Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Food Sci ; 87(11): 4945-4955, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36200532

RESUMO

The natural source of human milk fat substitute (HMFS) is a field worth exploring. In this study, tilapia oil was extracted and analyzed. In the triacylglycerol fraction, the contents of sn-2 palmitic acid and total sn-1,3 oleic acid and linoleic acid were 48.01% and 66.62%, respectively. The optimal solvent fractionation conditions were determined to be a tilapia oil-to-acetone ratio of 1:8 (w/v), crystallization temperature of -30°C, and crystallization duration of 16 h, giving a solid fraction yield of 64.20%. In fractionated tilapia oil, the total content of 1-oleoyl-2-palmitoyl-3-linoleoylglycerol (OPL) and 1,3-dioleoyl-2-palmitoylglycerol (OPO) increased by 20.38%, as determined by reversed-phase liquid chromatography. Ultra-high-performance combined-phase chromatography combined with quadrupole time-of-flight mass spectrometry analysis showed that OPL (17.45%) was the most abundant triacylglycerol in fractionated tilapia oil, followed by OPO (13.90%). Fractionated tilapia oil is thus an excellent source of OPL and has great potential for incorporation in HMFS. PRACTICAL APPLICATION: Human milk fat substitutes are an important component of infant formulas. This work provides an excellent natural source of oil rich in OPL, which has great potential in the field of preparing human milk fat substitutes highly similar to human milk fat.


Assuntos
Substitutos da Gordura , Tilápia , Lactente , Animais , Humanos , Substitutos da Gordura/análise , Leite Humano/química , Solventes , Triglicerídeos/química
2.
Hum Exp Toxicol ; 34(3): 249-59, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24939873

RESUMO

This study investigated the hypothesis that administration of tilapia fish oil diet would attenuate warm liver ischemia/reperfusion injury (IRI) and whether fish oil modulates prooxidant/antioxidant status. Male Wistar rats were subjected to 30 min of approximately 70% hepatic ischemia followed by 1, 12, and 24 h reperfusion. Rats were randomly divided into three groups: sham-operated group (SO), control-warm hepatic ischemia (WI) group, and Oil-WI group given tilapia oil for 3 weeks followed by liver IRI. Aspartate aminotransferase (AST) and alanine aminotransferase (ALT) levels were measured in the plasma. Levels of thiobarbituric acid reactive substances (TBARS) and antioxidant enzymes as superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) activities were measured in liver fractions. In the sham group, there was no enzymatic or histological change. I/R caused significant increase in serum AST, ALT, and tissue TBARS levels. As compared to the control group, animals treated with tilapia oil experienced a significant decrease (p < 0.05) in AST and ALT levels in reperfusion periods. Tissue TBARS levels in Oil-WI group were significantly (p < 0.05) reduced as compared to control group at 60 min after reperfusion. After ischemia, 1, 12, and 24 h of reperfusion, CAT, SOD, and GPx values were the lowest in the Oil-WI group and highest in the control group and were statistically significant (p < 0.05). Histological analysis also revealed that fish oil provided some protection compared with the control group. Tilapia oil exerts a protective effect during the early phase of reperfusion, and it modulates prooxidant/antioxidant status of rat liver subjected to warm IRI.


Assuntos
Óleos de Peixe/farmacologia , Óleos de Peixe/uso terapêutico , Isquemia/dietoterapia , Fígado/efeitos dos fármacos , Traumatismo por Reperfusão/dietoterapia , Alanina Transaminase/sangue , Animais , Aspartato Aminotransferases/sangue , Catalase/metabolismo , Glutationa Peroxidase/metabolismo , Isquemia/sangue , Isquemia/metabolismo , Isquemia/patologia , Fígado/metabolismo , Fígado/patologia , Masculino , Ratos Wistar , Traumatismo por Reperfusão/sangue , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/patologia , Superóxido Dismutase/metabolismo , Substâncias Reativas com Ácido Tiobarbitúrico/metabolismo , Tilápia
3.
J Food Sci Technol ; 51(9): 2148-54, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25190876

RESUMO

The influence of processing conditions on the microencapsulation of tilapia oil by spray drying was studied. Trehalose, gelatin, sucrose and xanthan were used as emulsion composition. The experimental parameters of spray drying such as inlet air temperature, solid content, drying air flow rate and atomizing pressure were optimized using a central composite design. Encapsulation efficiency and lipid oxidation were determined. Bulk density, powder morphology and particle size were also analyzed. Trehalose improved the glass transition temperature of wall material significantly and prevented the oxidation of the fish oil. Encapsulation efficiency reached a maximum of 90 % under optimum conditions with an inlet air temperature of 121 °C, a drying air flow rate of 0.65 m(3)/min and a spray pressure of 100 kPa.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA