Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
Front Med ; 2024 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-39269568

RESUMO

Aerobic glycolysis is critical for tumor growth and metastasis. Previously, we have found that the overexpression of the inhibitor of growth 5 (ING5) inhibits lung cancer aggressiveness and epithelial-mesenchymal transition (EMT). However, whether ING5 regulates lung cancer metabolism reprogramming remains unknown. Here, by quantitative proteomics, we showed that ING5 differentially regulates protein phosphorylation and identified a new site (Y163) of the key glycolytic enzyme PDK1 whose phosphorylation was upregulated 13.847-fold. By clinical study, decreased p-PDK1Y163 was observed in lung cancer tissues and correlated with poor survival. p-PDK1Y163 represents the negative regulatory mechanism of PDK1 by causing PDHA1 dephosphorylation and activation, leading to switching from glycolysis to oxidative phosphorylation, with increasing oxygen consumption and decreasing lactate production. These effects could be impaired by PDK1Y163F mutation, which also impaired the inhibitory effects of ING5 on cancer cell EMT and invasiveness. Mouse xenograft models confirmed the indispensable role of p-PDK1Y163 in ING5-inhibited tumor growth and metastasis. By siRNA screening, ING5-upregulated TIE1 was identified as the upstream tyrosine protein kinase targeting PDK1Y163. TIE1 knockdown induced the dephosphorylation of PDK1Y163 and increased the migration and invasion of lung cancer cells. Collectively, ING5 overexpression-upregulated TIE1 phosphorylates PDK1Y163, which is critical for the inhibition of aerobic glycolysis and invasiveness of lung cancer cells.

2.
Sci Rep ; 14(1): 20808, 2024 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-39242877

RESUMO

Fluid therapy is a fundamental part of supportive therapy in critical care. However, it is also a suspected risk for endothelial glycocalyx degradation which is associated with poor clinical outcomes. This secondary analysis of RESPONSE randomized trial compares the effect of follow-up strategy (FU) on endothelial biomarkers to that of 500 ml crystalloid fluid bolus (FB) in oliguric, hemodynamically optimized intensive care unit (ICU) patients. 130 adult subjects were enrolled in two Finnish ICUs from January 2017 to November 2020. Blood and urine samples of 63 patients in FU group and 67 patients in FB group were collected before and after the intervention and analyzed using enzyme-linked immunosorbent assays. Single fluid bolus, given after median of 3887 ml (interquartile range 2842; 5359 ml) resuscitation fluids in the preceding 24 h, increased plasma hyaluronan concentration compared to the follow-up strategy (difference in medians 29.2 ng/ml with 95% CI [14.5ng/ml; 55.5ng/ml], P < 0.001). No treatment effect was detected in the plasma levels of syndecan-1, , angiopoietin-2, angiopoietin receptors Tie2 and Tie1, or in soluble thrombomodulin in the adjusted median regression analysis. The increase in hyaluronan was independent of its simultaneous renal clearance but correlated moderately with the increase in endothelium-specific Tie1. The follow-up strategy did not show consistent endothelium-sparing effect but protected against hyaluronan increase. The mechanisms and consequences of hyaluronan fluctuations need further clarification. Trial registration: clinicaltrials.gov, NCT02860572. Registered 1 August 2016, https://www.clinicaltrials.gov/study/NCT02860572?term=NCT02860572&rank=1.


Assuntos
Hidratação , Ácido Hialurônico , Unidades de Terapia Intensiva , Humanos , Ácido Hialurônico/sangue , Masculino , Feminino , Pessoa de Meia-Idade , Hidratação/métodos , Idoso , Biomarcadores/sangue , Angiopoietina-2/sangue , Sindecana-1/sangue , Trombomodulina/sangue , Receptor TIE-2/sangue , Soluções Cristaloides/administração & dosagem , Cuidados Críticos/métodos
3.
Appl Environ Microbiol ; 90(9): e0143824, 2024 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-39162566

RESUMO

With the rising demand for sustainable renewable resources, microorganisms capable of producing bioproducts such as bioplastics are attractive. While many bioproduction systems are well-studied in model organisms, investigating non-model organisms is essential to expand the field and utilize metabolically versatile strains. This investigation centers on Rhodopseudomonas palustris TIE-1, a purple non-sulfur bacterium capable of producing bioplastics. To increase bioplastic production, genes encoding the putative regulatory protein PhaR and the depolymerase PhaZ of the polyhydroxyalkanoate (PHA) biosynthesis pathway were deleted. Genes associated with pathways that might compete with PHA production, specifically those linked to glycogen production and nitrogen fixation, were deleted. Additionally, RuBisCO form I and II genes were integrated into TIE-1's genome by a phage integration system, developed in this study. Our results show that deletion of phaR increases PHA production when TIE-1 is grown photoheterotrophically with butyrate and ammonium chloride (NH4Cl). Mutants unable to produce glycogen or fix nitrogen show increased PHA production under photoautotrophic growth with hydrogen and NH4Cl. The most significant increase in PHA production was observed when RuBisCO form I and form I & II genes were overexpressed, five times under photoheterotrophy with butyrate, two times with hydrogen and NH4Cl, and two times under photoelectrotrophic growth with N2 . In summary, inserting copies of RuBisCO genes into the TIE-1 genome is a more effective strategy than deleting competing pathways to increase PHA production in TIE-1. The successful use of the phage integration system opens numerous opportunities for synthetic biology in TIE-1.IMPORTANCEOur planet has been burdened by pollution resulting from the extensive use of petroleum-derived plastics for the last few decades. Since the discovery of biodegradable plastic alternatives, concerted efforts have been made to enhance their bioproduction. The versatile microorganism Rhodopseudomonas palustris TIE-1 (TIE-1) stands out as a promising candidate for bioplastic synthesis, owing to its ability to use multiple electron sources, fix the greenhouse gas CO2, and use light as an energy source. Two categories of strains were meticulously designed from the TIE-1 wild-type to augment the production of polyhydroxyalkanoate (PHA), one such bioplastic produced. The first group includes mutants carrying a deletion of the phaR or phaZ genes in the PHA pathway, and those lacking potential competitive carbon and energy sinks to the PHA pathway (namely, glycogen biosynthesis and nitrogen fixation). The second group comprises TIE-1 strains that overexpress RuBisCO form I or form I & II genes inserted via a phage integration system. By studying numerous metabolic mutants and overexpression strains, we conclude that genetic modifications in the environmental microbe TIE-1 can improve PHA production. When combined with other approaches (such as reactor design, use of microbial consortia, and different feedstocks), genetic and metabolic manipulations of purple nonsulfur bacteria like TIE-1 are essential for replacing petroleum-derived plastics with biodegradable plastics like PHA.


Assuntos
Poli-Hidroxialcanoatos , Rodopseudomonas , Ribulose-Bifosfato Carboxilase , Poli-Hidroxialcanoatos/metabolismo , Poli-Hidroxialcanoatos/biossíntese , Rodopseudomonas/genética , Rodopseudomonas/metabolismo , Ribulose-Bifosfato Carboxilase/genética , Ribulose-Bifosfato Carboxilase/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Processos Heterotróficos
4.
Exp Cell Res ; 439(1): 114060, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38719173

RESUMO

BACKGROUND: Tie1 orphan receptor has become a focus of research, Tie1 can form a polymer with Tie2, regulate the Ang/Tie2 pathway and play a vital role in pathological angiogenesis and tumor progression, the function of Tie1 has remained uncertain in the progression of cervical cancer (CC). Here, we investigated the functional influences of Tie1 overexpress on CC in vitro and in vivo. METHODS: We used Immunohistochemistry (IHC) analysis to detect the relative expression of Tie1 in CC, and we analyzed its connection with the overall survival (OS) and progression free survival (PFS)of CC patients. To prove the role of Tie1 in cell proliferation and metastatic, Tie1 expression in CC cell lines was upregulated by lentivirus. RESULTS: The high expression of Tie1 in tumor cells of cervical cancer tissues is significantly correlated with FIGO stage, differentiated tumors, tumors with diameters, deep stromal invasion. We found that cell progression was promoted in Tie1-overexpress CC cell lines in vivo and in vitro. Tie1 potentially exerts a commanding influence on the expression of markers associated with epithelial-mesenchymal transition (EMT) and the PI3K/AKT signaling pathway. CONCLUSIONS: Our research indicates that Tie1 is highly connected to CC progression as it may play a role in the EMT process through the PI3K/AKT signaling pathway.


Assuntos
Proliferação de Células , Progressão da Doença , Transição Epitelial-Mesenquimal , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Receptor de TIE-1 , Transdução de Sinais , Neoplasias do Colo do Útero , Animais , Feminino , Humanos , Camundongos , Pessoa de Meia-Idade , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Transição Epitelial-Mesenquimal/genética , Regulação Neoplásica da Expressão Gênica , Camundongos Endogâmicos BALB C , Camundongos Nus , Fosfatidilinositol 3-Quinases/metabolismo , Fosfatidilinositol 3-Quinases/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Receptor de TIE-1/metabolismo , Receptor de TIE-1/genética , Neoplasias do Colo do Útero/patologia , Neoplasias do Colo do Útero/genética , Neoplasias do Colo do Útero/metabolismo
5.
Development ; 151(10)2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38742432

RESUMO

Development of the vascular system is regulated by multiple signaling pathways mediated by receptor tyrosine kinases. Among them, angiopoietin (Ang)/Tie signaling regulates lymphatic and blood vessel development in mammals. Of the two Tie receptors, Tie2 is well known as a key mediator of Ang/Tie signaling, but, unexpectedly, recent studies have revealed that the Tie2 locus has been lost in many vertebrate species, whereas the Tie1 gene is more commonly present. However, Tie1-driven signaling pathways, including ligands and cellular functions, are not well understood. Here, we performed comprehensive mutant analyses of angiopoietins and Tie receptors in zebrafish and found that only angpt1 and tie1 mutants show defects in trunk lymphatic vessel development. Among zebrafish angiopoietins, only Angpt1 binds to Tie1 as a ligand. We indirectly monitored Ang1/Tie1 signaling and detected Tie1 activation in sprouting endothelial cells, where Tie1 inhibits nuclear import of EGFP-Foxo1a. Angpt1/Tie1 signaling functions in endothelial cell migration and proliferation, and in lymphatic specification during early lymphangiogenesis, at least in part by modulating Vegfc/Vegfr3 signaling. Thus, we show that Angpt1/Tie1 signaling constitutes an essential signaling pathway for lymphatic development in zebrafish.


Assuntos
Angiopoietina-1 , Linfangiogênese , Receptor de TIE-1 , Transdução de Sinais , Proteínas de Peixe-Zebra , Peixe-Zebra , Animais , Angiopoietina-1/metabolismo , Angiopoietina-1/genética , Movimento Celular , Proliferação de Células , Células Endoteliais/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Linfangiogênese/genética , Vasos Linfáticos/metabolismo , Vasos Linfáticos/embriologia , Mutação/genética , Ligação Proteica , Receptor de TIE-1/metabolismo , Receptor de TIE-1/genética , Fator C de Crescimento do Endotélio Vascular/metabolismo , Fator C de Crescimento do Endotélio Vascular/genética , Receptor 3 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Receptor 3 de Fatores de Crescimento do Endotélio Vascular/genética , Peixe-Zebra/embriologia , Peixe-Zebra/metabolismo , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/genética
6.
Int J Biol Sci ; 20(6): 2297-2309, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38617545

RESUMO

Background: Tyrosine kinase with immunoglobulin and EGF-like domains 1 (TIE1) is known as an orphan receptor prominently expressed in endothelial cells and participates in angiogenesis by regulating TIE2 activity. Our previous study demonstrated elevated TIE1 expression in cervical cancer cells. However, the role of TIE1 in cervical cancer progression, metastasis and treatment remains elusive. Methods: Immunohistochemistry staining for TIE1 and Basigin was performed in 135 human cervical cancer tissues. Overexpressing vectors and siRNAs were used to manipulate gene expression in tumor cells. Colony formation, wound healing, and transwell assays were used to assess cervical cancer cell proliferation and migration in vitro. Subcutaneous xenograft tumor and lung metastasis mouse models were established to examine tumor growth and metastasis. Co-Immunoprecipitation and Mass Spectrometry were applied to explore the proteins binding to TIE1. Immunoprecipitation and immunofluorescence staining were used to verify the interaction between TIE1 and Basigin. Cycloheximide chase assay and MG132 treatment were conducted to analyze protein stability. Results: High TIE1 expression was associated with poor survival in cervical cancer patients. TIE1 overexpression promoted the proliferation, migration and invasion of cervical cancer cells in vitro, as well as tumor growth and metastasis in vivo. In addition, Basigin, a transmembrane glycoprotein, was identified as a TIE1 binding protein, suggesting a pivotal role in matrix metalloproteinase regulation, angiogenesis, cell adhesion, and immune responses. Knockdown of Basigin or treatment with the Basigin inhibitor AC-73 reversed the tumor-promoting effect of TIE1 in vitro and in vivo. Furthermore, we found that TIE1 was able to interact with and stabilize the Basigin protein and stimulate the Basigin-matrix metalloproteinase axis. Conclusion: TIE1 expression in cervical cells exerts a tumor-promoting effect, which is at least in part dependent on its interaction with Basigin. These findings have revealed a TIE2-independent mechanism of TIE1, which may provide a new biomarker for cervical cancer progression, and a potential therapeutic target for the treatment of cervical cancer patients.


Assuntos
Neoplasias Pulmonares , Neoplasias do Colo do Útero , Animais , Feminino , Humanos , Camundongos , Basigina , Adesão Celular , Células Endoteliais , Neoplasias do Colo do Útero/genética
7.
Genes (Basel) ; 15(1)2024 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-38254961

RESUMO

OBJECTIVE: The association of cerebrospinal fluid (CSF) protein levels with cognitive function in the general population remains largely unexplored. We performed Mendelian randomization (MR) analyses to query which CSF proteins may have potential causal effects on cognitive performance. METHODS AND ANALYSIS: Genetic associations with CSF proteins were obtained from a genome-wide association study conducted in up to 835 European-ancestry individuals and for cognitive performance from a meta-analysis of GWAS including 257,841 European-ancestry individuals. We performed Mendelian randomization (MR) analyses to test the effect of randomly allocated variation in 154 genetically predicted CSF protein levels on cognitive performance. Findings were validated by performing colocalization analyses and considering cognition-related phenotypes. RESULTS: Genetically predicted C1-esterase inhibitor levels in the CSF were associated with a better cognitive performance (SD units of cognitive performance per 1 log-relative fluorescence unit (RFU): 0.23, 95% confidence interval: 0.12 to 0.35, p = 7.91 × 10-5), while tyrosine-protein kinase receptor Tie-1 (sTie-1) levels were associated with a worse cognitive performance (-0.43, -0.62 to -0.23, p = 2.08 × 10-5). These findings were supported by colocalization analyses and by concordant effects on distinct cognition-related and brain-volume measures. CONCLUSIONS: Human genetics supports a role for the C1-esterase inhibitor and sTie-1 in cognitive performance.


Assuntos
Proteína Inibidora do Complemento C1 , Proteoma , Humanos , Cognição , Esterases , Estudo de Associação Genômica Ampla , Análise da Randomização Mendeliana , Metanálise como Assunto , Proteoma/genética
8.
J Transl Med ; 21(1): 847, 2023 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-37996923

RESUMO

BACKGROUND: In primary open-angle glaucoma (POAG), lowering intraocular pressure (IOP) is the only proven way of slowing vision loss. Schlemm's canal (SC) is a hybrid vascular and lymphatic vessel that mediates aqueous humour drainage from the anterior ocular chamber. Animal studies support the importance of SC endothelial angiopoietin-TEK signalling, and more recently TIE1 signalling, in maintaining normal IOP. However, human genetic support for a causal role of TIE1 and TEK signalling in lowering IOP is currently lacking. METHODS: GWAS summary statistics were obtained for plasma soluble TIE1 (sTIE1) protein levels (N = 35,559), soluble TEK (sTEK) protein levels (N = 35,559), IOP (N = 139,555) and POAG (Ncases = 16,677, Ncontrols = 199,580). Mendelian randomization (MR) was performed to estimate the association of genetically proxied TIE1 and TEK protein levels with IOP and POAG liability. Where significant MR estimates were obtained, genetic colocalization was performed to assess the probability of a shared causal variant (PPshared) versus distinct (PPdistinct) causal variants underlying TIE1/TEK signalling and the outcome. Publicly available single-nucleus RNA-sequencing data were leveraged to investigate differential expression of TIE1 and TEK in the human ocular anterior segment. RESULTS: Increased genetically proxied TIE1 signalling and TEK signalling associated with a reduction in IOP (- 0.21 mmHg per SD increase in sTIE1, 95% CI = - 0.09 to - 0.33 mmHg, P = 6.57 × 10-4, and - 0.14 mmHg per SD decrease in sTEK, 95% CI = - 0.03 to - 0.25 mmHg, P = 0.011), but not with POAG liability. Colocalization analysis found that the probability of a shared causal variant was greater for TIE1 and IOP than for TEK and IOP (PPshared/(PPdistinct + PPshared) = 0.98 for TIE1 and 0.30 for TEK). In the anterior segment, TIE1 and TEK were preferentially expressed in SC, lymphatic, and vascular endothelium. CONCLUSIONS: This study provides novel human genetic support for a causal role of both TIE1 and TEK signalling in regulating IOP. Here, combined evidence from cis-MR and colocalization analyses provide stronger support for TIE1 than TEK as a potential IOP-lowering therapeutic target.


Assuntos
Glaucoma de Ângulo Aberto , Pressão Intraocular , Animais , Humanos , Pressão Intraocular/genética , Glaucoma de Ângulo Aberto/genética , Glaucoma de Ângulo Aberto/tratamento farmacológico , Análise da Randomização Mendeliana , Angiopoietinas
9.
J Transl Med ; 21(1): 134, 2023 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-36814284

RESUMO

BACKGROUND: Radiotherapy resistance is the main cause of treatment failure in nasopharyngeal carcinoma (NPC), which leads to poor prognosis. It is urgent to elucidate the molecular mechanisms underlying radiotherapy resistance. METHODS: RNA-seq analysis was applied to five paired progressive disease (PD) and complete response (CR) NPC tissues. Loss-and gain-of-function assays were used for oncogenic function of FLI1 both in vitro and in vivo. RNA-seq analysis, ChIP assays and dual luciferase reporter assays were performed to explore the interaction between FLI1 and TIE1. Gene expression with clinical information from tissue microarray of NPC were analyzed for associations between FLI1/TIE1 expression and NPC prognosis. RESULTS: FLI1 is a potential radiosensitivity regulator which was dramatically overexpressed in the patients with PD to radiotherapy compared to those with CR. FLI1 induced radiotherapy resistance and enhanced the ability of DNA damage repair in vitro, and promoted radiotherapy resistance in vivo. Mechanistic investigations showed that FLI1 upregulated the transcription of TIE1 by binding to its promoter, thus activated the PI3K/AKT signaling pathway. A decrease in TIE1 expression restored radiosensitivity of NPC cells. Furthermore, NPC patients with high levels of FLI1 and TIE1 were correlated with poor prognosis. CONCLUSION: Our study has revealed that FLI1 regulates radiotherapy resistance of NPC through TIE1-mediated PI3K/AKT signaling pathway, suggesting that targeting the FLI1/TIE1 signaling pathway could be a potential therapeutic strategy to enhance the efficacy of radiotherapy in NPC.


Assuntos
Carcinoma Nasofaríngeo , Neoplasias Nasofaríngeas , Proteína Proto-Oncogênica c-fli-1 , Tolerância a Radiação , Receptor de TIE-1 , Humanos , Linhagem Celular Tumoral , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Carcinoma Nasofaríngeo/genética , Carcinoma Nasofaríngeo/radioterapia , Neoplasias Nasofaríngeas/genética , Neoplasias Nasofaríngeas/radioterapia , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Proteína Proto-Oncogênica c-fli-1/genética , Tolerância a Radiação/genética , Receptor de TIE-1/genética
10.
Cell Mol Life Sci ; 79(6): 312, 2022 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-35604495

RESUMO

The human signaling molecules Tie1 and Tie2 receptor tyrosine kinases (RTKs) play important pathophysiological roles in many diseases, including different cancers. The activity of Tie1 is mediated mainly through the downstream angiopoietin-1 (Ang1)-dependent activation of Tie2, rendering both Tie 1 and the Tie1/Tie2/Ang1 axis attractive putative targets for therapeutic intervention. However, the development of inhibitors that target Tie1 and an understanding of their effect on Tie2 and on the Tie1/Tie2/Ang1 axis remain unfulfilled tasks, due, largely, to the facts that Tie1 is an orphan receptor and is difficult to produce and use in the quantities required for immune antibody library screens. In a search for a selective inhibitor of this orphan receptor, we sought to exploit the advantages (e.g., small size that allows binding to hidden epitopes) of non-immune nanobodies and to simultaneously overcome their limitations (i.e., low expression and stability). We thus performed expression, stability, and affinity screens of yeast-surface-displayed naïve and predesigned synthetic (non-immune) nanobody libraries against the Tie1 extracellular domain. The screens yielded a nanobody with high expression and good affinity and specificity for Tie1, thereby yielding preferential binding for Tie1 over Tie2. The stability, selectivity, potency, and therapeutic potential of this synthetic nanobody were profiled using in vitro and cell-based assays. The nanobody triggered Tie1-dependent inhibition of RTK (Tie2, Akt, and Fak) phosphorylation and angiogenesis in endothelial cells, as well as suppression of human glioblastoma cell viability and migration. This study opens the way to developing nanobodies as therapeutics for different cancers associated with Tie1 activation.


Assuntos
Neoplasias , Anticorpos de Domínio Único , Angiopoietina-1 , Células Endoteliais/metabolismo , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Fosforilação , Receptor de TIE-1/metabolismo , Receptor TIE-2/genética , Receptor TIE-2/metabolismo , Anticorpos de Domínio Único/farmacologia
11.
Arterioscler Thromb Vasc Biol ; 42(3): 348-351, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35021855

RESUMO

BACKGROUND: Schlemm's canal (SC) is a large vessel residing in the iridocorneal angle and is required to regulate aqueous humor outflow. Normal SC structure and function is indispensable for maintaining normal intraocular pressure, and elevated intraocular pressure is a risk factor for development of glaucoma. Recent reports have identified a key role of the angiopoietin-Tie2 pathway for SC development and function; however, the role of the orphan receptor Tie1 has not been clarified. METHODS: We used Tie1 knock out mice to study the function of Tie1 in SC development and function. Real-time quantitative polymerase chain reaction and Western blot analyses were used to verify Tie1 deletion. High-resolution microscopy of mouse SC whole mount and cross sections were used to study SC morphology. Measurement of intraocular pressure in live mice was used to study the impact of Tie1 on SC function. RESULTS: Tie1 is highly expressed in both human and mouse SC. Tie1 knock out mice display hypomorphic SC and elevated intraocular pressure as a result of attenuated SC development. CONCLUSIONS: Tie1 is indispensable for SC development and function, supporting it as a novel target for future SC-targeted glaucoma therapies and a candidate gene for glaucoma in humans.


Assuntos
Câmara Anterior/enzimologia , Câmara Anterior/crescimento & desenvolvimento , Endotélio Corneano/enzimologia , Receptor de TIE-1/metabolismo , Animais , Humor Aquoso/fisiologia , Glaucoma/etiologia , Humanos , Pressão Intraocular/fisiologia , Vasos Linfáticos/anormalidades , Vasos Linfáticos/enzimologia , Vasos Linfáticos/fisiologia , Camundongos , Camundongos Knockout , Modelos Animais , Receptor de TIE-1/deficiência , Receptor de TIE-1/genética
12.
J Affect Disord ; 300: 179-188, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-34942230

RESUMO

BACKGROUND: The genetic factors of attention deficit hyperactivity disorder (ADHD) are far from fully elucidated. This study aims to get additional insight into the genetic structure of ADHD. METHODS: First, a transcriptome-wide association study and summary data-based Mendelian randomization analysis were performed to identify ADHD susceptibility genes. Then, genetic variants influencing the expression of the identified susceptibility genes were tested for association with ADHD risk in a sample of Han Chinese children (543 cases and 560 controls). Dual-luciferase reporter gene assays and electrophoretic mobility shift assays were performed to verify the transcriptional regulatory functions of the identified ADHD-associated variants. Additionally, real-time quantitative polymerase chain reaction was applied to quantify the expression levels of target genes in blood samples. RESULTS: Both TIE1 and MED8 were identified as ADHD susceptibility genes. Furthermore, we first found the G allele of rs3768046 was significantly associated with an increased risk of ADHD (recessive model: GG vs AA+AG, OR= 1.659, 95% CI= (1.262, 2.181); additive model: GG vs GA vs AA, OR= 1.493, 95% CI= (1.179, 1.890)). Additionally, in vitro functional experiments revealed that rs3768046 might alter TIE1 expression by affecting the binding sites of transcription factors. Moreover, the expression level of TIE1 in the blood samples of patients was significantly higher than that of controls. LIMITATIONS: Given the moderate statistical power of this study, it is necessary to verify our findings in other larger samples. CONCLUSIONS: Together, this study presents the first systematic evidence of TIE1 with potential implications for the genetic basis of ADHD.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade , Alelos , Povo Asiático/genética , Transtorno do Deficit de Atenção com Hiperatividade/genética , Criança , China , Humanos , Polimorfismo de Nucleotídeo Único , Receptor de TIE-1
13.
Sheng Wu Gong Cheng Xue Bao ; 37(8): 2633-2644, 2021 Aug 25.
Artigo em Chinês | MEDLINE | ID: mdl-34472284

RESUMO

Endothelial cells that form the inner layers of both blood and lymphatic vessels are important components of the vascular system and are involved in the pathogenesis of vascular and lymphatic diseases. Angiopoietin (Ang)-Tie axis in endothelial cells is the second endothelium-specific ligand-receptor signaling system necessary for embryonic cardiovascular and lymphatic development in addition to the vascular endothelial growth factor receptor pathway. The Ang-Tie axis also maintains vascular homeostasis by regulating postnatal angiogenesis, vessel remodeling, vascular permeability, and inflammation. Therefore, the dysfunction of this system leads to many vascular and lymphatic diseases. In light of the recent advances on the role of the Ang-Tie axis in vascular and lymphatic system-related diseases, this review summarizes the functions of the Ang-Tie axis in inflammation-induced vascular permeability, vascular remodeling, ocular angiogenesis, shear stress response, atherosclerosis, tumor angiogenesis, and metastasis. Moreover, this review summarizes the relevant therapeutic antibodies, recombinant proteins, and small molecular drugs associated with the Ang-Tie axis.


Assuntos
Angiopoietinas , Doenças Linfáticas , Células Endoteliais/metabolismo , Humanos , Sistema Linfático/metabolismo , Receptor TIE-2/genética , Receptor TIE-2/metabolismo , Transdução de Sinais , Fator A de Crescimento do Endotélio Vascular
14.
Bioengineered ; 12(1): 6617-6628, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34516352

RESUMO

Preeclampsia (PE) is a huge threat to pregnant women. Our previous study demonstrated that long non-coding RNA (lncRNA) NR_002794 was highly expressed in placentas of PE patients and could regulate the phenotypes of trophoblast cells. However, the downstream regulatory mechanisms of NR_002794 remain unknown. In this text, some potential downstream targets or signaling pathways of NR_002794 were identified through RNA sequencing (RNA-seq) and bioinformatics analysis in SWAN71 trophoblast cells. Western blot assay demonstrated that NR_002794 inactivated protein kinase B (AKT) and extracellular signal-regulated kinase 1/2 (ERK1/2) pathways and activated cell apoptotic signaling in SWAN71 cells. Both RNA-seq and reverse transcription-quantitative PCR (RT-qPCR) outcomes showed that NR_002794 up-regulation could notably inhibit the expression of C-C motif chemokine ligand 4 like 2 (CCL4L2), interleukin 15 receptor subunit alpha (IL15RA), interleukin 32 (IL32), and tyrosine kinase with immunoglobulin-like and EGF-like domains 1 (TIE1), while NR_002794 knockdown induced these gene expressions in SWAN71 cells. CCK-8, BrdU, Transwell, wound healing, and flow cytometry analyses showed that NR_002794 inhibited cell proliferation and migration and induced cell apoptosis through down-regulating TIE1 in SWAN71 cells. In conclusion, lncRNA NR_002794 could exert its functions by regulating AKT and ERK1/2 pathways and TIE1 expression in human trophoblast cells.


Assuntos
Sistema de Sinalização das MAP Quinases/genética , RNA Longo não Codificante/genética , Trofoblastos/metabolismo , Linhagem Celular , MAP Quinases Reguladas por Sinal Extracelular/genética , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Feminino , Humanos , Pré-Eclâmpsia , Gravidez , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptor de TIE-1/genética , Receptor de TIE-1/metabolismo
15.
Dev Cell ; 56(11): 1677-1693.e10, 2021 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-34038707

RESUMO

Single-cell transcriptomics (scRNA-seq) has revolutionized the understanding of the spatial architecture of tissue structure and function. Advancing the "transcript-centric" view of scRNA-seq analyses is presently restricted by the limited resolution of proteomics and genome-wide techniques to analyze post-translational modifications. Here, by combining spatial cell sorting with transcriptomics and quantitative proteomics/phosphoproteomics, we established the spatially resolved proteome landscape of the liver endothelium, yielding deep mechanistic insight into zonated vascular signaling mechanisms. Phosphorylation of receptor tyrosine kinases was detected preferentially in the central vein area, resulting in an atypical enrichment of tyrosine phosphorylation. Prototypic biological validation identified Tie receptor signaling as a selective and specific regulator of vascular Wnt activity orchestrating angiocrine signaling, thereby controlling hepatocyte function during liver regeneration. Taken together, the study has yielded fundamental insight into the spatial organization of liver endothelial cell signaling. Spatial sorting may be employed as a universally adaptable strategy for multiomic analyses of scRNA-seq-defined cellular (sub)-populations.


Assuntos
Regeneração Hepática/genética , Fígado/crescimento & desenvolvimento , Fosfoproteínas/genética , Transcriptoma/genética , Células Endoteliais/metabolismo , Endotélio/crescimento & desenvolvimento , Citometria de Fluxo , Regulação da Expressão Gênica no Desenvolvimento/genética , Hepatócitos/metabolismo , Humanos , Fígado/metabolismo , Fígado/patologia , Fosforilação/genética , Proteômica/métodos , RNA-Seq , Regeneração/genética , Análise de Célula Única , Via de Sinalização Wnt/genética
16.
Cancer Treat Res Commun ; 27: 100364, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33812182

RESUMO

BACKGROUND: Ovarian cancer is the most lethal gynecologic malignancy due to the tumor's acquisition of chemoresistance to platinum-based chemotherapy. To solve this problem, we conducted RNAi-based large-scale screening and determined that tyrosine kinase with immunoglobulin-like and EGF-like domains 1 (TIE-1) is a key molecule involved in the platinum resistance of ovarian cancer cells. Recently, a variety of studies have investigated that small extracellular vesicles (sEVs) contribute to the communication between cancer cells, including the development of chemoresistance in ovarian cancer. The purpose of our study is to determine if sEVs-derived TIE-1 is involved in the chemoresistance of ovarian cancer cells. MATERIALS AND METHODS: TIE-1-overexpressed TOV112D cells, termed TOV112DTIE-1 cells, were established, and sEVs were isolated from TOV112DTIE-1 cells supernatants by ultracentrifugation. We assessed cisplatin sensitivity in recipient cells with TOV112DTIE-1-derived sEVs by cell-Titer Glo kit. We also asked whether sEV-derived TIE-1 suppressed the DNA damage response in recipient cells and evaluated the DNA damage response by counting cells positive for DNA damage foci. RESULTS: TIE-1 was contained within sEVTIE-1 derived from the cellular supernatant of TOV112DTIE-1. We showed that sEV-derived TIE-1 decreased chemosensitivity to cisplatin by suppressing the DNA damage response in recipient cells. CONCLUSION: Our findings suggest that sEV-derived TIE-1 could be a new therapeutic target for refractory ovarian cancer.


Assuntos
Dano ao DNA/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética , Vesículas Extracelulares/genética , Neoplasias Ovarianas/genética , Receptor de TIE-1/genética , Antineoplásicos/farmacologia , Comunicação Celular , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Cisplatino/farmacologia , Reparo do DNA/efeitos dos fármacos , Vesículas Extracelulares/metabolismo , Feminino , Humanos , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/metabolismo , Receptor de TIE-1/metabolismo , Transfecção
17.
Ann Transl Med ; 9(3): 232, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33708859

RESUMO

BACKGROUND: Hemorrhoids are a frequently-occurring disease of the anorectal system that is often accompanied by vascular hyperplasia and edema. A METTL14-mediated RNA N-6 methyladenosine (m6A) modification can improve mRNA stability and increase its transcriptional and translational activities, closely related to the occurrence of many diseases. METHODS: Western blot, qPCR, and immunofluorescence staining were used to detect the levels of gene and protein expression. Haematoxylin and eosin staining was used for histopathological examination. RNA immunoprecipitation-PCR and RNA dot blotting were used to detect mRNA m6A modification. RESULTS: Obvious signs of angiogenesis (CD31+/vWF+) were identified in the hemorrhoids. High levels of METTL14 expression on vascular endothelial cells (CD31+) suggested that angiogenesis was accompanied by differential modification of m6A RNA. It was subsequently found that the level of miR-4729 expression was significantly decreased in hemorrhoid tissues. The luciferase reporter enzyme assay results suggested that miR-4729 silenced its expression by targeting the 3'UTR of METTL14 mRNA. MiR-4729 overexpression in human umbilical vein endothelial cells (HUVECs) inhibited the proliferation and migration of HUVECs in vitro and vascular structure formation in the outer matrix. MiR-4729 overexpression significantly inhibited endogenous METTL14 expression in HUVECs and reduced the entire m6A RNA modification, especially the level of m6A methylation at the specific site of the 3' UTR of TIE1 mRNA. Moreover, miR-4729 overexpression significantly inhibited the molecular loop of the TIE1/VEGFA signaling pathway in HUVECs. CONCLUSIONS: Our findings confirmed that the down-regulation of miR-4729 in hemorrhoid vascular endothelial cells was one of the main reasons for vascular proliferation. The overexpression of miR-4729 in vascular endothelial cells decreased the global mRNA methylation and TIE1 mRNA 3'UTR-specific site methylation by silencing METTL14 expression, reducing TIE1 mRNA stability, down-regulating the TIE1/VEGFA signal molecular loop expression, and weakening angiogenesis ability.

18.
Cancer Cell Int ; 21(1): 57, 2021 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-33461544

RESUMO

BACKGROUND: Drug resistance and metastasis involving hypoxic tumor environments and persistent stem cell populations are detrimental to the survival of patients with non-small cell lung carcinoma (NSCLC). Tie1 is upregulated in hypoxia and is believed to counteract the effectiveness of platinum agents by promoting the stemness properties in cells. We have investigated the association of Tie1 with HIF-1α and cisplatin resistance in NSCLC cell lines. METHODS: The expression of Tie1 in a pulmonary microvascular endothelial cell line (HPMEC) and NSCLC cell lines was detected using qRT-PCR and western blotting. The effect of Tie1 on cell stemness and migration was examined by sphere-forming and transwell assays in NSCLC cells with Tie1 silenced. The regulation of Tie1 by HIF-1α was evaluated by a dual-luciferase reporter assay and chromatin immunoprecipitation. RESULTS: We found that hypoxia could induce stemness and cisplatin resistance in vitro. Tie1 was expressed at low levels in NSCLC cells when compared with human pulmonary microvascular endothelial cells, however, its expression was increased by hypoxia. Additionally, Tie1 knockdown could reduce stemness properties and increase sensitivity to cisplatin in vitro and in a xenograft mouse model. The promoter of Tie1 contains two predicted hypoxia-response elements (HREs). We mutated both HRE sites and conducted chromatin immune-precipitation and promoter luciferase reporter assays and were able to conclude that the induction of Tie1 by hypoxia was HIF-1α-dependent. CONCLUSIONS: Our findings indicated that Tie1 is upregulated in a hypoxic environment by HIF-1α and contributes to tumorigenesis and cisplatin resistance through the promotion of stemness in NSCLC cells.

19.
Pathol Oncol Res ; 27: 1610006, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34975347

RESUMO

Objective: To investigate whether serum Tie-1 (sTie-1) is a valuable marker for predicting progression and prognosis of cervical cancer. Methods: Enzyme-linked immunosorbent assay (ELISA) was used to detect serum sTie-1 concentrations in 75 cervical cancer patients, 40 cervical intraepithelial neoplasia (CIN) patients, and 55 healthy controls without cervical lesions, and sTie-1 levels were compared between the groups. Receiver operating characteristic curves was used to evaluate the diagnostic value of sTie-1. The relationship between sTie-1 concentrations in patients with cervical cancer and clinicopathological features and prognosis were analyzed, and the risk factors for postoperative recurrence were determined using univariate and multivariable Cox proportional hazards regression. Results: We found that sTie-1 concentrations gradually increased according to lesion severity (i.e., cancer vs. CIN; p < 0.05) and were significantly elevated in adenocarcinoma compared with healthy controls. sTie-1 levels strongly distinguished between cervical cancer patients and the healthy controls (area under the curve = 0.846; cut-off value = 1,882.64 pg/ml; sensitivity = 74.6%; specificity = 96.4%). Moreover, sTie-1 levels in cervical cancer patients were significantly associated with tumor size, advanced tumor stage, lymph node metastasis, and reduced 4-years progression-free survival. Cervical cancer patients with high sTie-1 concentrations had a 3.123-fold [95% confidence interval (CI): 1.087-8.971, p = 0.034] higher risk for tumor recurrence. Conclusions: Elevated sTie-1 levels in patients with cervical carcinoma were associated with tumor progression and poor prognosis, indicating that sTie-1 may be a valuable marker for predicting progression and prognosis of cervical cancer.


Assuntos
Adenocarcinoma/patologia , Biomarcadores Tumorais/sangue , Carcinoma de Células Escamosas/patologia , Receptor de TIE-1/sangue , Neoplasias do Colo do Útero/patologia , Adulto , Idoso , Progressão da Doença , Feminino , Humanos , Pessoa de Meia-Idade , Prognóstico , Sensibilidade e Especificidade
20.
Dev Biol ; 469: 54-67, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-32971120

RESUMO

Tie1 is a receptor tyrosine kinase expressed in endothelial cells, where it modulates Angiopoietin/Tie2 signaling. Previous studies have shown that mouse Tie1 mutants exhibit severe cardiovascular defects; however, much remains to be learned about the role of Tie1, especially during cardiac development. To further understand Tie1 function, we generated a zebrafish tie1 mutant line. Homozygous mutant embryos display reduced endothelial and endocardial cell numbers and reduced heart size. Live imaging and ultrastructural analyses at embryonic stages revealed increased cardiac jelly thickness as well as cardiomyocyte defects, including a loss of sarcomere organization and altered cell shape. Transcriptomic profiling of embryonic hearts uncovered the downregulation of tll1, which encodes a Tolloid-like protease, in tie1-/- compared with wild-type siblings. Using mRNA injections into one-cell stage embryos, we found that tll1 overexpression could partially rescue the tie1 mutant cardiac phenotypes including the endocardial and myocardial cell numbers as well as the cardiac jelly thickness. Altogether, our results indicate the importance of a Tie1-Tolloid-like 1 axis in paracrine signaling during cardiac development.


Assuntos
Coração/embriologia , Metaloproteases Semelhantes a Toloide/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/fisiologia , Animais , Animais Geneticamente Modificados , Células Endoteliais/citologia , Endotélio Vascular/citologia , Proteínas da Matriz Extracelular/genética , Proteínas da Matriz Extracelular/metabolismo , Regulação da Expressão Gênica , Cardiopatias Congênitas/genética , Morfogênese , Mutação , Miócitos Cardíacos/citologia , Receptor de TIE-1/genética , Receptor de TIE-1/fisiologia , Metaloproteases Semelhantes a Toloide/genética , Transcriptoma , Peixe-Zebra/embriologia , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA