Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Anal Biochem ; 692: 115575, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38796117

RESUMO

This study demonstrates, for the first time, the proof-of-concept of a novel immunosensor, a touchpad-based immunochromatographic strip, that non-invasively extracts and detects skin surface proteins. The strip was composed of a nitrocellulose membrane at the center, where a spot of anti-human IgG capture antibody was physically adsorbed. The capture antibody spot was covered with a glass fiber membrane impregnated with phosphate-buffered saline (PBS) to extract skin surface proteins, avoiding direct contact of the human skin with the capture antibodies. Skin surface IgG was detected in two steps: (1) touching the capture antibody via a glass fiber membrane containing PBS, and (2) dipping the strip into the Au-nanoparticle-labeled secondary antibody to visualize the existence of the captured skin surface IgG on the strip. We qualitatively demonstrated that using a very small amount of PBS while maintaining contact with the skin, skin surface proteins can be concentrated and detected, even with a relatively low-sensitivity immunochromatographic chip. This sensor is expected to be a potential biosensor for the non-invasive diagnosis of the integrity of human skin.


Assuntos
Cromatografia de Afinidade , Pele , Humanos , Pele/química , Cromatografia de Afinidade/métodos , Ouro/química , Proteínas de Membrana/análise , Proteínas de Membrana/imunologia , Imunoglobulina G/análise , Imunoglobulina G/imunologia , Nanopartículas Metálicas/química , Colódio/química , Técnicas Biossensoriais/métodos
2.
Heliyon ; 9(9): e19447, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37681176

RESUMO

Wireless devices have become extremely inexpensive and popular in recent years. The two most significant advantages of wireless devices over wired ones are convenience and flexibility. Considering this, a wireless mouse pad prototype for access has been developed in this study. A capacitive sensors-based mouse pad with basic operations and conventional features has been developed using sensing arrays on paper. A facile, do-it-yourself fabrication process was utilized to develop a cost-effective, thin, wearable, and cleanroom-free wireless mouse cursor control (MCC) pad. The ablation process was used to cut the traces of conductive tape and paste them onto the paper to develop the MCC pad. The pad was connected with Espressif Systems (ESP)32 to wirelessly control the cursor of mobile and laptop. The capacitive touch sensor array-based pad is easy to reproduce and recycle. This pad can contribute to future advancements in thin human-machine interfaces, soft robotics, and medical and healthcare applications.

3.
Adv Sci (Weinh) ; 9(18): e2200441, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35451234

RESUMO

To build devices offering users comfortable experience, it is important to focus on form factor and multifunctionality. In this study, for the first time, multifunctional Zn clusters with shape memory, self-healing, triboelectricity, and optical sensing synergized with rollable form factor are designed and fabricated by coordinating COO- and Zn2+ . As pore forming agent, Zn clusters produce hierarchical porous structure depending on Zn amount. Zn clusters are applied as message transmitters and charge containers in optical sensing and corona charge injection, respectively. Moreover, Zn clusters in PVB-COO-Zn serve as positive tribomaterial due to Zn ion doping effect, increasing the output performance as the Zn amount reaches 20 wt%. In addition, injecting positive charge into PVB-COO-Zn 20 lead to more than 24 times increase in output performance compared to those of non-porous structures. The reversibility of Zn clusters endows shape memory and self-healing, synergized with the rollable form factor. The rollability is implemented using the long alkyl chain and the energy absorption of porous structure, providing damage resistance. The advancements in this work provide opportunities for multifunctional and unique applications (shape memory rotating-triboelectric nanogenerator, rollable self-healing touchpad, hidden tag) synergized with rollability that accomplishes working in broadened condition in near future.


Assuntos
Zinco
4.
Adv Sci (Weinh) ; 8(21): e2101876, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34499410

RESUMO

In the field of biomimetic electronics, flexible sensors with both high resolution and large size are attracting a lot of attention. However, attempts to increase the number of sensor pixels have been thwarted by the need for complex inner circuits and the resulting interferences with the output. Technological challenges, such as real-time spatiotemporal mapping and long-time reliability, must be resolved for large-scale sensor matrices. This paper reports a simple and robust sensor with an arch-bridge architecture (ABA) to address these challenges. The device, which consists of an anti-icing all-transparent material system, is fabricated by immobilizing ABA ionic arrays on predefined grooves on the substrate. It systematically integrates ABA structure-designing, resistance-position-sensing, and parallel-addressing logic, allowing for an improvement of three orders of magnitude in the scanning speed (million-scale pixels) without logical "diagnose confusion." In addition, it can withstand 100 000 stretching cycles without functional failure. It is also resistant to interferences from stretching. humidity, wet surfaces, and power lines. The proposed strategy is envisaged to serve as a general solution for high-density, large-area tactile sensors in various applications.

5.
Sensors (Basel) ; 19(23)2019 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-31757058

RESUMO

Research has developed various solutions in order for computers to recognize hand gestures in the context of human machine interface (HMI). The design of a successful hand gesture recognition system must address functionality and usability. The gesture recognition market has evolved from touchpads to touchless sensors, which do not need direct contact. Their application in textiles ranges from the field of medical environments to smart home applications and the automotive industry. In this paper, a textile capacitive touchless sensor has been developed by using screen-printing technology. Two different designs were developed to obtain the best configuration, obtaining good results in both cases. Finally, as a real application, a complete solution of the sensor with wireless communications is presented to be used as an interface for a mobile phone.

6.
Appl Ergon ; 78: 184-196, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31046950

RESUMO

Touchscreen Human-Machine Interfaces (HMIs) are a well-established and popular choice to provide the primary control interface between driver and vehicle, yet inherently demand some visual attention. Employing a secondary device with the touchscreen may reduce the demand but there is some debate about which device is most suitable, with current manufacturers favouring different solutions and applying these internationally. We present an empirical driving simulator study, conducted in the UK and China, in which 48 participants undertook typical in-vehicle tasks utilising either a touchscreen, rotary-controller, steering-wheel-controls or touchpad. In both the UK and China, the touchscreen was the most preferred/least demanding to use, and the touchpad least preferred/most demanding, whereas the rotary-controller was generally favoured by UK drivers and steering-wheel-controls were more popular in China. Chinese drivers were more excited by the novelty of the technology, and spent more time attending to the devices while driving, leading to an increase in off-road glance time and a corresponding detriment to vehicle control. Even so, Chinese drivers rated devices as easier-to-use while driving, and felt that they interfered less with their driving performance, compared to their UK counterparts. Results suggest that the most effective solution (to maximise performance/acceptance, while minimising visual demand) is to maintain the touchscreen as the primary control interface (e.g. for top-level tasks), and supplement this with a secondary device that is only enabled for certain actions; moreover, different devices may be employed in different cultural markets. Further work is required to explore these recommendations in greater depth (e.g. during extended or real-world testing), and to validate the findings and approach in other cultural contexts.


Assuntos
Condução de Veículo , Automóveis , Comportamento do Consumidor , Interface Usuário-Computador , Adulto , Nível de Alerta , China , Simulação por Computador , Comparação Transcultural , Desenho de Equipamento , Feminino , Humanos , Masculino , Sistemas Homem-Máquina , Pessoa de Meia-Idade , Prazer , Inquéritos e Questionários , Análise e Desempenho de Tarefas , Reino Unido , Carga de Trabalho , Adulto Jovem
7.
Sensors (Basel) ; 18(10)2018 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-30279387

RESUMO

Many types of solutions have been studied and developed in order to give the user feedback when using touchpads, buttons, or keyboards in textile industry. Their application on textiles could allow a wide range of applications in the field of medicine, sports or the automotive industry. In this work, we introduce a novel solution that combines a 2D touchpad with an electroluminescent display (ELD). This approach physically has two circuits over a flexible textile substrate using the screen-printing technique for wearable electronics applications. Screen-printing technology is widely used in the textile industry and does not require heavy investments. For the proposed solution, different layer structures are presented, considering several fabric materials and inks, to obtain the best results.

8.
Med Biol Eng Comput ; 56(2): 297-305, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28714049

RESUMO

Hardness, dimensions, and location of biological tissues are important parameters for electronic palpation protocols with standardized performance. This study presents a novel fluid-type tactile sensor able to measure size and depth of heterogeneous substances in elastic bodies. The new sensor is very simple and can be easily fabricated. It consists of an image sensor, LED lights, and a touchpad filled with translucent water. The intensity field of the light traveling in the touchpad is analyzed to estimate the touchpad shape which conforms to the shape of an object in contact. The use of the new sensor for measuring size and depth of heterogeneous substances inside elastic bodies as well as hardness of elastic bodies is illustrated. Results obtained for breast cancer dummies demonstrate the effectiveness of the proposed approach.


Assuntos
Palpação/instrumentação , Tato , Neoplasias da Mama/diagnóstico , Desenho de Equipamento , Feminino , Humanos , Modelos Teóricos , Visão Ocular
9.
Materials (Basel) ; 10(12)2017 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-29261167

RESUMO

Among many of the designs used in the detection of 2D gestures for portable technology, the touchpad is one of the most complex and with more functions to implement. Its development has undergone a great push due to its use in displays, but it is not widely used with other technologies. Its application on textiles could allow a wide range of applications in the field of medicine, sports, etc. Obtaining a flexible, robust touchpad with good response and low cost is one of the objectives of this work. A textile touchpad based on a diamond pattern design using screen printing technology has been developed. This technology is widely used in the textile industry and therefore does not require heavy investments. The developed prototypes were analyzed using a particular controller for projected capacitive technologies (pro-cap), which is the most used in gesture detection. Two different designs were used to obtain the best configuration, obtaining a good result in both cases.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA