RESUMO
Large terrestrial mammals increasingly rely on human-modified landscapes as anthropogenic footprints expand. Land management activities such as timber harvest, agriculture, and roads can influence prey population dynamics by altering forage resources and predation risk via changes in habitat, but these effects are not well understood in regions with diverse and changing predator guilds. In northeastern Washington state, USA, white-tailed deer (Odocoileus virginianus) are vulnerable to multiple carnivores, including recently returned gray wolves (Canis lupus), within a highly human-modified landscape. To understand the factors governing predator-prey dynamics in a human context, we radio-collared 280 white-tailed deer, 33 bobcats (Lynx rufus), 50 cougars (Puma concolor), 28 coyotes (C. latrans), and 14 wolves between 2016 and 2021. We first estimated deer vital rates and used a stage-structured matrix model to estimate their population growth rate. During the study, we observed a stable to declining deer population (lambda = 0.97, 95% confidence interval: 0.88, 1.05), with 74% of Monte Carlo simulations indicating population decrease and 26% of simulations indicating population increase. We then fit Cox proportional hazard models to evaluate how predator exposure, use of human-modified landscapes, and winter severity influenced deer survival and used these relationships to evaluate impacts on overall population growth. We found that the population growth rate was dually influenced by a negative direct effect of apex predators and a positive effect of timber harvest and agricultural areas. Cougars had a stronger effect on deer population dynamics than wolves, and mesopredators had little influence on the deer population growth rate. Areas of recent timber harvest had 55% more forage biomass than older forests, but horizontal visibility did not differ, suggesting that timber harvest did not influence predation risk. Although proximity to roads did not affect the overall population growth rate, vehicle collisions caused a substantial proportion of deer mortalities, and reducing these collisions could be a win-win for deer and humans. The influence of apex predators and forage indicates a dual limitation by top-down and bottom-up factors in this highly human-modified system, suggesting that a reduction in apex predators would intensify density-dependent regulation of the deer population owing to limited forage availability.
Assuntos
Cervos , Dinâmica Populacional , Lobos , Animais , Cervos/fisiologia , Lobos/fisiologia , Humanos , Comportamento Predatório , Washington , Atividades Humanas , Coiotes/fisiologia , Puma/fisiologia , Cadeia Alimentar , Ecossistema , Lynx/fisiologiaRESUMO
Forest management practices designed to meet varied landowner objectives affect wildlife habitat and may interrupt the life-cycle stages of disease vectors, including the black-legged tick, Ixodes scapularis Say (Acari: Ixodidae). Ixodes scapularis transmits multiple pathogens including Borrelia burgdorferi, the causative agent of Lyme disease, which is the most common tick-borne disease in the United States. There is evidence that a range of active forest management practices (e.g., invasive plant removal, prescribed burning) can alter tick densities and pathogen transmission. However, few studies have investigated relationships between forest stand structural variables commonly manipulated by timber harvesting and tick ecology. Foresters may harvest timber to create certain forest structural conditions like the mean number of trees, or basal area, per hectare. This study used a spatially replicated experiment in a blocked design to compare forest stands with a range of overstory structures and document variations in the midstory, understory, and forest floor, as well as microclimate conditions within tick off-host habitat. Greater numbers of trees or basal area per hectare correlated with greater canopy closure but less understory cover, stabilized microclimate temperature, higher microclimate humidity, and greater I. scapularis nymph densities. A random forest model identified understory forest structure as the strongest predictor of nymph densities. There was no relationship between the number of trees or basal area per hectare and daily deer (Odocoileus virginianus Zimmermann) activity or nymphal infection prevalence. These findings provide a deeper understanding of tick-habitat associations within a forest stand and have the potential to inform forest management decisions.
Assuntos
Agricultura Florestal , Florestas , Ixodes , Microclima , Densidade Demográfica , Animais , Ixodes/crescimento & desenvolvimento , Ixodes/fisiologia , Ninfa/crescimento & desenvolvimento , Ninfa/fisiologiaRESUMO
In the northern Great Lakes region, the creation and maintenance of early-successional woody communities as wildlife habitat have increasingly become a conservation priority. The extent to which insect pollinators use these systems remains largely anecdotal. In summer (June-August) of 2021, we surveyed 49 early-successional sites in the western Great Lakes region treated with either shrub-shearing or silviculture (young forest) for bumble bees, butterflies, and habitat components (i.e., structural vegetation and floral resources). Hierarchical distance models predicted pollinator densities (λ^) to be, on average, λ^â =â 84 bumble bees/ha and λ^â =â 102 butterflies/ha. Although sheared shrubland and young forest communities supported comparable densities of bumble bees and butterflies, density was not equal across all sites. At the microhabitat scale, butterfly density and morphospecies richness were negatively associated with tall shrub cover and butterfly morphospecies richness (but not density) was driven by floral richness. Similarly, bumble bee density was positively associated with metrics of floral resources, underscoring the importance of blooming plants within these woody systems. Landscape covariates explained variation in butterfly density/richness but not bumble bee density. Ultimately, our results demonstrate that blooming plant abundance is an important driver of bumble bee and butterfly densities within these managed early-successional communities. Because early-successional woody communities are dynamic and their herbaceous openings are ephemeral, routine management would ensure that a variety of successional conditions exist on the landscape to meet the needs of bumble bees, butterflies, and potentially other insect pollinators.
Assuntos
Borboletas , Himenópteros , Abelhas , Animais , Lagos , Ecossistema , Florestas , Plantas , PolinizaçãoRESUMO
There is an increasing need to understand how animals respond to modifications of their habitat following landscape-scale disturbances such as wildfire or timber harvest. Such disturbances can promote increased use by herbivores due to changes in plant community structure that improve forage conditions, but can also cause avoidance if other habitat functions provided by cover are substantially reduced or eliminated. Quantifying the total effects of these disturbances, however, is challenging because they may not fully be apparent unless observed at successional timescales. Further, the effects of disturbances that improve habitat quality may be density dependent, such that the benefits are (1) less valuable to high-density populations because the per-capita benefits are reduced when shared among more users or, alternatively, (2) more valuable to animals living in high densities because resources may be more depleted from the greater intraspecific competition. We used 30 years of telemetry data on elk occurring at two distinct population densities to quantify changes in space use at diel, monthly, and successional timescales following timber harvest. Elk selected logged areas at night only, with selection strongest during midsummer, and peak selection occurring 14 years post harvest, but persisting for 26-33 years. This pattern of increased selection at night following a reduction in overhead canopy cover is consistent with elk exploiting improved nutritional conditions for foraging. The magnitude of selection for logged areas was 73% higher for elk at low population density, consistent with predictions from the ideal free distribution. Yet elk avoided these same areas during daytime for up to 28 years post logging and instead selected untreated forest, suggesting a role for cover to meet other life history requirements. Our results demonstrate that while landscape-scale disturbances can lead to increased selection by large herbivores and suggest that the improvement in foraging conditions can persist over short-term successional timescales, the magnitude of the benefits may not be equal across population densities. Further, the enduring avoidance of logging treatments during the daytime indicates a need for structurally intact forests and suggests that a mosaic of forest patches of varying successional stages and structural completeness is likely to be the most beneficial to large herbivores.
Assuntos
Cervos , Florestas , Herbivoria , Incêndios Florestais , Animais , Cervos/fisiologia , Densidade DemográficaRESUMO
We evaluated ecosystem conditions known to influence the viability of a strictly arboreal species (the red tree vole, Arborimus longicaudus) endemic and historically distributed in the forests across the Coast Range, Cascades, and Klamath Mountains ecoregions in the Western United States of America. We found widespread reductions in ecosystem conditions needed to support the long-term viability of the red tree vole. This was particularly evident in the Coast Range where the weighted watershed index (WWI) was 26% of its historical value, and the current probability of maintaining viability departed the most from historical viability probabilities in ecoregions that were evaluated. In contrast, in the Cascades and Klamath Mountains, the WWI was 42% and 52% of their respective historical values, and the current probabilities of maintaining viability departed less from historical conditions than in the Coast Range. Habitat loss from timber harvest represented the most immediate threat in the Coast Range, while habitat loss from wildfires represented the most risk to the red tree vole in the Cascades and Klamath Mountains. Reducing the risks to the viability of the red tree vole will depend largely on the implementation of conservation practices designed to protect remaining habitat and restore degraded ecosystems in the Coast Range. However, the risk of large, high-severity wildfires will require the protection and increased resilience of existing ecosystems. Our results indicate that considerable adaptation to climate change will be required to conserve the red tree vole in the long term. Conservation may be accomplished by revising land and resource management plans to include standards and guidelines relevant to red tree vole management and persistence, the identification of priority areas for conservation and restoration, and in assessing how management alternatives influence ecosystem resiliency and red tree vole viability.
RESUMO
Renewable resource planning and management projects entail evaluating economic and ecological criteria in the long term. During the past decade or so, dual discounting--ecological criteria discounted at a smaller rate than that for economic criteria--has been proposed for such projects as an alternative to the prevailing single-discounting scheme, out of theoretical and empirical considerations. We focus on how to apply this principle in planning problems that involve a multitude of risk in the attendant biological-economic system. A stochastic dynamic programming framework is introduced which allows dual discounting rates and finds the optimal decisions (passively) adapting to changes in the system. Furthermore, we show how to evaluate the variances of the criteria in this framework. With a case study of managing public forestlands in the US Pacific Northwestern region for both timber return and habitat preservation for the northern spotted owl (Strix occidentalis caurina), we illustrate the impacts that the dual-discounting scheme has on the trade-off between conflicting management objectives, the optimal planning strategy, the temporal development of the portion of the forestlands suitable for owl habitats, as well as its steady-state expected value and standard deviation.
Assuntos
Conservação dos Recursos Naturais , Estrigiformes , Animais , Coleta de Dados , Ecossistema , FlorestasRESUMO
Timber harvest may impact tick-borne disease by affecting small mammal and tick community structures. We assessed tick and small mammal populations in older second-growth redwood (Sequoia sempervirens (D. Don) Endl) habitat at two harvested sites in Santa Cruz County, California, where local risk of tick-borne disease is high and determined the prevalence of tick-borne pathogens in ticks. After single-tree removal harvest in 2014, there was a modest reduction in canopy, primarily toward the end of the study. Harvested sites showed strong reductions in California mouse (Peromyscus californicus, (Gambel)) captures 2-yr after harvest, resolving such that treatments and controls were comparable by the end of the study. Following harvest, treated sites experienced a transient decreased tick infestation while control plots experienced an increase. Ixodes angustus (Neumann) infestation probability on harvested plots decreased immediately after harvest, increasing with time but remaining lower than control plots, whereas I. pacificus (Cooley and Kohls) prevalence was higher shortly after the harvest on harvested plots, and continued to increase. Mean abundance of ticks on vegetation increased on control plots. We detected Borrelia burgdorferi ((Johnson et al.) Baranton) and Anaplasma phagocytophilum ((Foggie 1949) Dumler) in 3.8 and 3.1% of ticks on rodents, but no differences were associated with harvest. Impacts of forest harvest on tick-borne disease depend on removal practice and intensity, whether or not hosts are habitat specialists, and whether or not ticks are host specialists.
Assuntos
Biodiversidade , Agricultura Florestal , Ixodidae , Roedores , Infestações por Carrapato/veterinária , Doenças Transmitidas por Carrapatos/veterinária , Anaplasma phagocytophilum/isolamento & purificação , Animais , Borrelia burgdorferi/isolamento & purificação , California/epidemiologia , Florestas , Ixodidae/microbiologia , Ixodidae/parasitologia , Ixodidae/fisiologia , Dinâmica Populacional , Prevalência , Medição de Risco , Roedores/fisiologia , Infestações por Carrapato/epidemiologia , Infestações por Carrapato/parasitologia , Doenças Transmitidas por Carrapatos/epidemiologia , Doenças Transmitidas por Carrapatos/microbiologia , Doenças Transmitidas por Carrapatos/parasitologiaRESUMO
Introducción: Swietenia macrophylla King ("caoba") es la especie arbórea de mayor importancia comercial en el sureste mexicano y utilizada como guía en el manejo forestal, por lo que conocer su edad y tasas de crecimiento es fundamental para la sostenibilidad de los aprovechamientos maderables. Objetivos: Estimar laedad (E t ) a partir del método del 'tiempo de paso' (Tp) y calcular las tasas de crecimiento absoluto (TCA) y relativo (TCR) para Swietenia macrophylla en Quintana Roo, México. Métodos: Se ajustaron ecuaciones para calcular TCA y TCR con remediciones periódicas durante 15 años del diámetro normal (d) en 403 árboles de S. macrophylla en Felipe Carrillo Puerto, Quintana Roo, México; también, se determinaron el Tp y la E t para el cálculo del incremento corriente anual (ICA) e incremento medio anual (IMA), y definir así los turnos comercial y técnico. Resultados: La máxima TCR se alcanzó a los 28 cm de d (0.015 cm año-1) (aplicación de aclareos), mientras que la mayor TCA (0.69 cm año-1) y menor Tp (3.5 años) a los 55 cm de d (turno comercial). El máximo ICA al considerar la E t fue de 1.43 cm en la categoría diamétrica de 50 cm, con un IMA de 0.67 cm año-1 a una edad de 75 años, mientras que el turno técnico (ICA = IMA) se alcanzó a los 96 años (incrementos de 0.78 cm año-1). Conclusiones: A través de mediciones periódicas del diámetro normal en S. macrophylla es posible obtener su edad, además los resultados pueden ser utilizados para elaborar programas de manejo y ejecutar prácticas silvícolas que propicien el incremento diamétrico en Quintana Roo.
Introduction: Swietenia macrophylla King (Mahogany) is the most commercially important tree species in Southeastern of Mexico and is used as a guide in forest management. Therefore, knowing its age and growth rates is essential for the sustainability of timber harvest. Objective: Estimate the age (Et) from the 'step time' (Tp) method and calculate the absolute (TCA) and relative (TCR) growth rates for Swietenia macrophylla in Quintana Roo, Mexico. Methods: Equations were adjusted to calculate TCA and TCR with periodic re-measured for 15 years of the normal diameter (d) in 403 S. macrophylla trees in Felipe Carrillo Puerto, Quintana Roo, Mexico. Tp and Et were determined for the calculation of the annual current increase (ICA) and average annual increase (IMA), to define the commercial and technical shifts. Results: The maximum TCR was reached at 28 cm of d (0.015 cm year-1) (thinning application), whereas the highest TCA (0.69 cm year-1) and lower Tp (3.5 years) at 55 cm of d (commercial shift). The maximum ICA when considering Et was 1.43 cm in the 50 cm of diametric category with an IMA of 0.67 cm year-1 at an age of 75 years, while the technical shift (ICA = IMA) was reached at 96 years (increments of 0.78 cm year-1). Conclusions: Through periodic measurements of the normal diameter in S. macrophylla it is possible to obtain its age, these results also can be used to elaborate management programs and apply silvicultural practices that propitiate the diametric increase in Quintana Roo.
Assuntos
Rutaceae/crescimento & desenvolvimento , Zanthoxylum/crescimento & desenvolvimento , Árvores/crescimento & desenvolvimento , MéxicoRESUMO
The Battle Creek watershed in northern California was historically important for its Chinook salmon populations, now at remnant levels due to land and water uses. Privately owned portions of the watershed are managed primarily for timber production, which has intensified since 1998, when clearcutting became widespread. Turbidity has been monitored by citizen volunteers at 13 locations in the watershed. Approximately 2000 grab samples were collected in the 5-year analysis period as harvesting progressed, a severe wildfire burned 11,200 ha, and most of the burned area was salvage logged. The data reveal strong associations of turbidity with the proportion of area harvested in watersheds draining to the measurement sites. Turbidity increased significantly over the measurement period in 10 watersheds and decreased at one. Some of these increases may be due to the influence of wildfire, logging roads and haul roads. However, turbidity continued trending upwards in six burned watersheds that were logged after the fire, while decreasing or remaining the same in two that escaped the fire and post-fire logging. Unusually high turbidity measurements (more than seven times the average value for a given flow condition) were very rare (0.0% of measurements) before the fire but began to appear in the first year after the fire (5.0% of measurements) and were most frequent (11.6% of measurements) in the first 9 months after salvage logging. Results suggest that harvesting contributes to road erosion and that current management practices do not fully protect water quality.
Assuntos
Incêndios , Incêndios Florestais , California , Qualidade da ÁguaRESUMO
Temperature is a fundamental driver of aquatic environments. Changes in thermal regimes due to timber harvest may be detrimental for cold-water instream biota. Although it is understood that stream temperature may increase immediately below timber harvest operations, the understanding of how thermal responses propagate downstream is less clear. Here, we examine the effects of timber harvest on stream temperature pre- (2-3â¯years) and post-harvest (5â¯years) at 16 sites (average annual streamflow rates <0.283â¯m3â¯s-1) located in the Coast Range, Oregon, USA. At each site, an array of temperature sensors were deployed on the extremes of three consecutive reaches: an upstream unharvested reference reach, a treatment reach, and a downstream unharvested reach. We used several metrics to describe and evaluate changes over time and space focusing on the responses of downstream reaches. Primarily, we evaluated the differences over time in daily maximum temperature between the two sensors located at the downstream unharvested reach. Furthermore, using a statistical ordination technique, we examined the spatial and temporal variability of an array of sensors for daily maximum temperature. Moreover, we assessed distributional shifts (statistical moments) of hourly temperature differences between the two sensors at the downstream unharvested reach over time. Lastly, we used a combination of statistical moments and the ordination technique to provide an index that describes the behavior of site-specific thermal disturbance over time. We found that stream reaches responded differently to upstream timber harvest operations between pre and post-harvest summer seasons. In addition, we showed distinct patterns of longitudinal variability of temperature across sites and summer seasons with increases, decreases or mixed responses including no change downstream. Overall, the net change of daily maximum temperature at the downstream reach revealed that the highest difference occurred during the first and second year post-harvest and, in some cases, a distinctive shift in stream warming and cooling occurred between the day and the night. Observed temperature patterns in downstream reaches were most similar to the pre-harvest conditions at the fifth year post-harvest. Collectively, we offer a novel approach for assessing stream temperature regime change using multiple metrics that can improve our understanding of thermal effects downstream of timber harvest, taking in consideration idiosyncratic responses across sites and time.
RESUMO
BACKGROUND: The degradation of forests in developing countries, particularly those within tropical and subtropical latitudes, is perceived to be an important contributor to global greenhouse gas emissions. However, the impacts of forest degradation are understudied and poorly understood, largely because international emission reduction programs have focused on deforestation, which is easier to detect and thus more readily monitored. To better understand and seize opportunities for addressing climate change it will be essential to improve knowledge of greenhouse gas emissions from forest degradation. RESULTS: Here we provide a consistent estimation of forest degradation emissions between 2005 and 2010 across 74 developing countries covering 2.2 billion hectares of forests. We estimated annual emissions of 2.1 billion tons of carbon dioxide, of which 53% were derived from timber harvest, 30% from woodfuel harvest and 17% from forest fire. These percentages differed by region: timber harvest was as high as 69% in South and Central America and just 31% in Africa; woodfuel harvest was 35% in Asia, and just 10% in South and Central America; and fire ranged from 33% in Africa to only 5% in Asia. Of the total emissions from deforestation and forest degradation, forest degradation accounted for 25%. In 28 of the 74 countries, emissions from forest degradation exceeded those from deforestation. CONCLUSIONS: The results of this study clearly demonstrate the importance of accounting greenhouse gases from forest degradation by human activities. The scale of emissions presented indicates that the exclusion of forest degradation from national and international GHG accounting is distorting. This work helps identify where emissions are likely significant, but policy developments are needed to guide when and how accounting should be undertaken. Furthermore, ongoing research is needed to create and enhance cost-effective accounting approaches.
RESUMO
Understory light environments change rapidly following timber harvest, and while many understory species utilize and benefit from the additional light, this response is not ubiquitous in shade-obligate species. I examined the effects of patch cut timber harvest on the physiology and growth of an obligate forest understory species to determine if disturbances via timber harvest are physiological stressors or whether such disturbances provide physiological benefits and growth increases in understory species. Forest canopy structure, along with photosynthesis, respiration, water use efficiency, stomatal conductance, and growth rates of American ginseng were quantified one summer before and two summers after patch cut timber harvest. Survival following timber harvest was lower than that observed at undisturbed populations; however, growth of survivors increased post-harvesting, with growth increasing as a function of canopy openness. Light response curves as well as photosynthesis and respiration rates indicated that plants were not well acclimated to higher light levels in the growing season after timber harvest, but rather to two growing seasons after harvest. Relative growth rate formed a positive linear relationship with maximum photosynthesis following timber harvest. My study suggests that ginseng is a "slow opportunist", because while it benefits from sudden light increases, acclimation lags at least one growing season behind canopy changes. American ginseng is surprisingly resilient in the face of a discrete environmental shift and may benefit from forest management strategies that mimic the natural disturbance regimes common in mature forests throughout its range.
Assuntos
Fotossíntese , Árvores , Aclimatação , Florestas , Estações do AnoRESUMO
In terms of adult tree mortality, harvesting is the most prevalent disturbance in northeastern United States forests. Previous studies have demonstrated that stand structure and tree species composition are important predictors of harvest. We extend this work to investigate how social factors further influence harvest regimes. By coupling the Forest Inventory and Analysis database to U.S. Census and National Woodland Owner Survey (NWOS) data, we quantify social and biophysical variation in the frequency and intensity of harvesting throughout a 20-state region in the northeastern United States. Among social factors, ownership class is most predictive of harvest frequency and intensity. The annual probability of a harvest event within privately owned forest (3%/yr) is twice as high as within publicly owned forests (1.5%/yr). Among private owner classes, the annual harvest probability on corporate-owned forests (3.6%/yr) is 25% higher than on private woodlands (2.9%/yr). Among public owner classes, the annual probability of harvest is highest on municipally owned forests (2.4%/âyr), followed by state-owned forests (1.6%/yr), and is lowest on federal forests (1%/yr). In contrast, corporate, state, and municipal forests all have similar distributions of harvest intensity; the median percentage of basal area removed during harvest events is approximately 40% in these three owner groups. Federal forests are similar to private woodlands with median harvest intensities of 23% and 20%, respectively. Social context variables, including local home prices, population density and the distance to a road, help explain the intensity, but not the frequency, of harvesting. Private woodlands constitute the majority of forest area; however, demographic data about their owners (e.g., their age, educational attainment, length of land tenure, retired status) show little relationship to aggregate harvest behavior. Instead, significant predictors for harvesting on private woodlands include live-tree basal area, forest type, and distance from roads. Just as with natural disturbance regimes, harvest regimes are predictable in terms of their frequency, intensity, and dispersion; and like their natural counterparts, these variables are determined by several important dimensions of environmental context. But in contrast to natural disturbance regimes, the important dimensions of context for harvesting include a combination of social and biophysical variables.
Assuntos
Conservação dos Recursos Naturais/métodos , Agricultura Florestal/métodos , Florestas , Geografia , Modelos Estatísticos , Propriedade , Fatores de Tempo , Estados UnidosRESUMO
Selective logging is one of the most common forms of forest use in the tropics. Although the effects of selective logging on biodiversity have been widely studied, there is little agreement on the relationship between life-history traits and tolerance to logging. In this study, we assessed how species traits and logging practices combine to determine species responses to selective logging, based on over 4000 observations of the responses of nearly 1000 bird species to selective logging across the tropics. Our analysis shows that species traits, such as feeding group and body mass, and logging practices, such as time since logging and logging intensity, interact to influence a species' response to logging. Frugivores and insectivores were most adversely affected by logging and declined further with increasing logging intensity. Nectarivores and granivores responded positively to selective logging for the first two decades, after which their abundances decrease below pre-logging levels. Larger species of omnivores and granivores responded more positively to selective logging than smaller species from either feeding group, whereas this effect of body size was reversed for carnivores, herbivores, frugivores and insectivores. Most importantly, species most negatively impacted by selective logging had not recovered approximately 40 years after logging cessation. We conclude that selective timber harvest has the potential to cause large and long-lasting changes in avian biodiversity. However, our results suggest that the impacts can be mitigated to a certain extent through specific forest management strategies such as lengthening the rotation cycle and implementing reduced impact logging.