that could help uncover the underlying pathological mechanisms of SCI and aid in the development of new therapies. To date, this search has largely focused on the initial days after the lesion. However, during the subacute stage of SCI (weeks to months after the injury), there remains potential for sensorimotor recovery, and numerous secondary events develop in various organs. Additionally, the confounding effects of early interventions after the injury are less likely to interfere with the results. METHODS: In this study, we conducted an untargeted proteomics analysis to identify biomarkers of recovery in blood serum samples during the subacute phase of SCI patients, comparing those with strong recovery to those with no recovery between 30 and 120 days. We analyzed the fraction of serum that is depleted of the most abundant proteins to unmask proteins that would otherwise go undetected. Linear models were used to identify peptides and proteins related to neurological recovery and we validated changes in some of these proteins using Enzyme-linked Immunosorbent Assay (ELISA). RESULTS: Our findings reveal that differences in subacute recovery after SCI (from 30 to 120 days) are associated with an enrichment in proteins involved in inflammation, coagulation, and lipid metabolism. Technical validation using commercial ELISAs further confirms that high levels of SERPINE1 and ARHGAP35 are associated with strong neurological recovery, while high levels of CD300a and DEFA1 are associated with a lack of recovery. CONCLUSIONS: Our study identifies new candidates for biomarkers of neurological recovery and for novel therapeutic targets after SCI.


Assuntos
Proteômica , Recuperação de Função Fisiológica , Traumatismos da Medula Espinal , Humanos , Traumatismos da Medula Espinal/sangue , Masculino , Feminino , Adulto , Pessoa de Meia-Idade , Biomarcadores/sangue , Proteínas Sanguíneas/metabolismo
11.
J Thromb Thrombolysis ; 57(6): 936-946, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38853210

RESUMO

Inflammation including immunothrombosis by neutrophil extracellular traps (NETs) has important implications in acute ischemic stroke and can affect reperfusion status, susceptibility to stroke associated infections (SAI) as well as functional clinical outcome. NETs were shown to be prevalent in stroke thrombi and NET associated markers were found in stroke patients' blood. However, little is known whether blood derived NET markers reflect the amount of NETs in thrombi. Conclusions from blood derived markers to thrombus composition might open avenues for novel strategies in diagnostic and therapeutic approaches. We prospectively recruited 166 patients with acute ischemic stroke undergoing mechanical thrombectomy between March 2018 and May 2021. Available thrombi (n = 106) were stained for NET markers DNA-histone-1 complexes and myeloperoxidase (MPO). Cell free DNA (cfDNA), deoxyribonuclease (DNase) activity, MPO-histone complexes and a cytokine-panel were measured before thrombectomy and after seven days. Clinical data, including stroke etiology, reperfusion status, SAI and functional outcome after rehabilitation, were collected of all patients. NET markers were present in all thrombi. At onset the median concentration of cfDNA in blood was 0.19 µg/ml increasing to 0.30 µg/ml at 7 days. Median DNase activity at onset was 4.33 pmol/min/ml increasing to 4.96 pmol/min/ml at 7 days. Within thrombi DNA-histone-1 complexes and MPO correlated with each other (ρ = 0.792; p < 0.001). Moreover, our study provides evidence for an association between the amount of NETs and endogenous DNase activity in blood with amounts of NETs in cerebral thrombi. However, these associations need to be confirmed in larger cohorts, to investigate the potential clinical implications for individualized therapeutic and diagnostic approaches in acute ischemic stroke.


Assuntos
Biomarcadores , Armadilhas Extracelulares , AVC Isquêmico , Humanos , Armadilhas Extracelulares/metabolismo , Biomarcadores/sangue , Masculino , Feminino , Idoso , AVC Isquêmico/sangue , AVC Isquêmico/diagnóstico , Pessoa de Meia-Idade , Estudos Prospectivos , Peroxidase/sangue , Idoso de 80 Anos ou mais , Ácidos Nucleicos Livres/sangue , Trombectomia , Trombose/sangue , Trombose/diagnóstico , Neutrófilos/metabolismo
12.
J Neuroinflammation ; 21(1): 155, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38872149

RESUMO

Activation of the kallikrein-kinin system promotes vascular leakage, inflammation, and neurodegeneration in ischemic stroke. Inhibition of plasma kallikrein (PK) - a key component of the KKS - in the acute phase of ischemic stroke has been reported to reduce thrombosis, inflammation, and damage to the blood-brain barrier. However, the role of PK during the recovery phase after cerebral ischemia is unknown. To this end, we evaluated the effect of subacute PK inhibition starting from day 3 on the recovery process after transient middle artery occlusion (tMCAO). Our study demonstrated a protective effect of PK inhibition by reducing infarct volume and improving functional outcome at day 7 after tMCAO. In addition, we observed reduced thrombus formation in cerebral microvessels, fewer infiltrated immune cells, and an improvement in blood-brain barrier integrity. This protective effect was facilitated by promoting tight junction reintegration, reducing detrimental matrix metalloproteinases, and upregulating regenerative angiogenic markers. Our findings suggest that PK inhibition in the subacute phase might be a promising approach to accelerate the post-stroke recovery process.


Assuntos
Calicreína Plasmática , Recuperação de Função Fisiológica , Animais , Recuperação de Função Fisiológica/efeitos dos fármacos , Recuperação de Função Fisiológica/fisiologia , Masculino , Calicreína Plasmática/antagonistas & inibidores , Calicreína Plasmática/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Infarto da Artéria Cerebral Média , Barreira Hematoencefálica/efeitos dos fármacos , Barreira Hematoencefálica/metabolismo , Acidente Vascular Cerebral/tratamento farmacológico , Trombose , AVC Isquêmico/tratamento farmacológico , Inflamação
13.
Clin Res Cardiol ; 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38922424

RESUMO

BACKGROUND: Emerging data suggest an association between left atrial (LA) enlargement, thrombus formation, and ischemic stroke. However, it is unknown what may mediate such clot formation in LA dysfunction. Neutrophils promote large vessel occlusion and microthrombosis via neutrophil extracellular trap (NET) release, thus lying at the interface of inflammation, thrombosis, and fibrosis. APPROACH: We conducted a prospective all-comers cohort study in patients undergoing catheterization procedures with atrial transseptal access (MitraClip, MC; left atrial appendage closure, LAAC; pulmonary vein ablation, PVA; patent foramen ovale closure, PFO). We measured NETs, cytokines, thrombotic factors, and cardiac injury markers in paired blood samples collected from peripheral blood and within the left atrium. We correlated these biomarkers with echocardiographic measures of LA structure and function (including left atrial volume index, LAVI). Data were analyzed by procedure type, and stratified by LAVI or atrial fibrillation (AF) status. RESULTS: We enrolled 70 patients (mean age 64 years, 53% women). NETs, but not other markers, were elevated in LA compared to peripheral blood samples. Most thrombotic, inflammatory, and cardiac damage markers were elevated in LAs from MC or LAAC compared to PFO patients. Overall, NET biomarkers positively correlated with VWF, LAVI, and markers of cardiac injury and negatively with ADAMTS13 activity. LA enlargement and the presence of AF similarly stratified patients based on thromboinflammation measurements, but this was not limited to AF at the time of sample collection. CONCLUSION: Elevated NETs and VWF in patients with enlarged LA or AF suggest enhanced thromboinflammation within the LA.

14.
Rev Med Interne ; 45(8): 474-478, 2024 Aug.
Artigo em Francês | MEDLINE | ID: mdl-38845252

RESUMO

The history of anticoagulation has evolved considerably, from non-specific drugs to molecules that directly target specific coagulation factors, such as direct oral anticoagulants (DOACs). Since last decade, DOACs are widely used in clinical practice because of their ease to use with favorable pharmacological profile and not requiring monitoring. New therapeutics targeting the contact phase of coagulation are currently under development, and could make it possible to prevent thrombotic risk without altering hemostasis, thereby reducing the risk of bleeding. Factor XII, being at the crossroads between hemostasis and inflammation, appears to be an interesting target that could limit thrombo-inflammation without increasing bleeding risk. The aim of this article is to summarize the main information concerning FXII inhibitors and to review the results of various clinical trials available to date, focusing on applications beyond hemostasis, such as in the management of hereditary angioedema.


Assuntos
Fator XII , Inflamação , Trombose , Humanos , Inflamação/tratamento farmacológico , Trombose/prevenção & controle , Trombose/tratamento farmacológico , Trombose/etiologia , Fator XII/antagonistas & inibidores , Anticoagulantes/uso terapêutico , Desenvolvimento de Medicamentos , Hemorragia/prevenção & controle
17.
J Ethnopharmacol ; 333: 118475, 2024 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-38908496

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: The pathophysiological mechanism of thromboinflammation involves the intricate interplay between the inflammatory responses and coagulation cascades. Rhubarb is frequently used in traditional Chinese medicine to treat thromboinflammatory diseases. The scorched rhubarb (prepared by stir-baking the dried raw rhubarb till it partly turns to charcoal) is believed to possess enhanced blood-cooling and stasis-removing functions compared to the raw rhubarb, thereby augmenting the therapeutic effects on thromboinflammation. AIM OF THE STUDY: This study aimed to explore the chemical and pharmacological foundations of the scorch processing of rhubarb in order to ensure and enhance the efficacy and safety of the scorched rhubarb for treating thromboinflammatory diseases. MATERIALS AND METHODS: The dried raw rhubarb pieces were subjected to stir-baking at 180 °C for 10∼80 min to obtain the rhubarbs with varying degrees of scorching. Typical ingredients present in rhubarb pieces and extracts were determined by high-performance liquid chromatography. The therapeutic effects of the raw and scorched rhubarb on thromboinflammation were evaluated using a rat model. Proteomics analysis was employed to screen potential biological pathways associated with thromboinflammation treatment by the raw and scorched rhubarb, which were further verified using a cell model. RESULTS: Morphological properties indicated that the rhubarb baked at 180 °C for 50 min in this research showed the optimal degree of scorching. Compared to the raw rhubarb, the properly scorched rhubarb exhibited lower levels of anthraquinone glucosides, higher levels of anthraquinone aglycones, superior anti-thromboinflammatory effects, and no purgative side effects. Proteomics analysis revealed that the complement and coagulation cascades pathway played a significant role in mediating the therapeutic effects of the raw and scorched rhubarb on thromboinflammation. Furthermore, it was found that anthraquinone aglycones were more effective than their glucoside counterparts in restoring the impaired vascular endothelial cells as well as regulating the complement and coagulation cascades pathway. CONCLUSIONS: Proper scorch processing may augment the therapeutic effects of rhubarb on thromboinflammation via relieving inflammation and oxidative stress, repairing vascular endothelial cells, restoring coagulation cascades and blood rheology, and regulating some other biological processes. This may be partly caused by the scorch-induced thermolysis of anthraquinone glucosides into their aglycone counterparts that seemed to perform better in regulating the complement and coagulation cascades pathway.


Assuntos
Antraquinonas , Coagulação Sanguínea , Glucosídeos , Ratos Sprague-Dawley , Rheum , Animais , Rheum/química , Antraquinonas/farmacologia , Coagulação Sanguínea/efeitos dos fármacos , Masculino , Glucosídeos/farmacologia , Glucosídeos/química , Ratos , Inflamação/tratamento farmacológico , Trombose/tratamento farmacológico , Anti-Inflamatórios/farmacologia , Proteínas do Sistema Complemento/metabolismo , Modelos Animais de Doenças , Extratos Vegetais/farmacologia , Extratos Vegetais/química
18.
Front Immunol ; 15: 1397990, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38911865

RESUMO

Advanced age is associated with an increased susceptibility to Coronavirus Disease (COVID)-19 and more severe outcomes, although the underlying mechanisms are understudied. The lung endothelium is located next to infected epithelial cells and bystander inflammation may contribute to thromboinflammation and COVID-19-associated coagulopathy. Here, we investigated age-associated SARS-CoV-2 pathogenesis and endothelial inflammatory responses using humanized K18-hACE2 mice. Survival was reduced to 20% in aged mice (85-112 weeks) versus 50% in young mice (12-15 weeks) at 10 days post infection (dpi). Bulk RNA-sequencing of endothelial cells from mock and infected mice at 2dpi of both age groups (aged: 72-85 weeks; young: 15 weeks) showed substantially lower significant differentially regulated genes in infected aged mice than in young mice (712 versus 2294 genes). Viral recognition and anti-viral pathways such as RIG-I-like receptor signaling, NOD-like receptor signaling and interferon signaling were regulated in response to SARS-CoV-2. Young mice showed several fold higher interferon responses (Ifitm3, Ifit1, Isg15, Stat1) and interferon-induced chemokines (Cxcl10 and Cxcl11) than aged mice. Endothelial cells from infected young mice displayed elevated expression of chemokines (Cxcl9, Ccl2) and leukocyte adhesion markers (Icam1) underscoring that inflammation of lung endothelium during infection could facilitate leukocyte adhesion and thromboinflammation. TREM1 and acute phase response signaling were particularly prominent in endothelial cells from infected young mice. Immunohistochemistry was unable to detect viral protein in pulmonary endothelium. In conclusion, our data demonstrate that the early host response of the endothelium to SARS-CoV-2 infection declines with aging, which could be a potential contributor to disease severity.


Assuntos
Envelhecimento , COVID-19 , Células Endoteliais , Pulmão , SARS-CoV-2 , Animais , COVID-19/imunologia , COVID-19/patologia , SARS-CoV-2/fisiologia , Células Endoteliais/metabolismo , Células Endoteliais/virologia , Células Endoteliais/imunologia , Camundongos , Pulmão/imunologia , Pulmão/virologia , Pulmão/patologia , Humanos , Envelhecimento/imunologia , Modelos Animais de Doenças , Inflamação/imunologia , Enzima de Conversão de Angiotensina 2/metabolismo , Enzima de Conversão de Angiotensina 2/genética , Camundongos Transgênicos
19.
Clin Pract ; 14(3): 1110-1122, 2024 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-38921266

RESUMO

Renal vein thrombosis (RVT) is a relatively uncommon condition that is most frequently observed in individuals with nephrotic syndrome. While rare, pyelonephritis (PN) may serve as a predisposing factor for secondary RVT. In such cases, one should consider the possibility of RVT when patients fail to respond to appropriate antibiotic treatment. Typically, these patients require additional anticoagulation therapy for a duration of 3 to 6 months, with a generally favorable prognosis. In this report, we present the case of a 74-year-old female who developed RVT due to Klebsiella pneumoniae PN. Additionally, we reviewed 11 cases of PN complicated by RVT, which were documented in the PubMed database over a span of 40 years, emphasizing key elements in diagnostic and therapeutic approaches. Lastly, we elaborated upon the role of thrombo-inflammation, especially in the context of sepsis.

20.
Br J Pharmacol ; 181(18): 3364-3379, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38760890

RESUMO

BACKGROUND AND PURPOSE: Thrombo-inflammation is a key feature of stroke pathophysiology and provides multiple candidate drug targets. Thrombin exerts coagulation-independent actions via protease-activated receptors (PAR), of which PAR1 has been implicated in stroke-associated neuroinflammation. The role of PAR4 in this context is less clear. This study examined if the selective PAR4 antagonist ML354 provides neuroprotection in experimental stroke and explored the underlying mechanisms. EXPERIMENTAL APPROACH: Mouse primary cortical neurons were exposed to oxygen-glucose deprivation (OGD) and simulated reperfusion ± ML354. For comparison, functional Ca2+-imaging was performed upon acute stimulation with a PAR4 activating peptide or glutamate. Male mice underwent sham operation or transient middle cerebral artery occlusion (tMCAO), with ML354 or vehicle treatment beginning at recanalization. A subset of mice received a platelet-depleting antibody. Stroke size and functional outcomes were assessed. Abundance of target genes, proteins, and cell markers was determined in cultured cells and tissues by qPCR, immunoblotting, and immunofluorescence. KEY RESULTS: Stroke up-regulated PAR4 expression in cortical neurons in vitro and in vivo. OGD augments spontaneous and PAR4-mediated neuronal activity; ML354 suppresses OGD-induced neuronal excitotoxicity and apoptosis. ML354 applied in vivo after tMCAO reduced infarct size, apoptotic markers, macrophage accumulation, and interleukin-1ß expression. Platelet depletion did not affect infarct size in mice with tMCAO ± ML354. CONCLUSIONS AND IMPLICATIONS: Selective PAR4 inhibition during reperfusion improves infarct size and neurological function after experimental stroke by blunting neuronal excitability, apoptosis, and local inflammation. PAR4 antagonists may provide additional neuroprotective benefits in patients with acute stroke beyond their canonical antiplatelet action.


Assuntos
Camundongos Endogâmicos C57BL , Neurônios , Fármacos Neuroprotetores , Receptores de Trombina , Acidente Vascular Cerebral , Animais , Masculino , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Neurônios/patologia , Camundongos , Receptores de Trombina/antagonistas & inibidores , Receptores de Trombina/metabolismo , Fármacos Neuroprotetores/farmacologia , Acidente Vascular Cerebral/tratamento farmacológico , Células Cultivadas , Infarto da Artéria Cerebral Média/tratamento farmacológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA